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Abstract: The high quality and efficient production of greenhouse vegetation depend on micromete-
orology environmental adjusting such as system warming and illumination supplement. In order
to improve the quantity, quality, and efficiency of greenhouse vegetation, it is necessary to figure
out the relationship between the crop growth conditions and environmental meteorological factors,
which could give constructive suggestions for precise control of the greenhouse environment and
reduce the running costs. The parameters from the color information of the plant canopy reflect the
internal physiological conditions, thus, the RGB model has been widely used in the color analysis of
digital pictures of leaves. We take photographs of Begonia Fimbristipula Hance (BFH) growing in the
greenhouse at a fixed time every day and measure the meteorological factors. The results showed
that the color scale for the single leaf, single plant, and the populated canopy of the BFH photographs
all have skewed cumulative distribution histograms. The color gradation skewness-distribution
(CGSD) parameters of the RGB model were increased from 4 to 20 after the skewness analysis, which
greatly expanded the canopy leaf color information and could simultaneously describe the depth
and distribution characteristics of the canopy color. The 20 CGSD parameters were sensitive to the
micrometeorology factors, especially to the radiation and temperature accumulation. The multiple
regression models of mean, median, mode, and kurtosis parameters to microclimate factors were
established, and the spatial models of skewness parameters were optimized. The models can well
explain the response of canopy color to microclimate factors and can be used to monitor the variation
of plant canopy color under different micrometeorology.

Keywords: RGB model; skewed distribution; population canopy color gradation; microclimate
environment; response

1. Introduction

Meteorological conditions are crucial factors that determine crop growth and leaf
development [1,2]. Facility agriculture is an efficient crop production through the pre-
cise regulating of microclimate within the greenhouse [3–5]. Clarifying the relationships
between plant physiological and ecological indicators and meteorological conditions are
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the basic method for quantitative assessment of agro-meteorological conditions, assessing
the agro-meteorological disaster losses, predicting the yield, and applying the intelligent
micrometeorology control of agricultural production. Thus, it is the right path to find the
determining parameters that have a close relationship with meteorological factors and
reflect plant growth status sensitively.

Digital image technology is well-developed and high-resolution camera equipment
is widely used, with digital imaging technology having the obvious advantages of high
resolution and low cost in the research of plant phenotypes [6,7]. A digital color image
is not only convenient to obtain [8], but also contains abundant information about plant
morphology, structure, and color gradation [9–11], which can reflect the internal status
of plants. The RGB color model is the popularly used color representation for digital
images [12]. The parameters of the traditional RGB model are mainly the mean values of
each color channel and their combined values, which can approximately describe the color
depth of the leaves and estimate the chlorophyll content of the leaves [13–18]. Moreover,
the RGB model reflects the soil moisture and nutrient levels [19–22]. However, the mean
values of image parameters are not comprehensive enough in the description of color
distribution [23], as a result, the RGB model is generally used in the studies of water,
fertility, and disease which may drastically change the leaf color [8,24–26]. The RGB model
is also an effective method to reflect the relationship between the image information and
the variation of environmental factors.

The quantitative analysis of mega-high quality digital photographs could explain the
genotype-by-environment interactions in plant phenotypes [27]. The variation of mete-
orological factors affects the physiological and biochemical characters of plants slightly,
such as influencing the openness of the stomata [28], changing the arrangement of the
chloroplast [29], and increasing or decreasing the photosynthesis rate of the leaves [30,31].
All these affections change the plant’s color under a visible spectrum [32]. Therefore, the
image color information parameters are used as representative references to reflect the
meteorological environment of the growing plant. Skewed analysis expanded the RGB
model parameters from the mean to the mean, median, mode, skewness, and kurtosis, with
the number of parameters from 4 to 20 [33]. The color gradation skewness-distribution
(CGSD) parameters describe leaf color information more accurately and comprehensively
than the traditional mean parameters [33], including whether the color gradation dis-
tribution of a single plant varies the same as the leaf, and the field scale determines its
sensitivity in response to the environmental meteorological factors. The CGSD for all scales
varying consistently helps to construct an effective model between the external meteoro-
logical factors and morphological parameters of the plant. The quantitative evaluation
of agro-meteorological conditions for a plant can be achieved by combining canopy color
information indexes corresponding to different morphological parameters of plants, to
provide information that supports precise management of plant production.

Begonia Fimbristipula Hance (BFH) is a vegetation type widely used for medicine and
food. BFH has abundant anthocyanins, polyphenols, and flavonoids and a strong an-
tioxidant capacity [34–36]. BFH is cultivated in facilities that have a warm and humid
environment to ensure annual cultivation [37]. After planting BFH in a glass greenhouse
and collecting the meteorological factors and canopy photographs, the relationship between
changes in canopy color and the meteorological factors in the facility environment was
analyzed. The purpose of this research is: (1) to quantify the mathematical relationship
between CGSD parameters and meteorological factors, and increase the accuracy of quanti-
fying the changes in population canopy color with meteorological changes; (2) to construct
population canopy color–meteorological response models by using the relationship of
CGSD parameters and meteorological factors, including temperature, humidity, and solar
radiation, and; (3) to provide new methods from the RGB model to monitor the patterns
of canopy color variations due to meteorological environment changes. The results may
construct the crop growth model based on the CGSD parameters of the RGB model, and
provide a new approach for intelligent control of facility agricultural production.
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2. Materials and Methods
2.1. Plant Material and Growth Conditions

