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Abstract: Rainfall forecasting is essential to manage water resources and make timely decisions to
mitigate adverse effects related to unexpected events. Considering that rainfall drivers can change
throughout the year, one approach to implementing forecasting models is to generate a model for
each period in which the mechanisms are nearly constant, e.g., each season. The chosen predictors can
be more robust, and the resulting models perform better. However, it has not been assessed whether
the approach mentioned above offers better performance in forecasting models from a practical
perspective in the tropical Andean region. This study evaluated quarterly, semiannual and annual
models for forecasting monthly rainfall anomalies in an Andean basin to show if models implemented
for fewer months outperform accuracy; all the models forecast rainfall on a monthly scale. Lagged
rainfall and climate indices were used as predictors. Support vector regression (SVR) was used to
select the most relevant predictors and train the models. The results showed a better performance
of the annual models mainly due to the greater amount of data that SVR can take advantage of in
training. If the training of the annual models had less data, the quarterly models would be the best.
In conclusion, the annual models show greater accuracy in the rainfall forecast.

Keywords: forecasting; SVR; SVM; rainfall; anomalies; large-scale climate indices; Andean river basin

1. Introduction

Rain is a phenomenon that significantly conditions human activity. Knowing its
dynamics and forecasting its behavior is essential to optimize water use, for example,
in human consumption, hydroelectric generation, agriculture [1], and industry. On the
other hand, anticipating extreme rainfall events helps to take measures to mitigate possible
adverse effects (e.g., landslides, floods, and droughts). Examples of such extreme events are
the droughts in the Southwest US [2], the São Francisco river basin (Brazil) [3], the northeast
region of Brazil [4,5], and over Brazil [6]. Additionally, rain is an essential atmospheric
variable to characterize the climate [7]. Therefore, unveiling the drivers related to this
hydrologic process is essential to understanding possible changes in its dynamics under
low-frequency natural climate variability [8] or climatic change [9].

Different models allow us to anticipate rain behavior. There are different methods
that can be used to make predictions. Dynamic models are physically consistent [10], but
these have a tremendous computational burden. Instead, statistical methods are widely
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used to identify the main modes of climate variability at different spatial and temporal
scales [11]. In addition, some models use a combination of the two approaches [12].
Weather and seasonal forecasting models or decadal prediction models could be developed
depending on the forecast horizon. From an operational point of view, and in terms
of relevance for short- and medium-term decision-makers, intraseasonal and seasonal
forecasting models are the most important. They consider forecasts from two months to a
little over a year [13,14] and help in tasks such as those listed above. Moreover, different
data-based approaches are used when constructing forecasting models such as those based
on autoregressive models (e.g., [15]), empirical models (e.g., [14]) or others that are more
robust, such as those based on machine learning (ML) techniques (e.g., [16,17]) or network
science (e.g., [18,19]). Likewise, models can be constructed based on different candidate
predictors such as exogenous variables (e.g., [17,20]) or climate indices (e.g., [21,22]).

Seasonality is a remarkable feature in nature, and different precursors defining rainfall
also have temporal variability [23] (change in mechanisms [24]). Moreover, heteroge-
neous rainfall magnitudes through the year could negatively affect the performance of
a single model in forecasting the rainfall of each month of a year. Depending on the al-
gorithm/model used to train the forecasting model, scaling and/or standardization are
frequently used preprocessing methods [25]. The rainfall anomalies are commonly com-
puted, which helps eliminate seasonality and allows unexpected values beyond trivial
behavior (mainly affected by seasonal solar irradiance) to be forecasted. However, the
changing influence of predictors over the target variable (rainfall) is an implicit feature
that is still present. So, an alternative is to construct models for each semester, season or
even month of the year [24] (e.g., [26]). Following the premise of changing mechanisms
throughout the year, such an alternative aims to learn the relationships between predictors
and rainfall in different seasons or periods of wet or dry behavior to have better-performing
models. This is because the predictors may provide information that makes the models
more robust. However, as far as the authors know, an assessment to determine if subannual
models perform better has not been carried out, and less is known about mountain zones
such as the Andes where complex processes dominate the rainfall behavior throughout the
year [27–29].

This study aimed to determine if the performance of anomaly rainfall forecasting
models improved as the models were developed for each quarter, each semester or the
whole year with a horizon of one year. These models always aim to forecast monthly
rainfall and differ in the months for which they can make the forecast. For example, one of
the quarterly models allows one to forecast the rainfall of December, January, and February
(there are four quarterly models in total), one of the semiannual models forecasts the
rainfall from November to April (there are two semiannual models), and the annual model
forecasts the rainfall of any month of the year. In addition, the influence of predictors based
on large-scale climatic factors on these improvements was analyzed. For this, three sets of
anomaly rainfall forecasting models were trained through the support vector regression
algorithm. The first set constituted the four quarterly models to forecast rainfall each
season. The second set contained the two semiannual models, and the third referred to
the annual model. Each model used an independent subset of lagged climate indices
and anomaly rainfall signals as predictors. Such subsets were chosen by employing the
sequential feature selection algorithm. Finally, the models were assessed by utilizing seven
evaluation metrics.

2. Materials and Methods
2.1. Study Zone

The Machángara river basin is located northeast of Cuenca, the capital city of Azuay, in
the Andes mountain range of southern Ecuador (Figure 1). The basin area is approximately
325 km2 and has a high altitudinal gradient extending from 2440 to 4420 m a.s.l. Natural
areas form the upper part of this basin, agricultural activities mainly occupy the middle
part, with small-urbanized patches, and urbanized sectors characterize the lower part [30].



