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Abstract: We present the development of a physically-based dust source map for the GOCART-AFWA
dust module in WRF-Chem model. The new parameterization is based on MODIS-NDVI and an
updated emission strength map is computed every 15 days from the latest satellite observations.
Modeling simulations for the period April–May 2017 over the Mediterranean, north Africa, and the
Middle East are compared with observations of AOD at 31 AERONET stations. The new module
is capable of reproducing the dust sources at finer detail. The overall performance of the model is
improved, especially for stronger dust episodes with AOD > 0.25. For this threshold the model BIAS
decreases from −0.20 to −0.02, the RMSE from 0.38 to 0.30, the Correlation Coefficient improves
from 0.21 to 0.47, the fractional gross error (FGE) from 0.62 to 0.40, and the mean fractional bias
(MFB) from −0.49 to −0.08. Similar improvement is also found for the lower AOD thresholds (>0.0
and >0.1), especially for the stations in Europe, the Mediterranean, Sahel, the Middle East, and
Arabian Peninsula, which are mostly affected by dust transport during the experimental period. An
overprediction of AOD, compared to the original dust-source scheme, is found for some stations in
the Sahara desert, the Atlantic Ocean, and the Iberian Peninsula. In total, 124 out of the 170 statistical
scores that are calculated indicate improvement of model performance.

Keywords: desert dust; WRF; NDVI; AERONET data; aerosol optical depth

1. Introduction

Desert dust is considered as a key climate factor, interacting directly and indirectly
with the natural and human environment from regional to global scales, and the importance
of these interactions has been underlined in all contemporary studies e.g. [1]. At any given
time, a staggering amount of about twenty million metric tons of mineral dust aerosols are
suspended in the atmosphere, injected by the wind erosion of dry soils into the system [2],
most of which originate from the Sahara. Dust affects radiation [3,4] and alters liquid and ice
cloud properties as well as precipitation processes [5–7] and atmospheric water content [8].
Once dust particles are deposited on the earth’s surface, aerosols provide micronutrients
to the ocean or to land ecosystems [9,10], affecting fishery and local agriculture activities.
Additionally, under favorable conditions, the smaller PM2.5 particles can be easily inhaled
and deposited on the lungs and are related to human health disorders [11,12]. All the
aforementioned impacts of desert dust are strongly dependent on the chemical composition
of the particles which in turn is a function of the soil mineralogy at the desert sources. For
example, iron and phosphorus deposition modulates ocean biogeochemistry, and can be
just as important as changes in climate as they can impact ocean productivity [13]. For
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instance, the amount of iron alters the dust absorption properties, affecting direct radiative
interactions in the atmosphere and dust climate impacts [14].

For the reasons stated above, mineral dust and the associated uncertainties in climate
projections are key topics for the highly polluted area of the Mediterranean (especially the
Eastern part), where the largest climate change effects are expected during the upcoming
decades [15]. This area is mostly affected by dust particles originating from the Saharan
desert, which acts as the major source of atmospheric dust on Earth [16]. Dust sources are
commonly identified as topographic depressions containing dry lake deposits and playas
in extremely arid regions, based on qualitative analysis of remote sensing [17,18]. In order
to represent the dust lifecycle in the atmosphere and accurately quantify the links and
feedbacks of natural aerosols, the first step is to properly define dust sources in Numerical
Weather Prediction (NWP) models (regional, general circulation, and climate models).

Common practice in modeling dust sources and emission strength is by using global
static datasets, like the 24 category U.S. Geological Survey (USGS) land use/cover system [19]
used by the SKIRON/Dust regional model [20], the 21-category MODIS (Moderate Res-
olution Imaging Spectroradiometer), and 30-arc-second USGS GMTED2010 data used in
a default WRF (Weather Research and Forecasting Model) configuration [21,22], the Lab-
oratoire Interuniversitaire des Systèmes Atmosphériques (LISA) database, which gives
information on the Sahara/Middle East sources and the Asian deserts and is used by the
CHIMERE-DUST air quality model [23–25], the LEAF soil and vegetation sub-model of the
RAMS/ICLAMS system (Integrated Community Limited Area Modeling System based
on the Regional Atmospheric Modeling System) [6,26], and others. All these datasets
benefit from global coverage and relative simplicity in using them. However, an important
shortcoming is that dust source emission strength is not constant in nature. Mineral dust
emissions from the Sahara are highly sensitive to changes in the regional hydroclimate
and land surface. Wetter conditions and more vegetation limit the emissions, while drier
conditions and reduced vegetation increase dust production [27]. Such time-variant modifi-
cations cannot be represented in static and often outdated datasets, which do not contain
these recent land-use changes. In addition to a successful representation of dust sources
in NWP models, methods to localize these important features on larger scales are also
required [28].