The glass greenhouse for the experiment is in Guli Modern Agriculture Demonstration
Park, Jiangning District, Nanjing, Jiangsu, China (24◦57′ N, 116◦30′ E). The BFH were
potted by the rooting of cuttings and planted with a total nutrient matrix which was in the
proportion of N: P2O5: K2O in a 100 g matrix at 20:10:20, trace elements included Cu, Fe, Zn,
Mn, B, and Mo≥ 1%, and pH 5.85. Moreover, the matrix contained an active accelerator and
sustained release agent of poly-fertilizer. The BFH experiment had 2 replicates, and each
replicate contained 24 potted plants. The first growing period of BFH was from 1 December
2018 to 17 February 2019, and after cutting off the 10 cm top length on 18 February, BFH
continued growing in the second growth period from 19 February 2019 to 11 April 2019.

2.2. Meteorological Data Acquisition

Meteorological data were obtained from the agricultural meteorological observation
station (DZZ4, Jiangsu Provincial Radio Science Research Institute Co., LTD., Wuxi, China)
in the facility. The observed meteorological elements included daily meteorological ele-
ments, such as the daily mean temperature (Tdm), daily mean relative humidity (RHdm),
daily mean ground temperature (TGdm), daily mean soil temperature at 10 cm (TSdm−10c),
daily mean vapor pressure (VPdm), daily mean dew point temperature (TDdm), daily total
global radiation (GRdt), and daily total photosynthetically active radiation (PARdt). The
accumulated temperature (AT), accumulated global radiation (AGR), and accumulated
photosynthetically active radiation (APAR) were calculated from Tdm, GRdt, and PARdt.

AT =∑ Tdm (1)

AGR =∑ GRdt (2)

APAR =∑ PARdt (3)

2.3. Canopy Image Collection

Canopy color images of BFH were collected in the facility by a monitoring camera
(DH-SD-65F630U-HN-Q, Zhejiang Dahua Technology Co., Ltd., Hangzhou, China) with
an image resolution of 1920 × 1080, and the installation height was 280 cm (Figure 1).
The camera with a vertical lens was set with a fixed focal length shooting and automatic
white balance and adopted a fixed time shooting mode to take a photograph at set times
of 9:03 a.m. every day. The 117 images from 3 groups without direct sunlight were se-
lected for analysis, including 102 images in the first growth period (1 December 2018 to
17 February 2019) of 2 replicates with 51 pictures each, and 15 images in the second growth
period (19 February 2019 to 11 April 2019).
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2.4. Cutting and Denoising of the Image

Adobe Photoshop V8.0 software (San Jose, CA, USA) and MATLAB2016R software
(referred to as MATLAB [Math Works, Natick, MA, USA]) were primarily used to cut and
denoise the BFH original image [38,39] (Figure 2a).

Atmosphere 2022, 13, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. Flow map of Cutting and Denoising of the Image. 

2.5. Information Collection of the RGB Image 
Transformation of double-precision arrays of the image. MATLAB was used to ex-

tract and analyze BFH RGB images. After reading color images by using the imread func-
tion, image (:, :, 1), image (:, :, 2), image (:, :, 3), and the rgb2gray function were respectively 
used to read every pixel gradation of red, green and blue channels, as well as gray-level 
images. The full circulation algorithm was used to retrieve and record the non-black pixel 
index codes of these pixels, which were combined with an array of leaf color gradation. 
Then the double function was used to transform it into double precision arrays again. 

Establishment of the canopy color gradation skewness-distribution (CGSD) pa-
rameters table. The mean, median, mode, std, skewness and kurtosis functions were used to 
acquire the mean、median、mode、standard Deviation、skewness, and kurtosis of the 
double-precision arrays of red, green, and blue channels, as well as gray-level images [33]. 
The CGSD parameters were obtained, including RMean, RMedian, RMode, RSkewness, RKurtosis, GMean, 
GMedian, GMode, GSkewness, GKurtosis, BMean, BMedian, BMode, BSkewness, BKurtosis, YMean, YMedian, YMode, YSkew-

ness, and YKurtosis (Table 1). Finally, the CGSD parameters tables of color gradation distribu-
tion of BFH RGB images were formed.  

Table 1. Color gradation skewness-distribution (CGSD) parameters. 

Channel 
CGSD Parameters 

Mean Median Mode Skewness Kurtosis 
Red Channel (R) RMean RMedian RMode RSkewness RKurtosis 

Green Channel (G) GMean GMedian GMode GSkewness GKurtosis 
Blue Channel (B) BMean BMedian BMode BSkewness BKurtosis 
Gray Image (Y) YMean YMedian YMode YSkewness YKurtosis 

Array distribution normality testing. The lillietest and jbtest functions were used to 
conduct the Lilliefors and Jarque-Bera tests of normal distribution for the color gradation 
distribution of red, green, and blue channels, as well as gray-level images of BFH RGB 
images. 
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1. Adobe Photoshop CS software (San Jose, CA, USA) was primarily used to intercept
the range of 600 × 600 in the lower-left corner of the image, and the processed image
was saved in a JPG image format (Figure 2b).

