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Abstract: The aim of this study was to model the behavior of particles with aerodynamic diameter
lower or equal to 10µm (PM10) in the Caribbean area according to African dust seasonality. To
carry out this study, PM10 measurement from Guadeloupe (GPE) and Puerto Rico (PR) between
2006 and 2010 were used. Firstly, the missing data issues were addressed using algorithms that we
elaborated. Thereafter, the coupled SARIMA-GARCH (Seasonal Autoregressive Integrated Moving
Average and Generalized Autoregressive Conditional Heteroscedastic) model was developed and
compared to PM10 empirical data. The SARIMA process is representative of the main PM10 sources,
while the heteroskedasticity is also taken into account by the GARCH process. In this framework,
PM10 data from GPE and PR are decomposed into the sum of the background atmosphere (Bt =
anthropogenic activities + marine aerosol), African dust seasonality (St = mineral dust), and extreme
events processes (Ct). Akaike’s information criterion (AIC) helped us to choose the best model.
Forecast evaluation indexes such as the Mean Absolute Percentage Error (MAPE), the Mean Absolute
Scale Error (MASE), and Theil’s U statistic provided significant results. Specifically, the MASE and
U values were found to be almost zero. Thus, these indexes validated the forecasts of the coupled
SARIMA-GARCH model. To sum up, the SARIMA-GARCH combination is an efficient tool to forecast
PM10 behavior in the Caribbean area.

Keywords: PM10; SARIMA-GARCH model; heteroskedasticity; forecast; Caribbean area

1. Introduction

Air pollution by particles with aerodynamic diameters less than 10µm (PM10) has
been an important research topic worldwide for many decades. Several researchers have
shown the impact of PM10 on human health [1–6] and climate [5,7–13] .

In the literature, many stochastic models [14–21] have been developed, and some
of them are implemented in air pollution modeling. Thus, the ARIMA (Autoregressive
Integrated Moving Average) models of Box-Jenkins [22,23] are firstly introduced. Then, its
variants as the SARIMA (Seasonal-ARIMA) [24,25], the SARFIMA (Seasonal Autoregressive
Fractionally Integrated Moving Average) [26,27] and the VARMA (Vector Autoregressive
Moving Average) [28] have been elaborated for investigating stochastic processes. Other
models as the GARCH (Generalized Autoregressive Conditional Heteroskedastic) model,
as well as its variants AGARCH (Asymmetric GARCH), APGARCH (Asymmetric Power
GARCH), FGARCH (Factor GARCH), IGARCH (Integrated GARCH), EGARCH (Exponential
GARCH), UGARCH (Univariate GARCH), and MGARCH (Multivariate GARCH) [29] were
used to explain the temporal variability of the aforementioned processes.

Usually, for the study of PM10 concentrations temporal fluctuations throughout the
world, only the SARIMA modeling is required [24,30–35], because their residuals obey a
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Gaussian distribution. Due to their insular context and local specificities, PM10 sources
in Caribbean islands show different characteristics than in megacities [36–38]. Thus, the
aim of this study was to investigate the temporal variability of PM10 concentration in the
Caribbean area. Unlike other studies, our results showed that the residual of the SARIMA
model do not follow a normal distribution. Consequently, the coupled SARIMA-GARCH
model has been used to fully describe PM10 behavior in Guadeloupe (GPE) and Puerto
Rico (PR). This coupled model makes it possible to separately use the respective properties
of each of the two SARIMA and GARCH processes in order to better describe our PM10
sources. The choice of the SARIMA model is based on the temporal fluctuations of PM10
concentrations according to the high (from May to September) and low (October to April)
African dust season [38]. The heteroskedasticity of the residual errors, i.e., their variability,
will be taken into account by the GARCH process. The coupled SARIMA-GARCH model
is a representation of the stochastic process Xt written as the sum of the background
atmosphere (Bt = anthropogenic activities + marine aerosol), African dust seasonality
(St = mineral dust), and extreme events processes (Ct). The first two terms Bt and St are
modeled by the SARIMA frame while the third term Ct, which describes the extreme events,
is taken into account by the GARCH frame.