Atmosphere 2022, 13, 895 3 of 24

The rainfall varies from 856 to 1309 mm, while the temperature ranges from 8.1 to 14 ◦C [31].
The Pacific Ocean, the Andes range and the Amazon basin mainly influence the climate of
this region [29,32,33].
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Figure 1. Location of the El Labrado and Chanlúd stations in the Machángara basin in the context of
Ecuador and South America.

The integrated management of natural resources in the Machángara basin guarantees
the provision of essential services, for example, water for human consumption for more
than 390,000 inhabitants of Cuenca (∼=60% of the population), irrigation for more than
3900 users, the generation of 39.5 MW of hydroelectricity (the first source of electric energy
in Ecuador [34]), and the provision of water for various industries in the area. In the highest
part of the basin, two representative stations were selected for the study, namely El Labrado
and Chanlúd, which are at approximately 3335 and 3485 m a.s.l., respectively. The two
stations are located in the dams that bear the same names [35] and are greatly important in
the national hydroelectric generation system.

2.2. Data

The daily rainfall data of El Labrado and Chanlúd go back to 1964 and 1981, respec-
tively. This study used monthly rainfall data from 1981 to 2021 (41 y). Therefore, the daily
rainfall corresponding to each month of the period 1981–2021 was added to generate data
on a monthly scale. Figure 2a shows the monthly rainfall data of El Labrado and Chanlúd
in the study period. Rainfall shows a marked bimodal seasonality, which is shown in
Figure 2b. A peak of heavy rain is present in April, while the driest month is August.
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The target variable of the forecasting models is the rainfall anomalies. Most of the
predictors of such models are based on climate indices. Table 1 shows the 38 climate indices
used in the study, which have a monthly resolution. Thirty-four were downloaded from
the National Oceanic and Atmospheric Administration (NOAA) (https://psl.noaa.gov/
data/climateindices/list/, accessed on 21 January 2022), and the sources of the rest are
indicated in the table footer.

Table 1. Climate indices used in the study.

Zone Indices

Global Global Mean Land-Ocean Temperature (GMSST) [36].

North
Hemisphere

Pacific/North American Index (PNA), East Pacific/North Pacific Oscillation (EP/NP) [37],
West Pacific Index (WP), North Atlantic Oscillation (NAO) [38], Jones NAO (J.NAO *) [39],

East Atlantic (EA) and Arctic Oscillation (AO) [40].

South
Hemisphere Antarctic Oscillation (AAO) [41].

Northern
Pacific North Pacific pattern (NP) [42] and Pacific Decadal Oscillation (PDO) [43].

Tropical
Pacific

Pacific Warmpool Area Average (PacWarm), Extreme Eastern Tropical Pacific sea surface
temperature (SST) (Niño 1+2) and its anomaly values (Niño 1+2.A), Eastern Tropical Pacific
SST (Niño 3) and its anomaly values (Niño 3.A), East Central Tropical Pacific SST (Niño 3.4)
and its anomaly values (Niño 3.4.A), Central Tropical Pacific SST (Niño 4) and its anomaly

values (Niño 4.A), Trans-Niño Index (TNI), Southern Oscillation Index (SOI), Bivariate ENSO
Timeseries (BEST), Bi-monthly Multivariate El Niño/Southern Oscillation (ENSO) index

version 2 (MEIv2) and El Niño Modoki Index (EMI) [44].

https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/data/climateindices/list/
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Table 1. Cont.

Zone Indices

Pacific Tripole Index for the Interdecadal Pacific Oscillation (TPI.IPO) and Northern Oscillation Index
(NOI) [45].

Atlantic and Eastern North Pacific Western Hemisphere Warm Pool (WHWP) [46].

North Atlantic Atlantic Multidecadal Oscillation UnSmoothed (AMO.US †) [47].

Tropical
Atlantic

Caribbean SST Index (CAR) [48], Tropical Northern Atlantic Index (TNA) [49], Tropical
Southern Atlantic Index (TSA) [49] and Atlantic Meridional Mode SST index (AMM) [50].

Tropic Quasi-Biennial Oscillation (QBO), ENSO precipitation index (ESPI), Western Indian Ocean
Dipole (IOD.W ‡), Eastern Indian Ocean Dipole (IOD.E ‡) and Dipole Mode Index (DMI ‡) [51].

* Downloaded from https://crudata.uea.ac.uk/cru/data/nao/; † downloaded from https://psl.noaa.gov/data/
timeseries/AMO/; ‡ downloaded from https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/. Accessed on
24 January 2022.

Both rainfall and climate indices constitute the raw monthly dataset. The dataset was
split into training and testing subsets. The former spanned from 1981 to 2015 (35 y) and
the latter from 2016 to 2021 (6 y). Figure 2a shows the training subset period in a white
background, while the testing period is shaded. The training subset was used to compute
rainfall anomalies, standardize the dataset, generate and select predictors, and train the
forecasting models. The testing subset was only used to evaluate the performance of the
models. It is worth noting that the standardization of the testing subset was based on
the parameters found in the training subset. The latter ensures an adequate evaluation
since it simulates a scenario in which nothing is known beyond the data available for
model training.

2.3. Settings and Workflow

This subsection explains the workflow followed in the study in a general manner. The
following subsections describe details about data or methods in each step. So, Scheme 1
shows the workflow to assess the quarterly, semiannual and annual models to forecast
monthly rainfall anomalies.

The first step shown in Scheme 1 is the deseasonalization of rainfall. The monthly rain-
fall climatology (Figure 2b) was computed based on the training subset period (1981–2015).
Then, the climatology was subtracted from the raw rainfall signal. The second step is the
standardization of the rainfall anomalies and climate indices data by removing the mean
and scaling to unit variance. The Standard Scaler from the Scikit-learn library [52] was used
in this step. As an example, Figure 2c shows the scaled and standardized rainfall anomalies.
The shaded period in Figure 2c was not used to compute the parameters in the scaling
and standardization. The third step is the generation of the candidate predictor set. For
this, lagged versions of the time series of the rainfall anomalies and climate indices were
generated up to a maximum τ lag (τmax) which was chosen through an autocorrelation
analysis. These signal delays are operationally essential to generate predictors with past
information that serve the current forecast, anticipating the decision making.