2. The rgb2hsv function of MATLAB was used to convert RGB images into HSV images.
Double cycle operation was used to set the H-value of the image background to 0 (i.e.,
black), while the H value of the plant remains unchanged. The hsv2rgb function was
used to convert the processed HSV image into an RGB image (Figure 2c).

3. The double cycle operation of MATLAB was used again to filter the color threshold
value of the image processed in the previous step. The color opacity of the black part
of the image was adjusted to 0 (that is, completely transparent), and the color image
of the target leaf or canopy with the transparent background was saved as a PNG
image mode (Figure 2d).

2.5. Information Collection of the RGB Image

Transformation of double-precision arrays of the image. MATLAB was used to
extract and analyze BFH RGB images. After reading color images by using the imread
function, image (:, :, 1), image (:, :, 2), image (:, :, 3), and the rgb2gray function were respectively
used to read every pixel gradation of red, green and blue channels, as well as gray-level
images. The full circulation algorithm was used to retrieve and record the non-black pixel
index codes of these pixels, which were combined with an array of leaf color gradation.
Then the double function was used to transform it into double precision arrays again.

Establishment of the canopy color gradation skewness-distribution (CGSD) pa-
rameters table. The mean, median, mode, std, skewness and kurtosis functions were used
to acquire the mean, median, mode, standard Deviation, skewness, and kurtosis of the
double-precision arrays of red, green, and blue channels, as well as gray-level images [33].
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The CGSD parameters were obtained, including RMean, RMedian, RMode, RSkewness, RKurtosis,
GMean, GMedian, GMode, GSkewness, GKurtosis, BMean, BMedian, BMode, BSkewness, BKurtosis,
YMean, YMedian, YMode, YSkewness, and YKurtosis (Table 1). Finally, the CGSD parameters
tables of color gradation distribution of BFH RGB images were formed.

Table 1. Color gradation skewness-distribution (CGSD) parameters.

Channel
CGSD Parameters

Mean Median Mode Skewness Kurtosis

Red Channel (R) RMean RMedian RMode RSkewness RKurtosis
Green Channel (G) GMean GMedian GMode GSkewness GKurtosis
Blue Channel (B) BMean BMedian BMode BSkewness BKurtosis
Gray Image (Y) YMean YMedian YMode YSkewness YKurtosis

Array distribution normality testing. The lillietest and jbtest functions were used to
conduct the Lilliefors and Jarque-Bera tests of normal distribution for the color grada-
tion distribution of red, green, and blue channels, as well as gray-level images of BFH
RGB images.

2.6. Prediction Model Construction and Goodness-of-Fit Detection

Correlation Analysis of 20 CGSD Parameters to Microclimate Factors. The Cor
package of R was used to analyze the relationship between 20 CGSD parameters of popula-
tion canopy in RGB images of BFH and the corresponding microclimate factors, including
daily meteorological factors (Tdm, RHdm, TGdm, TSdm−10c, VPdm, TDdm, GRdt, and PARdt)
and photothermal accumulation factors (AT, AGR, and APAR), which were collected for
significant examination with a double tail inspection.

Linear prediction models establishment. By using R, the linear prediction models
(Y1-Y20) of 20 CGSD parameters of population canopy in RGB images of BFH were es-
tablished by a regression approach based on the least-square method, with meteorological
factors as the independent variables. The probability of F-to-enter of the models was set
to 0.050 or less, while the probability of F-to-remove was set to 0.100 or more. Decision
coefficient optimization, significance test of regression model and regression coefficient,
and collinearity diagnosis of independent variables of the regression model were conducted
for the alternative regression models in turn [40], and the optimal regression models were
finally determined.

Spatial polynomial model establishment. Two photothermal accumulation factors
with the correlation coefficient of highest absolute value with CGSD parameters were se-
lected as the independent variable, and the spatial polynomial models (Z1–Z4) of skewness
of red, green, and blue channels, as well as gray-level images, were established by using
polynomial fitting in the Curve Fitting Tool of R.

3. Results
3.1. Skew Analysis of the Distribution of Leaf Color Gradation of the RGB Images

After analyzing the cumulative distribution of color gradation of the 117 selected
images of BFH, we found that all the red, green, and blue channels, and the gray-level
for single leaf, single plant, and population canopy images showed a left-skewed dis-
tribution (Figure 3). Lilliefors and Jarque-Bera normality tests also indicated that color
gradation data did not distribute normally (Supplementary Table S1). Twenty color gradi-
ent skewness-distribution (CGSD) parameters were obtained including the mean, median,
mode, skewness, and kurtosis for the red, green, and blue channels, as well as the gray-level
image, for each canopy image, respectively. These parameters can describe not only the
depth of canopy color but also its distribution.