The SARIMA and GARCH processes have been applied in various fields such as
mobile communication networks [39], climatology [40], tourism [41], and economics [42],
to mention a few. No study has yet investigated the behavior of PM10 concentration using
this framework.

2. Materials and Methods
2.1. Source of Experimental Data

The PM10 data used come from GPE (16.242° N, −61.541° E) and PR (18.431° N,
−66.142° E) whose air quality networks are Gwad’Air ( http://www.gwadair.fr/; accessed
on 10 February 2021) and AirNow ( https://www.airnow.gov; accessed on 20 January 2021)
(see Figure 1), respectively. For both networks, PM10 are collected using the Thermo Fisher
Scientific Tapered Element Oscillating Microbalance (TEOM) particulate monitors 1400ab
and 1400-FDMS (Filter Dynamics Measurement System) [43]. The PM10 concentrations
are provided on a daily basis with an accuracy of ±0.5µg/m3, and the reliability of these
measurements is ensured by the Central Laboratory for the Monitoring of Air Quality
(LCSQA) and the Environmental Protection Agency (EPA) for GPE and PR [43], respectively.
Thus, two PM10 time series of 1789 and 1747 data points are available for GPE and PR from
2006 to 2010.

Figure 1. Overview of the Caribbean area with the location of Guadeloupe archipelago (16.25° N, −61.58° E;
GPE in orange) and Puerto-Rico (18.23° N, −66.50° E; PR in yellow).

http://www.gwadair.fr/
https://www.airnow.gov
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To carry out this study, several steps are presented: (i) the algorithms developed
to compute the PM10 missing values; (ii) the choice of hypothesis tests used to verify
stationarity and normality of the data; as well as autocorrelations and heteroskedasticity
of the residuals from the selected model; (iii) the best model has been selected using the
goodness of fit information criteria; and (iv) the forecasting performance of the coupled
SARIMA-GARCH model.

2.2. Data Processing

In the PM10 database of GPE and PR, there are 37 and 79 missing values, respectively.
For the correction of these missing observations, two algorithms were implemented ac-
cording to the low or high dust seasons. For the low season, it is a direct imputation. To
compute the missing value of PM10 located at a position i, sometimes also at i− 1 and even
at i + 1, we took the arithmetic average of the closest data available.

So we set,

PM10i =
1
2
(

PM10in f + PM10sup
)
, (1)

where PM10in f is the last observed value before the missing one value, and PM10sup is the
first one after.

This strategy for replacing missing observation (RMO) is suitable up to five consecutive
missing values. They can be replaced by the mean value computed with Equation (1).
Indeed, during the low season, PM10 concentrations have fewer fluctuations [38].

For missing values during the high season, the ratio imputation or stochastic regression
method was used. This strategy aims at replacing a missing value in the data by the value
predicted by a nonlinear regression model. This is due to the relationship between both
PM10 variables in GPE and PR. A missing value at time t in GPE (PR) can be estimated
from the value present in the PM10 data at PR (GPE) at time t + δt (t− δt), where δt denotes
the travel time of a particle between the two sites. Let us suppose there is XPRi (resp.
XGPEi ), the observed value of PM10 in PR (resp. GPE). An estimated value Y?

PR (resp. Y?
GPE)

representing a missing observation in the PM10 dataset in PR (resp. GPE) is obtained by
the following regression models: YPRi (t) = exp

(
γ + δ · ln

(
XGPEi

(
t− δt

)))
+ ut, (RMO in PM10PR data)

YGPEi (t) = exp
(
γ′ + δ′ · ln

(
XPRi

(
t + δt

)))
+ vt, (RMO in PM10GPE data)

(2)

with (γ, δ, γ′, δ′) ∈ R4, δt ∈ {1, 2}; ut and vt denote numerical hazards.