The fourth step is the selection of relevant predictors for each forecasting model. For
each forecasting model, different subsets of relevant predictors were selected (dashed
squares in step 4) through the sequential forward selection (SFS) algorithm. There were
seven different subsets for four quarterly models, two semiannual models, and one annual
model. The quarterly models forecast anomaly rainfall of months belonging to each of
the four seasons (e.g., the DJF model predicts rainfall in Dec–Feb), the semiannual models
forecast rainfall of months belonging to each of the two semesters (e.g., the NDJFMA model
forecasts rainfall in November–April), and the annual model forecasts rainfall of any month
of the year. In any case, the forecasting horizon was one year. Those seven models were
trained in the fifth step shown in Scheme 1. The forecasting models were based on the
support vector regression (SVR) learning algorithm [53].

https://crudata.uea.ac.uk/cru/data/nao/
https://psl.noaa.gov/data/timeseries/AMO/
https://psl.noaa.gov/data/timeseries/AMO/
https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
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The last step is the evaluation. Each year of rainfall was forecasted independently
for the testing subset period (2016–2021). With the entire testing period, a qualitative
comparison was first made. Then, the evaluation was performed with seven evaluation
metrics (the models had a horizon of one year). The comparison was performed with the
raw testing rainfall data, so the results of the models were firstly converted (seasonalization)
to the original scale (based on the parameters of the training subset).

2.4. Maximum τ lag (τmax)

In order to choose the τmax for the generation of candidate predictors, the autocorre-
lation of the raw rainfall signals was used. Each station’s autocorrelation function (ACF)
was plotted with 95% confidence intervals employing the statsmodels library [54]. These
confidence intervals suggest that the correlation values within them are likely a statistical
fluke. The standard deviation computation for the confidence intervals was performed
according to Bartlett’s formula [55,56].

The 38 climate indices from which the candidate predictors were derived had a
particular τmax, after which, the correlation with rainfall (target variable) was no longer
significant. Beyond an analysis of autocorrelations, an exhaustive analysis of lagged cross-
correlations (such as in [57]) would allow one to obtain a τmax for each index concerning the



Atmosphere 2022, 13, 895 7 of 24

target variable and to possibly achieve higher-performance forecasting models. In addition,
the above should have been taken into account for both El Labrado and Chanlúd rainfall.
This would have led to 39 different τmax for each station. However, in order not to divert
the study from the objective pursued, only the autocorrelation of rainfall was taken into
account. Once the autocorrelation graphs of each station were analyzed, a single reasonable
τmax value was taken through the study.

2.5. Generation of Candidate Predictor Sets

Four quarterly models were trained, one by each season, i.e., DJF, MAM, JJA and
SON, two semiannual models related to semesters November–April (NDJFMA) and May–
October (MJJASO) and one annual model (J-D). These models were schematized as blank
squares in step five in Scheme 1. The forecasting horizon was one year, and as an example,
if one wanted to forecast rainfall for 2016, January rainfall would be forecasted with the
DJF model. Such a value would be immediately used as a possible predictor to forecast
the February rainfall with the DJF model. The MAM model would be used to forecast
March rainfall, and the same for April and May rainfall. The exact process would be used
to forecast the rest of the months. Thus, the following lags were used for each forecasting
model to generate the candidate predictor sets.

Candidate predictor set for quarterly models:

• DJF: 13 to τmax.
• MAM: 6 to τmax.
• JJA: 9 to τmax.
• SON: 12 to τmax.

Candidate predictor set for semiannual models:

• NDJFMA: 13 to τmax.
• MJJASO: 11 to τmax.

Candidate predictor set for annual models:

• J-D: 13 to τmax.

The minimum limit of each interval shown above allows one to leverage as much
information as possible. For instance, for forecasting March–May rainfall using the MAM
model, information with a minimum lag of six means that information from November of
the previous year could be used.

2.6. Sequential Forward Selection (SFS) of Predictors

The sequential forward selection (SFS) is a greedy approach to selecting the best new
predictor iteratively from the candidate predictor set to aggregate to a subset of selected
predictors [58]. The algorithm initially finds one predictor (the first) that maximizes a
cross-validated score when a learning algorithm is trained on this single predictor. After the
first (best) predictor is selected, the algorithm finds the second predictor that maximizes the
score of the learning algorithm when it is trained on these two single predictors. The process
is repeated by adding new predictors to the subset of selected predictors in each iteration.
The optimum subset of relevant predictors is the one that gives the best cross-validated
performance. There are different implementations of the SFS algorithm, and here, the one
from the MLxtend library [59] was used. Moreover, this study used the support vector
regression (SVR) learning algorithm to compute the score based on the selected predictor
subsets. The SVR implementation of the Scikit-learn library [52] was used with the default
hyperparameters. The cross-validated score was obtained through 5-fold cross-validation.

2.7. Support Vector Regression (SVR)

The support vector regression (SVR) model was proposed by Vapnik [60] and is a
suitable model for linear and nonlinear regression. SVR is based on elements of the support
vector machine (SVM), where support vectors are the closest points toward the generated
hyperplane in a high-dimensional feature space [53]. As in most machine learning models,
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the training data are divided into two subsets: the training and validation sets [61]. The
SVR model maps the training data to a high-dimensional feature space using a kernel. The
radial basis function (RBF) kernel was used in this study. The hyperparameters are then
optimized (i.e., model training) by fitting the model to the training data in that feature
space. The formal definition of the SVR model is as follows.