Atmosphere 2022, 13, 890 6 of 14

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 16 
 

 

2.6. Prediction Model Construction and Goodness-of-Fit Detection 
Correlation Analysis of 20 CGSD Parameters to Microclimate Factors. The Cor 

package of R was used to analyze the relationship between 20 CGSD parameters of pop-
ulation canopy in RGB images of BFH and the corresponding microclimate factors, in-
cluding daily meteorological factors (Tdm, RHdm, TGdm, TSdm−10c, VPdm, TDdm, GRdt, and 
PARdt) and photothermal accumulation factors (AT, AGR, and APAR), which were col-
lected for significant examination with a double tail inspection.  

Linear prediction models establishment. By using R, the linear prediction models 
(Y1-Y20) of 20 CGSD parameters of population canopy in RGB images of BFH were estab-
lished by a regression approach based on the least-square method, with meteorological 
factors as the independent variables. The probability of F-to-enter of the models was set 
to 0.050 or less, while the probability of F-to-remove was set to 0.100 or more. Decision 
coefficient optimization, significance test of regression model and regression coefficient, 
and collinearity diagnosis of independent variables of the regression model were con-
ducted for the alternative regression models in turn [40], and the optimal regression mod-
els were finally determined. 

Spatial polynomial model establishment. Two photothermal accumulation factors 
with the correlation coefficient of highest absolute value with CGSD parameters were se-
lected as the independent variable, and the spatial polynomial models (Z1–Z4) of skew-
ness of red, green, and blue channels, as well as gray-level images, were established by 
using polynomial fitting in the Curve Fitting Tool of R.  

3. Results 
3.1. Skew Analysis of the Distribution of Leaf Color Gradation of the RGB Images 

After analyzing the cumulative distribution of color gradation of the 117 selected im-
ages of BFH, we found that all the red, green, and blue channels, and the gray-level for 
single leaf, single plant, and population canopy images showed a left-skewed distribution 
(Figure 3). Lilliefors and Jarque-Bera normality tests also indicated that color gradation 
data did not distribute normally (Supplementary Table S1). Twenty color gradient skew-
ness-distribution (CGSD) parameters were obtained including the mean, median, mode, 
skewness, and kurtosis for the red, green, and blue channels, as well as the gray-level 
image, for each canopy image, respectively. These parameters can describe not only the 
depth of canopy color but also its distribution. 

 
Figure 3. RGB model color gradation distribution of single leaf, plant canopy, and population can-
opy images of Begonia Fimbristipula Hance (BFH). The cumulative frequency histogram of red, green, 
and blue channels, as well as gray-level images, were drawn using the imhist function of MATLAB. 
The X-axis is the color gradation value, and the Y-axis is the cumulative frequency. 

Figure 3. RGB model color gradation distribution of single leaf, plant canopy, and population canopy
images of Begonia Fimbristipula Hance (BFH). The cumulative frequency histogram of red, green, and
blue channels, as well as gray-level images, were drawn using the imhist function of MATLAB. The
X-axis is the color gradation value, and the Y-axis is the cumulative frequency.

The main distribution of color gradation is positive skewness for RGB channels and
the gray-level image near the value of 0. This increment of positive skewness as the canopy
develops reflected the leaf color transit from light green to dark green (Figure 4).
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Figure 4. RGB model color gradation distribution of population canopy images of BFH on 3 different
dates. The cumulative frequency histogram of red, green, and blue channels, as well as gray-level
images, were drawn using the imhist function of MATLAB. The X-axis is the color gradation value,
and the Y-axis is the cumulative frequency.

3.2. Correlation Analysis Microclimate Factors in Glasshouse and Population Canopy
CGSD Parameters

The relationship between 20 CGSD parameters and the microclimate factors including
daily meteorological factors (Tdm, RHdm, TGdm, TSdm−10c, VPdm, TDdm, GRdt, and PARdt)
and accumulative factors (AT, AGR, and APAR) are shown in Table 2. Table 2 indicates that
temperature, humidity, ground temperature, soil temperature at 10 cm, and solar radiation
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were significantly correlated with the CGSD parameters. The accumulated temperature
and solar radiation (AT, AGR, and APAR) had an extremely significant correlation with the
20 CGSD parameters, with the correlation coefficients higher than 0.8. The parameters of
mean, median, and mode, which represented color depth, showed a significant positive
correlation with the meteorological factors, while the parameters of skewness and kurtosis
representing color uniformity showed an obviously negative correlation.

Table 2. Spearman correlation coefficient of population canopy CGSD parameters of BFH and
microclimate factors.