Thus,
YPRi (t) = exp

(
0.8425 + 0.7385 · ln

(
XGPEi (t− 1)

))
+ ut, (RMO in PM10PR data)

YGPEi (t) = exp
(
1.2733 + 0.6403 · ln

(
XPRi (t + 1)

))
+ vt, (RMO in PM10GPE data)

(3)

The skewness of PM10 data in GPE and PR is approximately corrected by using the
transformation method proposed by Yeo and Johnson [44], which is an improvement in
the Box–Cox transformation [45,46]. The new database is constructed according to the
following formula:

Si;λ =


(

si+1
)λ
−1

λ si λ 6= 0

log(si) si λ = 0

(4)

with Si;λ (the transformed series), si (the initial series), and λ (the parameter of the Box–Cox
transformation, −2 ≤ λ ≤ 2), and i, the index or rank ranging from 1 to n, (n is the number
of observations in the data set). Figure A1 shows some symmetry-related corrections made
by the Box–Cox transformation.
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2.3. Statistical Criterion

Some of the hypothesis tests in Figure A2 were used to check the stationarity and
normality of the data. For stationarity, these were the Phillips Perron and Dickey Fuller
tests and, for normality, the Shapiro–Wilk and Jarque–Bera tests [47–49]. Selection of the
best stochastic model that can analyze PM10 behavior in GPE and PR is made by examining
the Kullback–Leibler (K-L) information; for example, the Akaike information criterion
(AIC) of the targeted model must be the smallest compared to those of the other sampled
processes. Once selected, the best model is used for forecasting purposes.

2.4. SARIMA Model

This model allows to describe the PM10 behavior according to the seasons [43]. For
modeling, the orders D and d representing seasonal and non-seasonal differentiations were
chosen, respectively, followed by the orders p and q of the autoregressive (AR) and moving
average (MA) parts of the non-seasonal part and, finally, the orders P and Q of the AR and
MA of the seasonal part of the SARIMA by looking only at the orders multiple of s, which is
the periodicity of the data (s = 4 for a quarterly series and s = 12 for a monthly series) [50].
In the case of daily data series, we therefore took s = 365. Figure 2 illustrates the ideas
expressed.

A process (Xt) follows a SARIMA(p, d, q)(P, D, Q)[s] if the differentiated process (Zt)
such as Zt = (1− B)d(1− Bs)DXt follows a seasonal ARMA process of the form:

φp(B)×ΦP(Bs)Zt = θq(B)×ΘQ(Bs)ζt ⇐⇒ Zt =
θq(B)×ΘQ(Bs)

φp(B)×ΦP(Bs)
ζt (5)

Hence,
φp(B)(1− B)dΦP(Bs)(1− Bs)DXt = θq(B)ΘQ(Bs)ζt (6)

where B is the backward operator ; φp(B) = 1−
p

∑
i=1

φiBi and ΦP(Bs) = 1−
P

∑
j=1

Φsj
(

Bs)j

denote the polynomial functions of the autoregressive model of the non-seasonal and

seasonal parts, respectively; θq(B) = 1 +
q

∑
k=1

θkBk and ΘQ
(

Bs) = 1 +
Q

∑
l=1

Θsl
(

Bs)l denote

the polynomial functions of MA(q) and MA(Q) of the non-seasonal and seasonal parts,
respectively; ζt is the residuals of the SARIMA model [51,52].

Figure 2. Description of the Seasonal ARIMA model [53].
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For the choice of the orders p, q, P, andQ, the auto.arima function of was used.
This function uses a variant of the Hyndman–Khandakar algorithm, which combines unit
root tests, AICc minimization, and the maximum likelihood estimator (MLE) to obtain an
ARIMA model [53]. The orders d and D were obtained from the stationarity and periodicity
criteria applied to the data series.