Given {xi, yi} denoted as a characteristic vector of sample data with i = 1, 2, . . . , m
samples, where xiεRn, n is the number of predictors, and yiεR is the target variable (rainfall
anomalies). The SVM regression estimation function is defined as

f (x) = WTφ(x) + b (1)

where WT is the weights matrix of the independent function, φ(x) is the nonlinear (kernel)
mapping function, and b is the intercept. Then, WT and b can be obtained by minimizing
the equation

Min :
1
2
||W||2 + C

m

m

∑
i=1

Rε[yi, f (xi)] (2)

where ||W||2 is known as regularized term; C is the penalty parameter; and Rε is the
insensitive loss function (error control function) of the margin of tolerance ε.

The SVR model generally requires a small sample size for training, has a simple statis-
tical structure and performs better than complex models, e.g., artificial neural networks.

In the model training, the training data were not only divided into a new training
subset and a validation subset. Instead, the 5-fold cross-validation technique was used to
gain generalization. A particular subset of predictors for each forecasting model was used
(dashed squares of step 4 in Scheme 1). Moreover, the following set of values for each of
the hyperparameters was used in the training process:

• C =
{

2i | i ∈ Z,−20 ≤ i ≤ 10
}

;
• ε =

{
2i | i ∈ Z,−20 ≤ i ≤ 10

}
;

• γ =
{

2−20+ 19
30 i | i ∈ Z, 0 ≤ i ≤ 30

}
.

The γ hyperparameter corresponds to the RBF kernel used and relates to the inverse
of the radius of influence of registers selected by the model as support vectors. The number
of models trained until the best-performing one is found for each forecasting model is
31,713 × 5 = 158,565 (31,713 hyperparameter combinations, and 5 corresponds to the 5-fold
cross-validation).

2.8. Evaluation Metrics

Given the raw rainfall time series y = {y1, y2, . . . , ym} and the seasonalized forecasted
rainfall ŷ = {ŷ1, ŷ2, . . . , ŷm}, the forecasting models were evaluated with the following
seven metrics. These metrics are commonly used for evaluating forecasting and prediction
models [62–65].

Mean Absolute Relative Error (MARE). The MARE measures how much error exists in
the forecasted rainfall relative to the observed values in absolute terms. It is computed by

MARE =
∑m

i=1|yi − ŷi|
∑m

i=1 yi
(3)

The MARE is independent of the time series scale, and its value ranges from 0 to ∞,
with 0 being the measure of a perfect forecast.

Mean Absolute Error (MAE). The MAE represents the average of the absolute differ-
ence between the forecasted values and the observations. It measures the average of the
residuals regardless of their sign. The MAE is defined as

MAE =
1
m

m

∑
i=1
|yi − ŷi| (4)
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This metric scale depends on the scale of rainfall, and its value ranges from 0 to ∞,
with 0 being the best value.

Root Mean Square Error (RMSE). The RMSE is the square root of the average of the
squared difference between the forecasted values and the observations. The RMSE is
defined as

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (5)

The RMSE values are dependent on the time-series scale, and its value ranges from 0
to ∞, with 0 being the measure for a perfect forecast.

Nash–Sutcliffe Efficiency (NSE). The NSE [66] is widely used to evaluate the perfor-
mance of hydrological models. Although the NSE is susceptible to outliers because it takes
a sum over the squared values of the differences between the forecasted values and the
observations, it is even better than other metrics, such as the coefficient of determination.
The NSE is defined as

NSE = 1− ∑m
i=1(yi − ŷi)

2

∑m
i=1

(
yi −

−
y
)2 (6)

where
−
y is the average of the rainfall time series (observations). The scale of this metric is

independent of the scale of the rainfall values. The values of this metric go from −∞ to 1,
with 1 meaning perfect forecasting, 0 meaning that the results are as good as always using
−
y for the forecasting and negative values meaning arbitrarily bad results.

Kling–Gupta Efficiency (KGE). The KGE [67] is a robust performance measure based on
three equally weighted components: variability, linear correlation, and bias ratio between
forecasted and observed rainfall. The KGE is defined as

KGE = 1−
√
(α− 1)2 + (cc− 1)2 + (β− 1)2 (7)

where α is the variability (the ratio between the standard deviation of forecasted rainfall
over the observed rainfall), cc is the linear correlation coefficient between forecasted and
observed values, and β is the division between the average of the forecasted rainfall over
the average of the observed rainfall.

The KGE is independent of the rainfall scale, and its value goes from −∞ to 1. The
higher the value, the better the forecast.

Explained Variance (EV). The EV measures the proportion of the variance of the
residuals (differences between yi and ŷi) and the rainfall variance. It is computed by

EV = 1−
∑m

i=1

[
(yi − ŷi)− 1

m ∑m
j=1
(
yj − ŷj

)]2

∑m
i=1

(
yi −

−
y
)2 (8)

The EV is independent of the time series scale, and its value ranges from −∞ to 1,
with 1 being the optimum value and negative values indicating arbitrarily bad forecasting
results. EV = 0 indicates that the model is as good as using any fixed value for the forecast.

Percent Bias (PBIAS). The PBIAS determines whether there is a tendency in the values
forecasted by the model (i.e., if these are higher or lower than the observed values). A
positive PBIAS indicates that the model overestimates the forecasted variable, while a
negative value indicates that the variable is underestimated. The optimal value is a PBIAS
equal to zero. This metric is defined as

PBIAS = 100× ∑m
i=1(ŷi − yi)

∑m
i=1 yi

(9)
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This metric is independent of the rainfall scale, and the closer the value of |PBIAS|
to 0, the better the results, with 0 being the optimum value. |PBIAS| values greater than
100 indicate arbitrarily bad results.