Tdm RHdm TGdm TSdm−10c VPdm TDdm GRdt PARdt AT AGR APAR

RMean −0.249 0.606 ** 0.278 * 0.629 ** −0.025 −0.029 −0.24 −0.251 −0.865 ** −0.856 ** −0.860 **
RMedian −0.253 0.605 ** 0.280 * 0.641 ** −0.024 −0.033 −0.227 −0.235 −0.843 ** −0.836 ** −0.840 **
RMode −0.257 0.584 ** 0.315 * 0.690 ** −0.041 −0.045 −0.247 −0.251 −0.815 ** −0.813 ** −0.816 **
RSkewness 0.225 −0.586 ** −0.292 * −0.641 ** 0.003 0.01 0.214 0.224 0.853 ** 0.846 ** 0.850 **
RKurtosis 0.142 −0.503 ** −0.265 −0.519 ** −0.054 −0.047 0.113 0.131 0.792 ** 0.774 ** 0.779 **
GMean −0.282 * 0.633 ** 0.236 0.588 ** −0.067 −0.053 −0.344 * −0.358 ** −0.950 ** −0.947 ** −0.949 **
GMedian −0.289 * 0.641 ** 0.246 0.613 ** −0.068 −0.057 −0.343 * −0.355 * −0.931 ** −0.929 ** −0.931 **
GMode −0.295 * 0.607 ** 0.25 0.623 ** −0.088 −0.079 −0.326 * −0.334 * −0.901 ** −0.901 ** −0.902 **
GSkewness 0.231 −0.598 ** −0.307 * −0.668 ** 0.008 0.01 0.257 0.268 0.866 ** 0.864 ** 0.867 **
GKurtosis 0.157 −0.507 ** −0.261 −0.526 ** −0.031 −0.033 0.176 0.197 0.855 ** 0.844 ** 0.848 **
BMean −0.332 * 0.625 ** 0.235 0.632 ** −0.105 −0.112 −0.284 * −0.293 * −0.794 ** −0.789 ** −0.793 **
BMedian −0.317 * 0.619 ** 0.252 0.654 ** −0.088 −0.097 −0.272 −0.278 * −0.790 ** −0.787 ** −0.790 **
BMode −0.263 0.577 ** 0.321 * 0.716 ** −0.047 −0.054 −0.292 * −0.298 * −0.750 ** −0.751 ** −0.754 **
BSkewness 0.243 −0.588 ** −0.294 * −0.656 ** 0.023 0.028 0.242 0.252 0.864 ** 0.860 ** 0.863 **
BKurtosis 0.205 −0.517 ** −0.238 −0.527 ** 0.012 0.017 0.164 0.181 0.821 ** 0.808 ** 0.812 **
YMean −0.281 * 0.632 ** 0.25 0.610 ** −0.06 −0.053 −0.313 * −0.327 * −0.922 ** −0.917 ** −0.920 **
YMedian −0.283 * 0.630 ** 0.258 0.630 ** −0.059 −0.056 −0.304 * −0.314 * −0.899 ** −0.896 ** −0.898 **
YMode −0.271 0.608 ** 0.285 * 0.665 ** −0.056 −0.051 −0.316 * −0.323 * −0.884 ** −0.882 ** −0.884 **
YSkewness 0.229 −0.593 ** −0.305 * −0.661 ** 0.005 0.01 0.239 0.25 0.858 ** 0.854 ** 0.857 **
YKurtosis 0.159 −0.508 ** −0.259 −0.524 ** −0.033 −0.031 0.154 0.173 0.832 ** 0.818 ** 0.822 **

Note: A Spearman correlation analysis of SPSS software was used on 20 CGSD parameters (RMean, RMedian, RMode,
RSkewness, RKurtosis, GMean, GMedian, GMode, GSkewness, GKurtosis, BMean, BMedian, BMode, BSkewness, BKurtosis, YMean,
YMedian, YMode, YSkewness, and YKurtosis) and the microclimate factors including daily meteorological factors (Tdm,
RHdm, TGdm, TSdm−10c, VPdm, TDdm, GRdt, and PARdt) and photothermal accumulation factors (AT, AGR, and
APAR) (n = 51). ** indicates significant correlation according to a two-tailed test (p < 0.01), * indicates significant
correlation according to a two-tailed test (p < 0.05), the same as below.

3.3. Multiple Linear Relationships of the Microclimate Factors and Population Canopy
CGSD Parameters

Multiple linear relationships between population canopy CGSD parameters and mi-
croclimate factors were established by the stepwise regression method using the ordinary
least square method (OLS) (Table 3). Table 3 showed that all the multivariate determination
coefficients (R2) of the population canopy color-meteorological response models equation
were greater than 0.7, indicating that the equation well explained the response of BFH
population canopy CGSD parameters to microclimate factors. The R2 of the red and green
channels, as well as the gray-level image, was 0.692–0.954, which was better than those
of the blue channel with 0.674–0.791. The model between the mean of green channel and
accumulated temperature, daily mean relative humidity, and the daily total photosyntheti-
cally active radiation had the highest R2 of 0.954. Moreover, all the models were significant
(p < 0.01).

All the models were verified by between-group and outside-group samples (Table 4
and Figures 5–7), which indicated that the population canopy color fitting models per-
formed well in predicting the mean, median, mode, and kurtosis. The accuracy of prediction
of the skewness was about 80%, while other CGSD parameters exceeded 90%, with the
mean of the blue channel, as well as the gray-level image exceeding 95% (Table 4) in the
same modeling group samples. Similarly, the accuracy of prediction of the mean, median,
and mode of RGB channels and the gray-level image was 90%, the kurtosis was about 75%,
and the skewness was 53–58% in the between-group prediction. The accuracy of prediction
of other CGSD parameters was 80% with the exception of the skewness and kurtosis of the
red channel, the mode, and skewness of the green channel, and the median of the gray-level
image in the outside-group. Moreover, the accuracy of prediction of the kurtosis of the
green and blue channels, and the gray-level image exceeded 85%.
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Table 3. Population canopy color-meteorological response models of BFH and their goodness of fit.