To overcome these limitations, several new studies have proposed the use of remote
sensing in order to define the variability of soil properties and subsequently the emission
strength of the dust sources: [29] used a combination of monthly of MODIS land data,
wind speed, soil moisture, and absolute air humidity data from GLDAS (Global Land
Data Assimilation System) [30] and monthly Tropical Rainfall Measuring Mission (TRMM)
precipitation to define areas susceptible to dust storm formation. In [31], the Normalized
Difference Vegetation Index (NDVI) was used to identify the seasonal dust sources that
caused the severe Phoenix haboob of July 2011 in the US., In [28], the EUMETSATs (Eu-
ropean Organisation for the Exploitation of Meteorological Satellites) Desert-Dust-RGB
product along with Sentinel-2 data and MODIS NDVI were used to determinate dust activ-
ity and dust Hot-Spots. The Enhanced Vegetation Index (EVI) of MODIS has been also used
for the development of the Global Sand and Dust Storms Source Base Map (G-SDS-SBM)
by the United Nations Convention to Combat Desertification (UNCCD) in collaboration
with the United Nations Environment Program (UNEP) and the World Meteorological
Organization (WMO) [32,33]. In [34], the NDVI was used to assess the respective roles
of wind and vegetation on dust emission during the wet season in the Sahel. In [35], the
MODIS NDVI was used to represent land-use changes due to the war in Syria and describe
their contribution to the extreme convectively driven dust-storm of September 2015. In [36],
a novel methodology has been proposed, in which a dynamic dust source map NDVI
was created for the NMME-DREAM (Nonhydrostatic Mesoscale Model-Dust Regional
Atmospheric Model) model and applied over the Arabian Peninsula.

In this work, we extend the methodology of [36] to cover the Saharan Desert, using
the WRF-Chem regional modeling system [21,22]. The newly developed system, dubbed
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WRF-NDVI, is applied over a large area covering Africa, the Mediterranean, the Middle
East, and Europe during a highly active dust period (March to May 2017) and the results
are evaluated using the Aerosol Optical Depth (AOD) measurements from the AERONET
project (AErosol RObotic NETwork) [37,38]. The manuscript is further organized as follows:
Section 2 provides a description of the datasets and models used, as well as an overview
of the statistical metrics. In Section 3, the results of the simulations and the statistical
evaluation are presented, and Section 4 contains a summary and conclusions of the study.

2. Experimental Design
2.1. NDVI Datasets

The NDVI is an indicator of the greenness of the biomass. Even though it is not a
physical property of the vegetation cover, it is a simple formulation and is widely used for
ecosystems and land use change monitoring [39]. NDVI is calculated as the normalized
difference of reflectance in the red and near-infrared channels [40,41] i.e.,

NDVI =
Xnir − Xred
Xnir + Xred

(1)

where Xnir is the reflectance in the near infrared channel and Xred is the reflectance in the
red channel. NDVI values range from −1.0 to 1.0. Areas of barren rock, sand, or snow
usually show very low NDVI values (0.1 or less) [41] and can be used to define barren
areas, potentially acting as dust sources. Sparse vegetation, such as shrubs and grasslands
or senescing crops, may result in moderate NDVI values (0.2 to 0.5). High NDVI values
(approximately 0.6 to 0.9) correspond to dense vegetation, such as that found in temperate
and tropical forests or crops at their peak growth stage. Since it is expressed as a ratio,
the NDVI minimizes certain types of band-correlated noise (positively-correlated) and
influences attributed to variations in irradiance, clouds, atmospheric attenuation, and other
parameters [42]. In this work, we use the 1000 m × 1000 m 16 day averaged NDVI from
MODIS/Terra instrument [43] to calculate high-resolution barren soil, as described in the
next section.