3. Results
3.1. τmax for Generating the Candidate Predictors

Figure 3 shows the ACFs of El Labrado and Chanlúd rainfall. The autocorrelation
demonstrated a high seasonal rainfall signal with statistical significance until 37 months
in El Labrado and 49 months in Chanlúd. A lag of 37 months was then taken as the τmax
to create the candidate predictor set. Since this study concentrates on comparing models
differing in the number of months used in the implementation, the same number of 37 lags
was taken as the maximum to create the candidate predictors based on the 38 climate
indices (Table 1).
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Figure 3. Autocorrelation of rainfall signals and 95% confidence intervals in gray: (a) El Labrado;
(b) Chanlúd.

3.2. Optimum Number of Predictors

Figure 4 shows the results of selecting the optimum number of predictors through
the SFS approach. Each column corresponds to the different model sets, i.e., quarterly,
semiannual and annual models. Each row corresponds to the models for El Labrado and
Chanlúd. The performance behavior of the models showed a similar tendency. The opti-
mum number of predictors was around 81 and 68 for El Labrado and Chanlúd, respectively.
The optimum number of predictors for quarterly, semiannual and annual models for El
Labrado were around 93, 73 and 55, respectively. Meanwhile, for Chanlúd, the optimum
numbers were around 69, 49 and 105. However, the performance of the annual model for
Chanlúd (Figure 4f) had a lower variance in the approximated interval of 35–105 predictors.
Thus, the greater the number of months that are considered in the models with different
periods, the fewer the predictors that are needed to get the best performance. A possible
explanation for this behavior is the greater number of records (instances) that the models
had in the training stage of the SFS as they were built for more months (e.g., annual models).
The annual models used 100% of the available records in the selection of predictors (383 of
the 420 because of the candidate predictor generation with 37 lags), the semiannual models
used 50% of such records (November–April: 191, May–October: 192), and the quarterly
models used 25% (DJF: 95, MAM: 96, JJA: 96, SON: 96). The SFS used the SVR learning
algorithm with the default hyperparameters, so varying the number of records changed
the amount of relevant information for the forecasting. From a purely predictive point of
view, models for more months achieve better performance with fewer predictors that have
more relevant information to achieve better generalization.
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Figure 4. Sequential forward selection results: (a–c) models for El Labrado; (d–f) models for Chanlúd;
(a,d) quarterly models; (b,e) semiannual models; (c,f) annual models. The dots show the best cross-
validation performance, and the numbers in parentheses indicate the cardinality of the predictor
subset with such best performance.

3.3. Relevant Predictors

The optimum number of predictors allows light to be shed on the more prominent
indices to predict rainfall anomalies in the stations of the study zone. First, quarterly models
allowed indices influencing each season to be analyzed. The analysis was conducted using
the times an index with different lags was chosen. This number is labeled the frequency in
Figures 5–8. The mean number of lags of the different indices chosen are shown in intervals
of up to 12 months, 24 months and more than 24 months.

Figure 5 shows the climate indices providing more information for the predictor
selection stage in each season for El Labrado. The most prominent feature was the EP/NP
climate index in all seasons. In all the seasons, the EP/NP mean lag was within the
12 months before the rainfall value that had to be forecasted. The NP index was the second
most prominent feature present in the models for the four seasons. NP was the second
most prominent in DJF and SON, third in MAM, and sixth in JJA. Like EP/NP, the NP
mean lag was within 12 months before the forecasted rainfall value. The Niño 3 index was
present within the seven most prominent indices in DJF and MAM. DJF is a season when
the climate conditions of the ENSO regions in the Pacific are more important in learning
about rainfall in the Ecuadorian Andes [68]. The results showed that information 12 months
before the rainfall observation is also important in learning about rainfall anomalies. It is
worth noting that the Niño 3 index is a mean value index and does not refer to anomalies.
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Figure 5. Predictors selected through SFS for each quarterly model for El Labrado (dots in Figure 4a):
(a) quarter December–February; (b) quarter March–May; (c) quarter June–August; (d) quarter
September–November. The size of each circle corresponds to the frequency with which a climate
index (with different lags) appears as a predictor of the model. The color of each circle corresponds to
the mean of the lags with which a climate index appears as a predictor of the model.

On the other hand, the same signal (El Labrado) and the Niño 1+2 index were promi-
nent indices in JJA and SON models. El Labrado signal was the third most frequent index
appearing in the models for JJA and SON. The Niño 1+2 index mean lag was 12 months
before the rainfall value. Again, Niño 1+2 is not an anomaly index but provides information
in selecting predictors.
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Figure 6. Predictors selected through SFS for each quarterly model for Chanlúd (dots in Figure 4d):
(a) quarter December–February; (b) quarter March–May; (c) quarter June–August; (d) quarter
September–November. The size of each circle corresponds to the frequency with which a climate
index (with different lags) appears as a predictor of the model. The color of each circle corresponds to
the mean of the lags with which a climate index appears as a predictor of the model.

GMSST was not prominent and even not present in SON. PDO was not prominent
because it is a shallow frequency signal. PacWarm was only present in DJF and MAM.
Niño 4 was present in DJF and JJA but with a low frequency; it was not present in MAM
and SON. BEST and TPI.IPO were only present in SON but were not very prominent. CAR,
QBO and ESPI were only present in DJF. TNI, MEIv2, Niño 4.A, and AMM were not present
in any season.
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Figure 7. Predictors selected by means of SFS for each semiannual model. (a,b) Models for El Labrado
(dots in Figure 4b); (c,d) models for Chanlúd (dots in Figure 4e); (a,c) semester November–April;
(b,d) semester May–October. The size of each circle corresponds to the frequency with which a
climate index (with different lags) appears as a predictor of the model. The color of each circle
corresponds to the mean of the lags with which a climate index appears as a predictor of the model.