Model R-Square Adjusted
R-Square RMSE F Value Significance F

RMean Y1 = 11.556 − 0.017x1 + 0.524x2 + 0.549x3 0.848 0.839 2.456 87.634 0.000
RMedian Y2 = − 28.395 − 0.015x1 + 0.629x2 + 0.703x3 + 1.871x4 0.868 0.857 2.630 75.860 0.000
RMode Y3 = 14.284 − 0.024x5 + 2.596x4 0.746 0.735 3.668 70.458 0.000
RSkewness Y4 = 2.100 + 0.001x1 − 0.199x4 + 0.107x6 0.803 0.791 0.142 63.968 0.000
RKurtosis Y5 = 5.371 − 0.010 x1 − 0.024x7 − 0.028 x2 0.706 0.688 0.382 37.703 0.000
GMean Y6 = 27.424 − 0.022x1 + 0.464x2 + 0.349x3 0.954 0.951 1.609 327.337 0.000
GMedian Y7 = 34.402 − 0.036x5 + 0.366 x2 0.906 0.902 2.548 230.359 0.000
GMode Y8 = 30.294 − 0.037x5 + 0.342 x2 0.845 0.839 3.456 130.821 0.000
GSkewness Y9 = 1.501 + 0.030x5 − 0.052x7 − 0.013 x2 0.831 0.820 0.138 76.900 0.000
GKurtosis Y10 = 2.824 + 0.002x1 0.732 0.726 0.310 133.539 0.000
BMean Y11 = 30.430 − 0.013x1 + 0.341x2 0.703 0.691 3.136 56.787 0.000
BMedian Y12 = −6.307 − 0.012x1 + 0.380x2 + 2.094 x4 0.752 0.736 3.470 47.483 0.000
BMode Y13 = 4.464 − 0.020 x5 + 3.267x4 0.695 0.683 4.028 54.781 0.000
BSkewness Y14 = 1.716 + 0.001x1 − 0.083x4 0.791 0.782 0.145 90.164 0.000
BKurtosis Y15 = 2.874 + 0.002x1 0.674 0.668 0.346 101.377 0.000
YMean Y16 = 38.927 − 0.019x1 + 0.307x2 0.892 0.888 2.240 198.372 0.000
YMedian Y17 = 30.819 − 0.021x1 + 0.368x2 0.855 0.848 2.956 140.973 0.000
YMode Y18 = 26.665 − 0.032 x5 + 2.144 x4 0.825 0.818 3.440 113.213 0.000
YSkewness Y19 = 1.818 + 0.001x1 − 0.092 x4 0.784 0.775 0.156 87.302 0.000
YKurtosis Y20 = 2.901 + 0.002x1 0.692 0.686 0.355 110.029 0.000

Note: x1 is the accumulated temperature, x2 is the daily mean relative humidity, x3 is the daily total photosyntheti-
cally active radiation, x4 is the daily mean soil temperature at 10 cm, x5 is the accumulated photosynthetically
active radiation, x6 is the daily minimum ground temperature, x7 is the accumulated global radiation.

Table 4. Analytical results of prediction accuracy of population canopy color-meteorological
response models.

Model
Modeling Group Between-Group Prediction Outside-Group Prediction

AveragePrediction
Sample Data

Eliminate
Abnormal Data

Predictive
Accuracy

Prediction
Sample Data

Eliminate
Abnormal Data

Predictive
Accuracy

Prediction
Sample Data

Eliminate
Abnormal Data

Predictive
Accuracy

RMean Y1 51 0 96.27% 51 0 92.89% 15 0 90.92% 94.11%
RMedian Y2 51 0 96.02% 51 0 91.98% 15 0 84.90% 92.84%
RMode Y3 51 0 92.89% 51 0 92.47% 15 0 87.87% 92.06%
RSkewness Y4 51 0 80.98% 51 10 53.21% 15 3 70.30% 68.80%
RKurtosis Y5 51 0 90.48% 51 0 72.53% 15 0 73.56% 80.49%
GMean Y6 51 0 97.98% 51 0 93.55% 15 0 93.71% 95.50%
GMedian Y7 51 0 96.29% 51 0 91.97% 15 0 80.08% 92.33%
GMode Y8 51 0 94.14% 51 0 92.38% 15 0 77.33% 91.22%
GSkewness Y9 51 1 76.29% 51 9 52.40% 15 7 35.12% 63.73%
GKurtosis Y10 51 0 92.98% 51 0 76.64% 15 0 86.75% 85.06%
BMean Y11 51 0 95.46% 51 0 92.05% 15 0 84.66% 92.59%
BMedian Y12 51 0 94.53% 51 0 90.57% 15 0 85.42% 91.64%
BMode Y13 51 0 92.66% 51 0 92.65% 15 0 84.46% 91.60%
BSkewness Y14 51 1 82.21% 51 8 56.11% 15 3 82.39% 72.36%
BKurtosis Y15 51 0 92.17% 51 0 74.21% 15 0 84.12% 83.31%
YMean Y16 51 0 96.95% 51 0 93.33% 15 0 89.60% 94.43%
YMedian Y17 51 0 90.26% 51 0 93.64% 15 0 67.68% 88.84%
YMode Y18 51 0 94.11% 51 0 93.15% 15 0 87.27% 92.82%
YSkewness Y19 51 2 80.43% 51 10 58.03% 15 3 84.64% 73.81%
YKurtosis Y20 51 0 92.56% 51 0 76.04% 15 0 86.53% 84.59%