2.2. The WRF-Chem Model

The numerical model used in this work is the Advanced Research Weather version of
the Weather Research and Forecasting (WRF-ARW) ver4.2 model [21], coupled with the
Chem sub-model [22]. For the description of the desert dust cycle, we use the Georgia
Institute of Technology-Goddard Global Ozone Chemistry Aerosol Radiation and Trans-
port (GOCART) aerosol submodel [44] with the Air Force Weather Agency (AFWA) dust
emission scheme [45]. WRF-Chem is suitable for use in a broad range of applications,
across scales ranging from meters to thousands of kilometers. Since the cycle of dust in the
atmosphere is also governed by multiple scale processes (e.g., synoptic forcing, mesoscale
systems, low level jets, convection, radiative transfer, cloud microphysics), this model is
very appropriate as a basic tool for dust research. The ARW solver includes several key
features, such as: fully compressible non-hydrostatic equations with hydrostatic option,
two-way nesting with multiple nests and nest levels, monotonic transport and positive-
definite advection option for moisture, scalar, tracer, and turbulent kinetic energy, full
physics options for land-surface, planetary boundary layer, atmospheric and surface ra-
diation, microphysics and cumulus convection, orographic gravity wave drag, stochastic
kinetic-energy backscatter scheme, and more [21].

The computational domain is presented in Figure 1 and includes the entire Sahara
Desert, the arid areas of the Middle East and Arabian Peninsula, the Mediterranean,
and most of Europe. The model resolution is set at 12 km × 12 km and on the vertical
38 levels are used, stretching from the surface to the top of the atmosphere at 50 hPa.
The selected meso-γ grid space is appropriate for resolving the long range transport of
desert dust from Sahara towards the Mediterranean and it is similar to the configuration
used in earlier studies such as [8,46]. The physical parameterizations chosen for the
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model setup are described in Table 1 and presented in detail in [21,22]. The 6-hour initial
and boundary conditions for the simulations are taken from the NCEP FNL (National
Centers for Environmental Prediction Final Analysis) operational global analysis on a
0.25◦ × 0.25◦ grid. This product is from the Global Data Assimilation System (GDAS),
which continuously collects observational data to create analyses [47].
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also depicted.

Table 1. Physical parameterizations used in this work.

Physical Parameter Parameterization Scheme

Microphysics Thompson scheme [48]

Cumulus Parameterization Tiedtke scheme [49,50]

Shortwave Radiation RRTMG [51]

Longwave Radiation RRTMG [51]

Planetary Boundary layer Mellor–Yamada–Janjic scheme [52,53]

Surface Layer Physics Eta similarity [54]

Land Surface Noah Land Surface Model [55]

Dust Scheme GOCART [44]

Dust Production AFWA scheme [45]

As described in [45], the AFWA scheme for dust emissions uses a source strength
function to define soil erodibility, which is fixed to a constant mix of sand, silt, and clay,
and is interpolated to the host model grid. This source emission strength is determined
based on the degree of topographic relief surrounding a model grid cell, which is provided
at 0.25◦ × 0.25◦ resolution. Even though this approach provides a reliable methodology
to calculate dust fluxes, this dataset remains constant in time and thus it is not possible to
represent any temporal changes in land use.
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To overcome the above shortcomings, we propose a methodology to incorporate
the observational NDVI data in WRF-Chem, considering that areas with NDVI less than
0.1 denote bare soil and thus can be assumed as active and efficient dust sources [35,36].
Even though NDVI < 0.15 is generally assumed to define bare soil [56], a smaller threshold
of NDVI < 0.1 is chosen here for the extremely bare Sahara Desert, following the results
of [36]. To redefine the dust source strength in the model, we use the fine resolution NDVI
dataset (1000 m × 1000 m) for scaling the soil erodibility factor from 0 to 1. The 1000 m
resolution dataset of NDVI provides a computationally efficient way to represent the
vegetation conditions at adequate detail over the vast modeling domain. Similar to [36], we
define the grid points with NDVI < 0.1 as active dust-points. For these active dust-points,
the new erodibility factor is calculated as: Enew = (1 + Eold)/2 and ranges from 0 to 1. In
areas with NDVI > 0.1, the original erodibility (Eold) is used unmodified. This way, the
model erodibility is adjusted depending on the changes in NDVI, which in turn reflects
the changes in land-use, vegetation, etc. As a result, all the physical processes used by the
AFWA dust production scheme are retained and the soil erodibility is nudged closer to the
satellite observations. Additionally, since the NDVI dataset is updated every 16 days, the
dust source strength is redefined accordingly. The result is a more detailed, high-resolution,
and dynamic map of dust source strength. A comparison between the original and the new
erodibility factors is presented in Figure 2 for both simulation periods (1–16 April 2017
and 15–31 May 2017). The difference in erodibility factor between those two periods is also
shown to highlight the dynamic nature of the proposed methodology.