2.5. GARCH Model

Concerning the residuals of the SARIMA model, we investigated their autocorrelations
using the McLeod–Li test. Engle’s test allows us to evaluate their GARCH character, i.e.,
their conditional heteroskedasticity.

A process ζt follows a semi-strong GARCH(α, β) process if:

∀t ∈ Z?, E
(
ζt/Ft−1

)
= 0 and σ2

t = V
(
ζt/Ft−1

)
= ω +

α

∑
i=1

aiζ
2
t−i +

β

∑
j=1

bjσ
2
t−j. (7)

ζt follows a strong GARCH(α, β) process if:

∀t ∈ Z?, ζt = σtZt, and σ2
t = V

(
ζt/Ft−1

)
= ω +

α

∑
i=1

aiζ
2
t−i +

β

∑
j=1

bjσ
2
t−j, (8)

where,

• ω, ai (i = 1, 2, . . . , α), bj (j = 1, 2, . . . , β) some constants [54,55];
• Ft−1 denotes a filtering of all information of the process ζt until the time t− 1;
• Zt ∼ i.i.d.WN(0, 1);
• for any time t, σ2

t denotes the conditional variance as a function of ζ2
t , which we are

trying to simulate.

The GARCH(α, β) model admits a second-order stationary solution if:

α

∑
i=1

ai +
β

∑
j=1

bj < 1. (9)

In this case, unconditional variance, i.e. marginal variance of the GARCH(α, β) process
as a function of its parameters, is defined as:

V
(
ζt
)
= E

(
ζ2

t
)
=

ω

1−
( α

∑
i=1

ai +
β

∑
j=1

bj

) . (10)

To find the GARCH model fitted to the residuals of the SARIMA model, we considered
the time series defined by the square of the residuals, arguing

(ζt) ∼ GARCH(α, β) =⇒ (ζ2
t ) ∼ ARMA

(
max(α, β), β

)
. (11)

In practice, the α and β orders of the GARCH(α, β) model are such that both α and β
do not exceed 1 or 2 [55].

Thus, a coupled SARIMA-GARCH model was considered in this study.

2.6. Indexes of Forecast Evaluation

The forecast evaluation indexes used were the Mean Absolute Percentage Error
(MAPE), the Mean Absolute Scaled Error (MASE), and the U statistic of Theil. We de-
note et, the prediction error at a time t. It is the difference between the measured value yt
and the predicted value ỹt at time t. Let us consider a validation period with n elements,
t = 1, 2, . . . , n. The performance measures of the forecast are defined below:
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The MAPE gives the percentage of the difference (on average) between the forecast
and the observed value [56]. It is defined as follows:

MAPE =
1
n

n

∑
t=1

∣∣∣∣ et

yt

∣∣∣∣× 100, (12)

where et = yt − ỹt.
The scale for MAPE has been stated by Lewis [57]: MAPE ≤ 10% (highly effective

forecast); 10% < MAPE ≤ 20% (good forecast); 20% < MAPE ≤ 50% (reasonable forecast);
MAPE > 50% (ineffective forecast).

For negative or values close to zero, MASE is more appropriate than MAPE [58]. The
MASE is computed by the following equation:

MASE = mean
1≤t≤n

(|qt|) and qt =
et

1
n−s

n

∑
j=s+1

|yj − yj−s|
, (13)

with yj−s = ỹj and s is the seasonal period.
When MASE < 1, the errors of the prediction model are smaller than the one-step

errors of the naive method [58].
The U statistic is an approach developed by Theil [59,60]. This accuracy measure

allows a relative comparison between formal forecasting methods and naive methods. The
U statistic of Theil is defined by two formulas:

U1 =

√
1
n

n

∑
t=1

e2
t√

1
n

n

∑
t=1

y2
t +

√
1
n

n

∑
t=1

ỹ2
t

and U2 =

√√√√√√√√√
n−1

∑
t=1

(
et

yt−1

)2

n−1

∑
t=1

(
yt − yt−1

yt−1

)2 , (14)

with 0 ≤ U1 ≤ 1 and U2 ≥ 0.
There is greater accuracy in the forecasts when Theil’s U1 statistic is close to 0. The

measurement scale for U2 is as follows: if U2 = 1, the naive method is as good as the
forecasting model evaluated; if U2 < 1, the forecasting model used is better than the naive
method; if U2 > 1, the naive method performs better than the forecasting model [61].