Figure 6 shows the climate indices providing more information in the predictor selec-
tion stage in each season for Chanlúd. Like for El Labrado, the most prominent climate
index was EP/NP. Again, the mean lag of the predictors derived from EPO was within
12 months. Unlike El Labrado, NP was not found as a frequent index even though it was
present in all seasons. Chanlúd appeared as the third most frequent index in SON. TNI and
PDO were only present in SON. Niño 4 was only present in DJF. TPI.IPO was only present
in MAM. MEIV2, QBO and AMM were not present in any season.
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Figure 8. Predictors selected through SFS for each annual model: (a) model for El Labrado (dots
in Figure 4c); (b) model for Chanlúd (dots in Figure 4f). The size of each circle corresponds to the
frequency with which a climate index (with different lags) appears as a predictor of the model. The
color of each circle corresponds to the mean of the lags with which a climate index appears as a
predictor of the model.

Figure 7 shows the most prominent climate indices for El Labrado (Figure 7a,b) and
Chanlúd (Figure 7c,d) in the semiannual models. As the number of months increased from
quarterly to semiannual models, NP appeared with less relevance in El Labrado and even
did not appear in Chanlúd for NDJFMA. EP/NP was the most frequent index in the subset
of predictors that allowed the best performance in the models, both in El Labrado and
Chanlúd. The mean lag for EP/NP was around 12 months before the forecasted month.
Unlike quarterly models, in semiannual models, the higher frequency of EP/NP was 16
in MJJASO. For El Labrado, the same signal with a mean lag of 12 months appeared with
more repetitions, especially in MJJASO. AO and TNA area climate indices appeared in both
semiannual models for El Labrado.

Concerning El Labrado, PacWarm only appeared in NDJFMA, but its relevance was
low. BEST, TNI and MEIV2 only appeared in NDJFMA with low frequency but a mean lag
of 12 months. EA, Niño 1+2, Niño 1+2.A, Niño 3.4 and Niño 3.4.A were only present in
MJJASO, but their frequency was low. Niño 3 only appeared in MJJASO, but its frequency
was low, with a mean lag beyond 24 months. This is interesting since only Niño 4 and Niño
4.A corresponding to El Niño indices appeared in NDJFMA. EMI, Niño 4 and Niño 4.A only
appeared in NDJFMA. QBO was only present in NDJFMA with the lowest frequency and a
mean lag greater than 24 months. TSA, WHWP, IOD.W, IOD.E and DMI only appeared in
MJJASO. Niño 3.A, TPI.IPO and CAR were not present in any semiannual models.

Concerning Chanlúd, NP, SOI, BEST, MEIv2, QBO, ESPI and PacWarm were only
present in NDJFMA. Although NAO appeared in both semiannual models, J.NAO did not
appear in any semiannual models. AAO, PDO, AMM, IOD.E and WHWP only appeared
in MJJASO. Concerning the El Niño indices, Niño 1+2 appeared in MJJASO and Niño 3 in
NDJFMA; the rest were not present in any model. TNI, EMI, TPI.IPO, TNA, TSA, IDO.W
and DMI did not appear in any model.

CAR was present in both models for Chanlúd but not for El Labrado. QBO was present
in NDJFMA for both El Labrado and Chanlúd but not for MJJASO.
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Figure 8 shows the predictors selected for the annual models for El Labrado (Figure 8a)
and Chanlúd (Figure 8b). Interestingly, the same signal of El Labrado and Chanlúd rainfall,
with a mean lag within 12 months, was within the higher-frequency indices. CAR was the
most frequently chosen for El Labrado. Meanwhile, lags of the Chanlúd rainfall anomalies
were the most frequent in Chanlúd. NAO and EP/NP were indices within the six prominent
índices in both El Labrado and Chanlúd.

In models for El Labrado AO, PDO, Niño 1+2.A, Niño 3.A, Niño 3.4, Niño 3.4.A, Niño
4, Niño 4.A, TNI, BEST, MEIV2, EMI, WHWP, TNA, TSA, AMM, QBO, ESPI, IOD.W, IOD.E
and DMI were not present.

In models for Chanlúd AO, Niño 1+2, Niño 3, Niño 3.A, Niño 3.4, Niño 3.4.A, Niño 4,
Niño 4.A, TNI, WHWP and TNA were not present.

3.4. Qualitative Evaluation

Figure 9 allows one to compare the rainfall forecasts from quarterly, semiannual and
annual models. An outstanding feature in El Labrado (Figure 9a) is the overestimation
of the semiannual model in November and December. This characteristic was prominent
from 2016 to 2019. Quarterly and annual models showed similar results even though
quarterly models showed better results for some specific months, for instance, from October
to December 2016, and October and December 2019. Generally, quarterly models best
reproduced the pattern of September–December. Likewise, semiannual models showed the
best results in months such as December 2017, January 2018 and August–October 2021.
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Figure 9. Qualitative evaluation of the models’ performance: (a) for El Labrado; (b) for Chanlúd. The
vertical lines indicate that the forecasts were made for each year individually.