In order to test the validity of the developed methodology we performed two simula-
tions: (1) using the static [45] dust source database (WRF-CTRL) and (2) using the updated
dataset by scaling the erodibility using the NDVI datasets (WRF-NDVI). The simulation
period for both runs lasts from March 2017 to May 2017, which is a very active transitional
period where dust plumes generated in the Sahara are transported across the Mediter-
ranean towards Europe. Transport of Saharan dust towards the South is also evident in
this period [57,58]. The erodibility factor is modified every 16 simulation days based on the
corresponding NDVI dataset. The two simulations are evaluated against AERONET data
for the period 1 April 2017 to 31 May 2017. The runs start on 15 March to allow for a 15 day
model spin-up period.
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2.3. AERONET Data and Evaluation Metrics

AERONET is a vast network of autonomously operated Cimel Electronique Sun–sky
photometers, which are used to measure Sun-collimated direct beam irradiance and di-
rectional sky radiance and provide scientific-quality column-integrated aerosol properties
of AOD and aerosol microphysical and radiative properties [37,38]. Level 2.0 datasets
were retrieved for all AERONET stations (using the Version 3 algorithm). For cases where
AOD data is not available at 550 nm, values are estimated following [20]. First, we cal-
culate the Ångström exponent, which is derived from the ratio between the AOD of two
adjacent wavelengths:

Ang =
ln
(

AODL1
AODL2

)
ln
(

L2
L1

) (2)

where L1 and L2 are two adjacent wavelengths with available data, and then we interpolate
at 550 nm using the formula described in [59]. This step is skipped for stations that provide
AOD values directly at 550 nm. The model retrievals are also interpolated in time to match
the AERONET measurement time, considering only dust-relevant measurements with
an Ångström coefficient less than 0.6 [37]. The AERONET measurements are compared
with WRF-Chem AOD at 550 nm to create statistical indexes based on [60]. The chosen
indexes include the mean bias (BIAS), root mean square error (RMSE), correlation coefficient
(CORR), mean fractional bias (MFB), and fractional gross error (FGE). These indexes are
defined as follows, assuming O the observations and M the model results, for n number
of pairs:

BIAS =
1
n

n

∑
i=1

(Mi − Oi) (3)

RMSE =

√
n

∑
i=1

(Mi − Oi)
2 (4)
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CORR =
∑n

i=1(Mi − M)
(
Oi − O

)√
∑n

i=1 (Mi − M)
2
√

∑n
i=1 (Oi − O)

2
(5)

FGE =
2
n

n

∑
i=1

∣∣∣∣Mi − Oi
Mi + Oi

∣∣∣∣ (6)

MFB =
2
n

n

∑
i=1

Mi − Oi
Mi + Oi

(7)

In total, 34 AERONET stations with available Level 2.0 data are used in our study,
as shown in Figure 3. In order to investigate the sensitivity of the new methodology
to the severity of the dust events, we assume three AOD limits for the AERONET data:
(1) AOD > 0.0, (2) AOD > 0.1, and (3) AOD > 0.25. The AOD > 0.0 limit provides a means
to compare with all available data from all stations. The limit, if AOD > 0.1 is appropriate
for defining dust transport towards Europe [61] and AOD > 0.25, implies dust episodes.
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3. Results

First, we calculate the daily average dust load for the entire simulation period (March
2017 to May 2017) for both WRF-NDVI (Figure 4a) and WRF-CTRL (Figure 4b) runs. The
differences between the two simulations are presented in Figure 4c. It becomes apparent that
in WRF-NDVI the amount of airborne dust is increased for the entire computational domain,
especially near the dust source areas, but also in remote regions as well (the Mediterranean,
Europe, and the Middle East). This is a first indication of overall improvement, since the
numerical dust models are in general reported to underestimate the aerosol concentrations
in the atmospheric column i.e., [20,62] and others).

The comparison between modeled and station AOD for the entire dataset (all the
stations) is shown on Figure 5 for both simulations (WRF-CTRL and WRF-NDVI). As
discussed, in Section 2.3 we create scatterplots for (1) AOD > 0.0, (2) AOD > 0.1, and
(3) AOD > 0.25. The corresponding scatterplots, along with their trend lines, are presented
in Figure 5.