3. Results and Discussion
3.1. PM10 Descriptive Statistics

Before focusing on the temporal dynamics of PM10 data in GPE and PR, we firstly
review their statistical properties before and after correction of missing observations in
order to have a clearer understanding of their behavior.

According to the information in Table 1, the minimum, maximum, first, and second
quartiles (median) computed in each data set remain the same before and after data correc-
tion. Some other statistics such as indicators of dispersion (variance, standard deviation,
and coefficient of variation) and shape measures (skewness and kurtosis) were almost
identical. This similarity validates the implemented algorithms defined in Section 2.2.

The skewness coefficients in GPE and PR were different from 0, which is the reference
value for the normality of a process [62,63]. Thus, the PM10 distribution for each area is
not symmetric. Estimated kurtosis coefficients of 10.97 and 19.67 in GPE and PR exhibited
a leptokurtic distribution.
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Table 1. Some statistics of PM10 data in GPE and PR from 2006 to 2010.

Statistics
Before Correction After Correction

PM10GPE
(n = 1789)

PM10PR
(n = 1747)

PM10GPE
(n = 1826)

PM10PR
(n = 1826)

Minimum 4.00 7.00 4.00 7.00
First quartile 17.00 17.00 17.00 17.00

Median 21.00 21.00 21.00 21.00
Mean 26.59 25.54 26.62 25.65

Third quartile 30.00 27.00 30.00 28.00
Maximum 164.00 197.00 164.00 197.00

Missing data 37.00 79.00 − −
Variance 271.46 263.52 266.94 258.13

Standard deviation 16.48 16.23 16.34 16.07
Coefficient of variation 0.62 0.64 0.61 0.63

Skewness 2.69 3.61 2.69 3.57
Kurtosis 10.81 19.78 10.97 19.67

Boxplots in Figure 3 illustrate the extreme values (values greater than the median
value plus twice the interquartile range) observed in the PM10 database of GPE (10.02%)
and PR (9.75%). These values can be due to sand haze, fires, or volcanic eruptions [64].
Thus, the same extreme event seems to have an impact on both islands. It involves a sudden
and instantaneous increase in particulate pollution, called a PM10 jump. These jumps can
be modeled by stochastic differential equations that take into account the dynamics of
space, time, and randomness [65].

Figure 3. Boxplot of PM10 data in GPE and PR from 2006 to 2010.

The red curve in the scatterplot in Figure 4 represents the second-order polynomial
regression. For min(PM10) ≤ PM10GPE(PM10PR) ≤ 50µg/m3, there is a homogeneity
in the points distribution. For the other points, i.e., PM10 ≥ 50µg/m3, the distribution is
heterogeneous. Thus, most of the data were below the 50µg/m3 threshold recommended
by the World Health Organization (WHO) [66]. These results are in agreement with the
relationship stated in Section 2.2. The quadratic regression model equation where PM10PR
(PM10GPE) is the response variable, and PM10GPE(PM10PR) the explicative variable, is
given by Equations (15) and (16), respectively:

PM10PR = 7.2143 + 0.7502(PM10GPE)− 0.0016(PM10GPE)2 + ξ1, (15)

PM10GPE = 5.0056 + 0.9537(PM10PR)− 0.0031(PM10PR)2 + ξ2, (16)

where ξ1 and ξ2 are the residual values.
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Figure 4. Scatterplot and polynomial regression curve in the relationship where (a) (resp. (b)) PM10PR (resp.
PM10GPE) is a function of PM10GPE (resp. PM10PR).