Note: Predictive accuracy = (1 − |predictive value-measured value|/measured) × 100%.
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25% and 75%. The shorter the box, the better the degree of data concentration. The red line in the box
represents the median distribution of prediction accuracy, and the dotted line at both ends outside
the box represents the endpoint value (maximum and minimum) of the prediction data distribution.
The shorter the distance between the two endpoint values, the better the degree of data concentration.
The red cross outside the box represents abnormal data. The fewer abnormal data, the better the
degree of data distribution concentration.
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Figure 6. Prediction accuracy interval analysis of the population canopy color-meteorological re-
sponse models of the between-group. The Boxplot function of MATLAB was used to draw the
accuracy percentile distribution diagram of the population canopy CGSD parameters prediction
model. The blue box in the figure represents the prediction accuracy of the model distributed between
25% and 75%. The shorter the box, the better the degree of data concentration. The red line in the box
represents the median distribution of prediction accuracy, and the dotted line at both ends outside
the box represents the endpoint value (maximum and minimum) of the prediction data distribution.
The shorter the distance between the two endpoint values, the better the degree of data concentration.
The red cross outside the box represents abnormal data. The fewer abnormal data, the better the
degree of data distribution concentration.
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percentile distribution diagram of the population canopy CGSD parameters prediction model. The
blue box in the figure represents the prediction accuracy of the model distributed between 25%
and 75%. The shorter the box, the better the degree of data concentration. The red line in the box
represents the median distribution of prediction accuracy, and the dotted line at both ends outside
the box represents the endpoint value (maximum and minimum) of the prediction data distribution.
The shorter the distance between the two endpoint values, the better the degree of data concentration.
The red cross outside the box represents abnormal data. The fewer abnormal data, the better the
degree of data distribution concentration.

3.4. Optimization of Canopy Color Skewness-Meteorological Models

Although the skewness of the red and green channels, and the gray-level image per-
formed well, the between-group and outside-group prediction accuracy were generally
lower than other CGSD parameters. The skewness was non-linear to microclimate fac-
tors [33]. Therefore, we fitted the polynomial Z1-Z4 that incorporates spatial bidirectional
patterns for the RGB channels, and the gray-level image, by taking two accumulation
factors, i.e., the accumulated temperature (x1) and the accumulated photosynthetically
active radiation (x5) as the independent variables, which had the highest absolute value of
the correlation coefficient.

Z1 = 0.3629 + 0.6382 × 10−3 x1 + 2.626 × 10−3 x5 + 5.312 × 10−6 x1
2 − 1.072 × 10−5 x1 x5 (4)

Z2 = 0.2242 + 0.5163 × 10−3 x1 + 3.11 × 10−3 x5 + 3.08 × 10−6 x1
2 − 7.463 × 10−6 x1 x5 (5)

Z3 = 0.3215 + 0.6477 × 10−3 x1 + 2.673 × 10−3 x5 + 3.93 × 10−6 x1
2 − 8.614 × 10−6 x1 x5 (6)

Z4 = 0.2786 + 0.5116 × 10−3 x1 + 3.114 × 10−3 x5 + 4.244 × 10−6 x1
2 − 9.285 × 10−6 x1 x5 (7)

After comparing the multiple stepwise regression and spatial bidirectional models
using the skewness, the (R2) of the spatial bidirectional models was higher than the multiple
stepwise regression models with lower RMSE. This indicated that the nonlinear models
had better fitting results, or the skewness of the population canopy image of BFH has a
close relationship to the microclimate in the glass greenhouse (Table 5).

Table 5. Comparison of multiple stepwise regression models and spatial bidirectional models for
the skewness.

Parameters Model R-Square Adjusted
R-Square RMSE Significant F

RSkewness
Y4 0.803 0.791 0.142 0.000
Z1 Equation (4) 0.884 0.874 0.111 0.000

GSkewness
Y9 0.831 0.820 0.138 0.000
Z2 Equation (5) 0.902 0.893 0.107 0.000

BSkewness
Y14 0.791 0.782 0.145 0.000
Z3 Equation (6) 0.900 0.891 0.102 0.000

YSkewness
Y19 0.784 0.775 0.156 0.000
Z4 Equation (7) 0.894 0.884 0.111 0.000

The spatial bidirectional models for the skewness have 5.7 percentage points higher
accuracy in prediction, and the number of outliers significantly decreased. Compared to the
regression model, the average accuracy of the spatial bidirectional models was improved
by 7.63, 5.75, and 6.25 percentage points in the modeling group, the between-group, and
the outside-group, respectively. The RGB channels and gray-level image were all improved
by 6.90, 10.87, 3.47, and 1.72 percentage points, respectively (Table 6).
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Table 6. Comparison of the prediction accuracy of the multiple stepwise regression models and
spatial bidirectional models for the skewness.