The above comparison with station measurements and the corresponding trend lines
and R2 coefficients indicate an overall improvement of the modeled AOD in the domain by
using the dynamical NDVI dataset. In order to quantify this improvement, the statistical
indexes presented in Section 2.3 are calculated and presented in Table 2.
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As shown in Table 2, the model performance is improved for all AOD thresholds in
the WRF-NDVI runs, since all the statistics improve. The AOD is still underestimated,
but this underestimation is limited, especially for high AOD values (>0.25) where the
negative BIAS decreases from −0.20 to −0.02. At the same AOD threshold of 0.25, the
RMSE, CORR, FGR, and MFB are also improved by 0.08, 0.26, 0.22, and 0.41, respectively.
Similar improvements in all the statistical indexes are also found for the AOD thresholds
of 0.0 and 0.1; however, the most prominent improvements are found for the higher AOD
values. For instance, for AOD values > 0.0 the BIAS improves from −0.12 to −0.01, the
RMSE from 0.30 to 0.25, and the CORR, FGE, and MFB from 0.44, 0.68, and −0.48 to 0.65,
0.53, and −0.13 respectively. For AOD values > 0.1, the BIAS improves from −0.13 to −0.01,
the RMSE form 0.32 to 0.26, and the CORR, FGE, and MFB from 0.36, 0.61, and −0.41
to 0.60, 0.45, and −0.05, respectively.

In order to further quantify the performance of WRF-NDVI simulations, we calculate
the above statistical indexes for each AERONET station separately and for AOD greater
than 0.1 (Table 3).
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In total, we calculate 170 statistical metrics (BIAS, RMSE, CORR, FGE, MFB, for
34 stations). From these, 124 metrics are improved in the WRF-NDVI runs and 46 de-
teriorate. These statistics also reflect the previous results on the overall improvement
of model performance for the entire domain. Of note are the stations located in Israel
(Weizmann_Institute, SEDE_BOKER, Eilat, and Technion_Haifa_IL) and the Arabian Penin-
sula (Shagaya_Park and KAUST_Campus), all of which show considerable improvement
in WRF-NDVI, especially in metrics that are related to the quantity of transported dust
particles, like BIAS, FGE, and MFB. The Israeli stations lie in the pathway of desert dust
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transport from the Saharan towards the Eastern Mediterranean, which is typical for the
transitional periods of the year, such as the modeling period in our study. For the Arabian
Peninsula, the WRF-NDVI simulations improve the spatial distribution of AOD over the
area, as was also found in [36].

Table 2. Statistical indexes for the two simulation sets (WRF-CTRL and WRF-NDVI) for the three
AOD limits used. The total number of data pairs used for the calculation of the statistics are presented
in the last column. Bold fonts indicate model improvement for the corresponding statistical value.

Simulation/
AOD Limit BIAS RMSE CORR FGE MFB # of Data

Pairs

WRF-CTRL
AOD > 0.0 −0.12 0.30 0.44 0.68 −0.48

8164
WRF-NDVI
AOD > 0.0 0.01 0.25 0.65 0.53 −0.13

WRF-CTRL
AOD > 0.1 −0.13 0.32 0.36 0.61 −0.41

7374
WRF-NDVI
AOD > 0.1 0.01 0.26 0.60 0.45 −0.05

WRF-CTRL
AOD > 0.25 −0.20 0.38 0.21 0.62 −0.49

4787
WRF-NDVI
AOD > 0.25 −0.02 0.30 0.47 0.40 −0.08

Table 3. Statistical indexes for the 34 AERONET stations used in this study. Green color cells denote
model improvement for the NDVI simulations, while red cells denote that the CTRL simulations give
better results for each station. For each station, the country is also added.

Station/Simulation BIAS RMSE CORR FGE MFB # Data Pairs

ATHENS-NOA—Greece

NDVI −0.05 0.14 0.40 0.43 −0.23 65

CTRL −0.10 0.15 0.41 0.55 −0.49 65

AgiaMarina_Xyliatou—Cyprus

NDVI −0.03 0.10 0.85 0.24 −0.13 60

CTRL −0.10 0.12 0.89 0.34 −0.34 60

Aras_de_los_Olmos—Spain

NDVI 0.02 0.09 0.65 0.57 −0.05 47

CTRL −0.03 0.07 0.67 0.53 −0.31 47

Banizoumbou—Niger

NDVI 0.09 0.24 0.51 0.33 0.17 245

CTRL −0.12 0.28 0.19 0.37 −0.18 245

Badajoz—Spain

NDVI −0.02 0.16 0.22 0.37 −0.14 64

CTRL −0.09 0.16 0.30 0.49 −0.44 64

Ben_Salem—Tunisia

NDVI −0.06 0.15 0.74 0.44 −0.28 116

CTRL −0.12 0.19 0.74 0.60 −0.56 116

Burjassot—Spain

NDVI −0.04 0.13 0.76 0.68 −0.51 24

CTRL −0.10 0.14 0.75 0.78 −0.73 24
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Table 3. Cont.