Figure 9b shows that in Chanlúd, the semiannual models tended to result in mean
values demonstrating the lowest performance. Annual models were better than semian-
nual models reproducing high values of rainfall. However, the general characteristic of
quarterly models in reproducing the highest values of rainfall made them the best option.
Nevertheless, it should be mentioned that quarterly models showed poor performance in
some specific cases, such as in October 2017 and April 2019.
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3.5. Quantitative Evaluation

Figure 10 shows the performance results for El Labrado (left-hand side of each figure
panel) and Chanlúd (right-hand side of each figure panel) models that employed the seven
evaluation metrics. The semiannual models showed the worst results in all the metrics,
becoming the worst approach to forecast rainfall anomalies in both stations. According
to the MARE, MAE, RMSE, NSE and EV metrics (Figure 10a–d,f), the best model was un-
doubtedly the annual model for El Labrado and Chanlúd. Moreover, the PBIAS (Figure 10g)
metric confirmed the annual models as the best for Chanlúd. For El Labrado, the PBIAS
indicated that the quarterly models were the best. However, the KGE metric showed that
the quarterly models had the best performance.
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(b) MAE; (c) RMSE; (d) NSE; (e) KGE; (f) EV; (g) PBIAS. The metrics were calculated using the entire
testing period.
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As indicated in Section 3.2, annual models leverage a major amount of records in the
model training stage, so they probably obtain better results. In order to give evidence for
such conjecture, five new annual models were trained with the same followed method
but by only using 95 randomly chosen records in training. This was the same number of
records used when training the DJF quarterly models (in the rest of the seasons, 96 records
were used). The mean values of the evaluation metrics are indicated as bars with dots
in Figure 10.

Comparing the annual models trained with 95 records with the quarterly and semian-
nual models (Figure 10), all the metrics indicated that the quarterly models were the best
models. According to KGE, the quarterly models were always the best performers.

4. Discussion

As more months were used to generate the models, the predictors chosen as the
most relevant changed, especially for the annual models. EP/NP was the most prominent
index in the quarterly, semiannual and annual models. This index was related to the most
frequently selected predictors for quarterly and semiannual models for El Labrado and
Chanlúd. In the case of annual models, EP/NP was related to the fifth most frequently
selected predictors for El Labrado and Chanlúd. Except for the annual model for El Labrado,
in all cases, the average lag of the predictors associated with this index was between
12 and 24 months. The EP/NP is a northern hemisphere index related to 500 hPa height
anomalies over three main anomaly centers: Alaska/western Canada, central North Pacific
and eastern North America. Since it is a relevant index for the climate of North America,
most of the works are related to that geographical area. Córdoba Machado et al. [69] found
weak but significant correlations between EP/NP and rainfall in Colombia. However,
lagged correlations were not used. Mora and Willens carried out a study analyzing the
relationship between the index and rainfall in a basin where the Machángara is located [70].
They found correlations around |R2| = 0.6. This study showed that EP/NP also turned
out to be an index with information that allows one to forecast rainfall anomalies with a
horizon of approximately one year.

For the quarterly models, another prominent index was the north Pacific pattern (NP).
NP is another northern hemisphere index. Specifically, it is the area-weighted sea level
pressure over the region 30◦ N–65◦ N, 160◦ E–140◦ W. This confirms the relevance of infor-
mation from the North Pacific in predicting rainfall anomalies in high tropical mountain
areas. However, more research must be conducted to shed light on the acting mechanisms.

For the semiannual models, other prominent indices were TNA for El Labrado and
AO for El Labrado and Chanlúd. TNA is a tropical Atlantic index and is defined as the
anomaly of the average of the monthly SST over the region 5.5◦ N–23.5◦ N, 15◦ W–57.5◦ W.
The tropical Atlantic SST is a driver of rainfall in the study zone [29,71,72]. Therefore, this
study showed the applicability of the index in providing information to forecast rainfall
anomalies in the study zone around 12 months in the future. AO is another northern
hemisphere index that, like EP/NP, needs further study to understand the underlying
mechanisms that make it a prominent index for forecasting rainfall in the study area.

For the annual models, the most prominent indices were CAR, NAO and the lagged
versions of the same anomaly rainfall signal. CAR is related to the SST anomalies over the
Caribbean and is not as prominent in quarterly and semiannual models. The Caribbean is
known as a source of humidity that influences rainfall in the study zone [29,32]. NAO is
another north hemisphere index and is a prominent teleconnection pattern in all seasons.
Like EP/NP, further study is needed to understand the underlying mechanisms that make
it a significant index for forecasting rainfall in the study area. Despite the known correlation
between the conditions of El Niño zones and rainfall in Ecuador, these indices (Niño 3.A,
Niño 3.4, Niño 3.4.A, Niño 4 and Niño 4.A) did not provide any relevant information to
forecast rainfall anomalies in annual models. It should be borne in mind that the indices
above are used in these models, but with delays of 13 to 37 months in order to generate
forecasts with a one-year horizon. Despite the known relation between these indices
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and rainfall, this relation can fade when using signals with information distant in time. In
addition, there may be other indices correlated with those of Niño with linear and nonlinear
correlation with rainfall anomalies (standardized) that, more importantly, together with
the rest of the selected predictors, are better leveraged by SVR, producing higher accuracy.
Finally, another possible reason is that there are not enough events for SVR to learn the
most significant patterns between the rainfall anomalies and the indices.

Another relevant result is the selection of SOI by many of the models, whether quar-
terlies, semiannuals or annuals. SOI had a linear correlation with the Niño 3.4 and Niño
3.4.A indices of −0.65 and −0.73, respectively. However, these last two were not selected
for most models. The possible explanation is related to what was explained in the previous
paragraph. Despite a high linear correlation between the indices, SOI contributed more to
the learning algorithm in the context of the set of predictors chosen to produce a higher-
accuracy model. In fact, the correlations between the Niño 3.4 and Niño 3.4.A indices
with the standardized rainfall anomalies at Chanlúd (−0.04) were only slightly lower in
magnitude than the correlation between SOI and rainfall anomalies (0.06) (in El Labrado,
they were −0.07, −0.08, and 0.08, respectively). This means that SOI is more relevant to
forecast rainfall when used with the other predictors in the model.