Parameters Model
Modeling Group Between-Group Outside-Group

AveragePrediction
Sample Data

Eliminate
Abnormal Data

Predictive
Accuracy

Prediction
Sample Data

Eliminate
Abnormal Data

Predictive
Accuracy

Prediction
Sample Data

Eliminate
Abnormal Data

Predictive
Accuracy

RSkewness
Y4 51 0 80.98% 51 10 53.21% 15 3 70.30% 68.80%
Z1 51 0 90.02% 51 1 60.56% 15 3 75.58% 77.76%

GSkewness
Y9 51 1 76.29% 51 9 52.40% 15 7 35.12% 63.73%
Z2 51 0 88.31% 51 1 60.82% 15 3 73.71% 74.60%

BSkewness
Y14 51 1 82.21% 51 8 56.11% 15 3 82.39% 72.36%
Z3 51 0 90.16% 51 1 61.27% 15 3 75.61% 75.83%

YSkewness
Y19 51 2 80.43% 51 10 58.03% 15 3 84.64% 73.81%
Z4 51 0 89.05% 51 1 60.10% 15 3 82.34% 75.53%

4. Discussion

The high quality and efficient production of greenhouse plants depend on the environ-
mental regulation focusing on the plants’ growth in the facility. The changing physiological
parameters result from the variation of temperature, radiation, and humidity rapidly
and instantaneously [41–44]. Ineffective control of environmental factors will restrict the
improvement of glass greenhouse yield and crop quality [45]. Therefore, coupling the
relationship between the plant growth state indicated by color parameters and controlling
the meteorological factors will help to promote the high quality and efficient production in
facility plants, realize the precise control of the facility environment, and decrease the costs.

Digital color images’ information can reflect the growing state of plants [11], which
provides a convenient way of plant growth monitoring. Research on conducting qualitative
and quantitative descriptions of phenotypic traits for plant appearance by using digital
imaging technology has increased in smart agriculture [6]. The RGB color model has been
widely used to process digital color images to study chlorophyll content and its related
plant nutritional status and stress response [24,46,47]. The RGB model and leaf color
parameters can describe changes in tobacco leaf color depth and homogeneity [33]. Now,
we found that images of the RGB channels and the gray-level images all showed a skewed
distribution at the single leaf, plant, and population canopy images scale in BFH.

Environmental changes lead to changes in the color of plants’ leaves [21,26,48–50]. Our
work indicated that temperature, humidity, ground temperature, soil temperature at 10 cm,
and solar radiation in glass greenhouses were significantly correlated with multiple CGSD
parameters of canopy images in BFH. Moreover, the accumulative value of temperature and
solar radiation (AT, AGR, and APAR) had an extremely significant correlation with 20 CGSD
parameters, with the correlation coefficients beyond 0.8. The mean, median, and mode
parameters representing color depth have a positive relationship with the accumulative
parameters, while the skewness and kurtosis parameters representing the color distribution
showed a significantly negative correlation with the accumulative factors. The deep canopy
color of BFH images has higher accumulative factors depending on the analysis of the
peak changes of the cumulative distribution diagram of canopy color and provides a new
approach to quantitative plant growing conditions.

The multi-dimensionality of CGSD parameters enables them to have a basis for build-
ing relationships with complex meteorological factors. Canopy color–meteorological re-
sponding models have high prediction accuracy after calculating the image mean, median,
mode, and kurtosis parameters and skewness distribution using the spatial bidirectional
models. The change of accumulative factors is generally linear, while skewness is calculated
from a higher-order function. Although the skewness was significantly related to microcli-
mate factors, it cannot be simply described and fitted by linear fitting [33]. Compared to
the multiple stepwise regression models, the spatial bidirectional models had better fitness
and higher accuracy.

The digital color image has been applied to automatic observation in agrometeorol-
ogy [51,52], and is proposed as a new technical approach that can be combined with crop
growth models [53], which agriculture meteorological services will automatically and intel-
ligently apply in future services [54,55]. The relationship between the CGSD parameters of
the population canopy and the environment meteorological factors makes it possible to
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use the canopy color information to construct a plant growth model from digital images,
which can provide new methods for quantitatively evaluating agricultural meteorological
conditions, assessing agricultural meteorological disaster loss, predicting yield and quality,
and supporting precise management of crop production.

5. Conclusions

Analyzing the canopy images’ color histograms skewed distribution of BFH in the
glasshouse, we found that 20 population canopy CGSD parameters were sensitive to the
microclimate factors, especially the radiation and temperature accumulation factors. The
canopy color–meteorological responding models showed that the CGSD parameters have a
close relationship with microclimate factors, which expands the potential application of the
RGB model in monitoring the variations of plant or leaf color. The CGSD parameters can
describe the canopy color information comprehensively and accurately and are considered
a new indicator for quantitative evaluation of plant growth conditions. These parameters
help construct a plant growth condition model and provide a new method for agrometeo-
rological assessment and prediction, and, ultimately, support the precise management of
crop production.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos13060890/s1, Table S1: Normal test of color distribution of a
BFH population canopy.
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