Station/Simulation BIAS RMSE CORR FGE MFB # Data Pairs

Cabo_da_Roca—Portugal

NDVI −0.03 0.10 0.83 0.73 −0.57 94

CTRL −0.08 0.10 0.83 0.84 −0.82 94

Cairo_EMA_2—Egypt

NDVI −0.02 0.22 0.49 0.35 −0.13 255

CTRL −0.14 0.20 0.55 0.52 −0.46 255

Capo_Verde—Africa

NDVI −0.15 0.30 0.68 0.53 −0.36 231

CTRL −0.27 0.36 0.65 0.66 −0.60 231

CUT-TEPAK—Cyprus

NDVI −0.07 0.22 0.10 0.57 −0.33 121

CTRL −0.16 0.22 0.18 0.73 −0.62 121

Dakar—Senegal

NDVI 0.07 0.35 0.45 0.42 0.12 685

CTRL −0.20 0.48 −0.08 0.69 −0.41 685

Eforie—Romania

NDVI −0.09 0.17 0.44 0.48 −0.40 56

CTRL −0.14 0.19 0.45 0.63 −0.62 56

Eilat—Israel

NDVI 0.05 0.20 0.67 0.41 0.11 309

CTRL −0.10 0.20 0.61 0.54 −0.36 309

El_Arenosillo—Spain

NDVI 0.04 0.260 0.22 0.46 −0.04 141

CTRL −0.05 0.22 0.26 0.53 −0.33 141

El_Farafra—Egypt

NDVI 0.13 0.29 0.69 0.49 0.27 161

CTRL −0.06 0.22 0.72 0.39 −0.09 161

Evora—Portugal

NDVI 0.00 0.13 0.20 0.41 −0.10 115

CTRL −0.07 0.12 0.23 0.47 −0.40 115

Finokalia-FKL—Greece

NDVI 0.03 0.15 0.79 0.33 0.01 111

CTRL −0.06 0.12 0.77 0.40 −0.29 111

Granada—Spain

NDVI 0.01 0.13 0.59 0.34 −0.03 143

CTRL −0.07 0.13 0.62 0.44 −0.31 143

IER_Cinzana—Mali

NDVI 0.11 0.24 0.59 0.32 0.19 275

CTRL −0.10 0.30 0.07 0.49 −0.24 275

KAUST_Campus—Saudi Arabia

NDVI −0.08 0.28 0.44 0.31 −0.09 363

CTRL −0.27 0.39 0.40 0.69 −0.67 363

La_Laguna—Spain

NDVI 0.16 0.35 0.30 0.77 0.08 145

CTRL 0.05 0.23 0.34 0.79 −0.17 145
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Table 3. Cont.