The distance between El Labrado and Chanlúd is approximately 8 km, and the dif-
ference in altitude is approximately 150 m. Despite the above, the SFS algorithm selected
groups of predictors that differ for the models of these two stations, except those derived
from EP/NP. EP/NP was the most relevant climatic index for the quarterly and semian-
nual models and was among the five most relevant in the annual one. Some reasons can
explain this difference. First, note that the correlation between the standardized rainfall
anomalies (Figure 2c) of the two stations (0.87) decreased compared to that of the raw data
(0.92) (Figure 2a). These anomalies were used until before the evaluation (Scheme 1). As
Figure 2b shows, there were systematic differences between the rainfall that were evident,
for example, between May and August. Due to the above, it seems reasonable to expect
certain differences between the groups of selected predictors because SVR made the best
possible use of the highly nonlinear relationships in each group. Second, the relevance
of the indices (size of the circles in Figures 5–8) could have been affected by the number
of derived predictors that were selected (different lags). Since we used the same number
of lags in climate indices and rainfall to generate the predictors, it is possible that for one
of the two stations, a different τmax should have been used (see Section 2.4). With that, it
is possible that a larger number of predictors related to certain indices could be selected.
Third, the SFS of predictors used SVR with the default hyperparameters to compute the
score on the selected predictor subsets. Variations in the selection approach (e.g., sequential
backward selection [73]) or in the model to calculate the score (e.g., random forests [74])
or its tuning would lead to a profoundly exhaustive sensitivity analysis of predictors.
However, analyzing the influence of all the above is beyond the scope of the study and is
proposed for future research.

According to almost all evaluation metrics, the annual models were the best among
quarterly, semiannual and annual models. However, the KGE metric showed that quarterly
models were the best. The implementation of annual models with fewer registers showed
that such high performance is possibly due to the amount of information that the learning
algorithm can leverage in the training stage. Not enough (or not the optimal) predictors
were selected in such a case to be exploited by the SVR algorithm. When comparing
such results with those from the quarterly models, all metrics demonstrated that quarterly
models were the best, which KGE indicates for all models.

The semiannual models were the ones that reported the worst results. This could
be related to the bimodal seasonality of rainfall (Figure 2b) that does not allow data to
be separated into periods with similar rainfall characteristics. Each semiannual model
contained information on both rainy months and drier months. This means that the
selection of predictors was not so robust since the selection algorithm used information on
transition periods.
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The hypothesis that quarterly models could perform better by selecting more robust
predictors was not necessarily true in practical terms. This is because, for operational
reasons, the amount of information that can be used in annual models is greater. Specif-
ically, this can be evidenced by using SVR as the learning algorithm for generating the
forecast models. Depending on the learning algorithm, the negative effect of the amount
of information to be used could be greater or lesser. Therefore, other studies using other
learning algorithms are necessary to reach general and conclusive results.

A comprehensive comparison of the results with the predictions of South American
models (e.g., the SEAS5 model) is pending, but a very brief discussion follows. Gubler
et al. [68] demonstrated high precision in the highlands of Ecuador during the austral
summer, which is consistent with our findings. However, Coelho et al. [75] state the low
seasonal forecast skill of either empirical or coupled multimodel predictions in South
America but highlight forecast assimilation’s importance in obtaining better forecasts.
Barnston and Tippett [10] showed that the North American Multimodel Ensemble project
(NMME) [76,77] with a correction of bias with statistical methods does not improve the
skill of the forecasts in South America.

5. Conclusions and Remarks

This study had the following main objectives: first, to know if the performance of the
monthly rainfall forecast models improved when they were implemented for each season,
by semesters or a single model for all the months of the year. These models always forecast
rainfall on a monthly scale and differ in the months that are used in training and the months
for which they make the forecast. Second, to analyze the main predictors that influence
the improvement of the performance of the models. These predictors were generated
using 38 climate indices and the same rainfall signal using lags of up to 37 months. The El
Labrado and Chanlúd stations, located in the Andean Machángara basin, were used for
the study.

The annual models were the best according to six of seven evaluation metrics. How-
ever, the Kling–Gupta efficiency shows that the quarterly models were the best. The study
gives evidence that the performance of annual models was due to the more significant
number of records (instances) that could be exploited when training them. When the
annual models were trained with the same number of records as the quarterly models,
the quarterly models were the best. Therefore, from a pragmatic point of view, annual
models should be used to generate operational rainfall forecasting models in the study area.
Studies in more areas are necessary to generalize the results obtained here.

The largest number of predictors that were chosen for the forecasting models were
those derived from the EP/NP climate index. The influence of this northern hemisphere
index on the Machángara rainfall has not been extensively studied, so it must be taken
into account to investigate the mechanisms involved. For the quarterly models, another
prominent index was NP, another northern hemisphere index. For the semiannual models,
other prominent indices were the tropical Atlantic index TNA for El Labrado and the
northern hemisphere index AO for El Labrado and Chanlúd. Finally, for the annual models,
the most prominent indices were CAR (related to the conditions in the Caribbean), NAO
(north hemisphere index) and the lagged versions of the same anomaly rainfall signal.

The results show that annual models can be operationally helpful since rainfall fore-
casts could be made in the current month with climatic information from twelve or more
previous months. This is essential to anticipate water resources management in different
sectors, e.g., agriculture and hydroelectricity.

There were some limitations in the study, which are described next. First, we selected
a single τmax for the climate indices and rainfall in El Labrado and Chanlúd. Tuning a
τmax for each station and index could reduce the search space of the learning algorithms
and improve their performance. Second, SVR was used with the default hyperparameters
in selecting predictors through SFS. Other selection methods [78–83] could be tested in
future studies, as well as other learning algorithms that serve as scoring functions (e.g.,
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random forests) performing a hyperparameter tuning. The former would help analyze the
most relevant indices that influence the study area more exhaustively and with greater
significance. Finally, the training of the forecast models could be carried out with other
learning algorithms [17,84], also comparing their performance when combined with differ-
ent selection methods.

This study shows a real approach to implementing operational forecasting models and al-
lowing more accurate insight into the generalization of the models in a production environment.
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