Station/Simulation BIAS RMSE CORR FGE MFB # Data Pairs

Lecce_University—Italy

NDVI −0.22 0.35 0.36 0.82 −0.70 54

CTRL −0.28 0.38 0.36 0.94 −0.91 54

Medenine-IR—Tunisia

NDVI −0.03 0.16 0.85 0.35 −0.20 283

CTRL −0.12 0.19 0.87 0.51 −0.490 283

Pafos—Cyprus

NDVI 0.00 0.24 0.11 0.66 −0.25 60

CTRL −0.10 0.19 0.19 0.72 −0.55 60

Saada—Morocco

NDVI −0.06 0.22 0.76 0.63 −0.44 226

CTRL −0.14 0.23 0.77 0.77 −0.68 226

Santa_Cruz_Tenerife—Spain

NDVI 0.06 0.27 0.48 0.82 −0.30 261

CTRL −0.02 0.18 0.52 0.88 −0.54 261

SEDE_BOKER—Israel

NDVI 0.05 0.20 0.57 0.39 0.07 324

CTRL −0.06 0.16 0.49 0.46 −0.31 324

Shagaya_Park—Kuwait

NDVI −0.19 0.33 0.34 0.51 −0.37 572

CTRL −0.32 0.42 0.24 0.78 −0.75 572

Tabernas_PSA-DLR—Spain

NDVI 0.09 0.15 0.63 0.41 0.23 145

CTRL 0.01 0.09 0.68 0.33 −0.05 145

Tamanrasset_INM—Algeria

NDVI 0.13 0.31 0.68 0.46 0.32 567

CTRL −0.09 0.28 0.63 0.43 −0.25 567

Technion_Haifa_IL—Israel

NDVI −0.02 0.25 0.33 0.41 −0.10 196

CTRL −0.13 0.26 0.27 0.56 −0.44 196

Weizmann_Institute—Israel

NDVI −0.04 0.27 0.39 0.43 −0.16 188

CTRL −0.16 0.27 0.34 0.59 −0.54 188

Zaragoza—Spain

NDVI −0.07 0.12 0.44 0.90 −0.78 31

CTRL −0.10 0.13 0.42 1.01 −0.98 31

For Europe, the most distant station from the Saharan is in Eforie in Romania, where
the statistical values also improve: the BIAS decreases from −0.135 to −0.092, the RMSE
from 0.193 to 0.179, the FGE from 0.631 to 0.484, and the MFB from −0.615 to −0.398. The
correlation coefficient remains practically unchanged (i.e., it decreases by 0.01). These results
imply that the WRF-NDVI correctly describes increased dust concentrations into the atmo-
sphere, originating from a more appropriate definition of dust source strength. Accordingly,
three stations in Eastern Europe (ATHENS-NOA, Finokalia-FKL, and Lecce_University)
all have mostly improved scores when factoring NDVI. This is to be expected, as these
stations lie in the pathways of desert dust transport and are particularly affected by Saharan
particles during spring. However, there are certain AERONET stations that need to be ex-



Atmosphere 2022, 13, 868 13 of 17

amined in greater detail, since they show a general deterioration of statistical scores for the
WRF-NDVI runs. These stations include Tabernas_PSA-DLR in Spain, Santa_Cruz_Tenerife,
and La_Laguna in the Western part of Africa and Tamanrasset_INM and El_Farafra, in the
Saharan desert.

For Tabernas_PSA-DLR, all the statistical indexes are worse for WRF-NDVI. It is worth
noting that the neighboring station of Granada shows improved scores for the same period
and the same number of data pairs as Tabernas_PSA-DLR. The main difference between
these two stations is that Tabernas_PSA-DLR is located in a more complex topographic
position close to a mountain range. As shown in an earlier study by [46], the transport
of dust over complex terrain can be strongly affected by local wind patterns (e.g., Foehn
flows) which cannot be reproduced at the relatively coarse model resolution of 12 × 12 km
grid that is used in our study. For both Tamanrasset_INM and El_Farafra, the WRF-NDVI
overestimates the AOD. In Tamanrasset_INM, the BIAS changes from −0.087 to 0.128 and
in El_Farafra from −0.055 to 0.136, denoting a change from underestimation to overesti-
mation. The same applies for the other statistical indexes as well. A possible reason is
that the NDVI limit of 0.1 results in unrealistically high strength of the dust sources and
further fine tuning of this limit may be needed at local scale. However, the scarcity of
measuring stations near the dust sources limits our capability to accurately quantify NDVI
changes at local scale. The stations of Santa_Cruz_Tenerife and La_Laguna are not in the
immediate pathways of dust transport during this time of the year (March to May). A
more pronounced effect of the developed WRF-NDVI methodology is probably expected
for the summer season in these stations due to increased Atlantic outflows. However, the
performance of WRF-NDVI is improved for the third Atlantic station of Cape Verde.

Finally, the 3 stations located near the Sahel, namely Banizoumbou, IER_Cinzana,
and Dakar, all show considerable improvements when using the NDVI dataset. For Ban-
izoumbou, the BIAS and RMSE are improved from −0.12 to 0.09 and from 0.28 to 0.24,
respectively. CORR shows a significant improvement from 0.19 to 0.51 and FGE and MFB
change from 0.37 to 0.33 and from −0.18 to 0.17, respectively. Dakar station exhibits signifi-
cant improvement, with BIAS changing from −0.20 to 0.07, RMSE from 0.48 to 0.35, CORR
from −0.08 to 0.45, and FGE and MFB from 0.69 to 0.42 and −0.41 to 0.12, respectively.
These stations are affected by dust emissions originating from the complex Sahel savanna.
Therefore, the improved representation of erodibility factor in this region results in a more
detailed description of dust mobilization.

4. Summary and Conclusions

In this work we use the NDVI as an indicator of the dust source emission strength.
NDVI is a simple formulation that is widely used for ecosystems and land-use change
monitoring. Here we use it to dynamically scale the erodibility factor in WRF-Chem. Areas
with NDVI less than 0.1 denote bare soil and are assumed to be active dust sources in the
model. For evaluating the effects of the methodology applied, two sets of simulations
are performed and evaluated against the AERONET data for the period 1 April 2017 to
31 May 2017, which is a very active period for dust transport over the Mediterranean.
The first simulation (WRF-CTRL) uses the static dust source database of [45], which is the
default configuration of the WRF-Chem model. The second simulation uses the updated
high-resolution database with NDVI-scaled erodibility (WRF-NDVI).

The modeling results are evaluated in terms of AOD using typical evaluation statis-
tics. It is found that, in general, the NDVI dust source definition improves the spatial
variability of desert dust transport over the entire computational domain. For instance, at
the AOD > 0.25 threshold, the BIAS decreases from −0.20 to −0.02, the RMSE decreases
from 0.38 to 0.30, the CORR improves from 0.21 to 0.47, FGE improves from 0.62 to 0.40,
and MFB improves from −0.49 to −0.08. Improvements in all the statistical indexes are
recorded for AOD values greater than 0.0 and 0.1 as well, but not as significant as when
considering higher AOD thresholds. This indicates that the methodology adopted here has
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a greater impact on more severe dust events and episodes, as it more accurately describes
the dust source emission strength.

The 34 AERONET stations in our study are also examined separately in order to further
analyze the impact of the NDVI-scaled emissions at different areas. From the 170 calculated
statistical scores, 124 indicate better performance of the WRF-NDVI simulations and
46 indicate better performance of the WRF-CTRL runs. Of note are the stations located
in the Middle East (Weizmann_Institute, SEDE_BOKER, Eilat, and Technion_Haifa_IL)
and the Arabian Peninsula (Shagaya_Park and KAUST_Campus), all of which show con-
siderable improvement when using NDVI to define the dust source strength, especially
in metrics that are related to the quantity of transported dust particles. In Europe, the
most distant station from Sahara is Eforie in Romania, where the statistical values also
indicate improved performance of WRF-NDVI compared to WRF-CTRL: BIAS decreases
from −0.16 to −0.09, RMSE from 0.19 to 0.18, FGE from 0.63 to 0.48 and MFB from −0.62
to −0.40. Accordingly, in Central and Eastern Mediterranean, which are mainly affected
by increased dust activity along the north African coast (ATHENS-NOA, Finokalia-FKL
and Lecce_University), the statistical scores also indicate improved model performance in
WRF-NDVI runs. Additionally, the three stations that are located at the Southern border of
the Sahara Desert, near the Sahel zone (Banizoumbou, IER_Cinzana and Dakar), all present
improved statistical scores when using the NDVI dataset.

However, at some AERONET stations the performance of WRF-NDVI is worse than
the WRF-CTRL control run. These stations are located at the northwest parts of the domain:
Tabernas_PSA-DLR in Spain, Santa_Cruz_Tenerife, and La_Laguna in the Atlantic Ocean,
as well as Tamanrasset_INM and El_Farafra in the Saharan desert. In general, the statistical
metrics for the above stations indicate an overestimation of AOD in the WRF-NDVI runs
that is probably attributed to unrealistic representation of the dust sources affecting these
areas. However, the limited number of measuring stations in Sahara does not allow for a
proper evaluation of NDVI variability on a local scale.

In conclusion, the NDVI-scaling methodology that was previously developed to
describe the dust sources in NMME-DREAM model [36] has been successfully implemented
in WRF-Chem. The time-varying scaling of dust source strength with MODIS NDVI
provides a physically-based method to describe both the permanent dust sources and those
that present seasonal or longer-term variability. The new model parameterization in WRF-
Chem improves the simulation of desert dust production over arid and semi-arid areas
by considering the finer scale spatiotemporal changes in land use. More detailed studies
regarding the effects of land-use on convectively driven dust-storms (haboobs) are also
possible due to the high-resolution nesting capabilities of the model. Additional satellite
products may also be assimilated in the model to further constrain the dust simulations.
Nevertheless, longer testing periods and case studies are needed in order to fine-tune the
parameterization and improve our understanding on dust emissions, especially over the
very active dust source areas.
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