The regression results show a p-value < 2.2 × 10−16. The coefficient of determination
R2 in the first case was 37.19%; this indicates that 37.19% of the variation in the dependent
variable was represented by the model. The Spearman’s correlation coefficient ρ was 0.5084,
i.e., 50.84%: there is therefore a positive relationship of average intensity between PM10GPE
and PM10PR variables. In the second case, we have R2 = 38.94% and ρ = 50.84%. These
percentages prove once again that when a large-scale event occurs in GPE, it is felt at PR.

The results in Table 2 show that the coefficients of both regression models in Equations
(15) and (16) are statistically significant (p-value < 5%). With the significance of the
quadratic term, the curvature trend of the scatterplot in Figure 4 is approved. Thus, second-
order polynomial regression provides the model that fits the raw data.

Table 2. The results of the quadratic regression model.

Regression Coefficients Estimate Std. Error t Value Pr(>|t|)

1
Intercept 7.2143 0.9453 7.63 3.71 × 10−14

PM10GPE 0.7502 0.0490 15.32 <2.00 × 10−16

I(PM10GPE2) −0.0016 0.0005 −3.38 7.36 × 10−4

2
Intercept 5.0056 0.9183 5.45 5.69 × 10−8

PM10PR 0.9537 0.0461 20.71 <2.00 × 10−16

I(PM10PR2) −0.0031 0.0004 −7.99 2.29 × 10−15

3.2. Chronogram and Decomposition of PM10 Data

Figure 5 illustrates the temporal variations of PM10 concentration at GPE and PR. The
main PM10 daily concentrations range from 0 to the mean value of each distribution, which
is approximately 26 µg/m3. During the high dust season, we can observe that PM10 values
frequently exceed the 50µg/m3 recommended by the WHO [66].
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Figure 5. Daily evolution of PM10 concentrations at (a) GPE and (b) PR from 2006 to 2010. The red horizontal
dashed line shows the Air Quality Guideline for 24 h mean PM10 concentrations at 50 µg/m3 [66]. The black
curve represents the smoothed moving average series calculated by taking p = 24.

A non-parametric filtering method was used in Figure 5; it is the moving average
smoothing whose aim is to approach the trend by attenuating irregular fluctuations. The
average evolves in periods of about p = 24 h. This method also allows us to detect the time
of the trend reversal; we obtained a picture of the daily and seasonal average dynamics of
the Saharan dust cloud. A trivial analysis of Figure 5 shows that the main highest PM10
peaks are observed during the high dust season in summer due to dust outbreaks as shown
by PR in May 2007. However, extreme events such as volcanic eruptions can also lead to a
sharp increase in PM10 concentrations during the low dust season. This is the case in GPE
with the eruption of Soufrière on Montserrat in February 2010 [67].

Figure 6 presents the decomposition of the two PM10 data series in GPE and PR
according to an additive scheme. The top graph in (a) and (b) of it can be seen as a sum of:

− a trend that is the average behavior of the two data series, i.e., their evolution over
the long term. This trend is characterized by a linear increase or decrease at irregular
intervals. Each time process shows a monotonic behavior from one year to another;

− a seasonal component (cycle) that corresponds to different cases where PM10 phe-
nomenon repeats at regular or periodic intervals. Here, the period is intra-year; strong
pollution peaks are observed in the middle of each year;

− a random component or noise or residual. This corresponds to low-intensity fluctua-
tions of a stochastic nature and is part of the disturbing elements [50].

Intuitively and based on PM10 studies in the Caribbean area [68–71], we assumed
that this decomposition represents for the stochastic process Xt the sum of the background
atmosphere (Bt = anthropogenic activities + marine aerosol), African dust seasonality
(St = mineral dust), and extreme events processes (Ct). The Bt and St terms will be mod-
eled by the SARIMA process. The extreme events, noted Ct, will be described by the
GARCH model.
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Figure 6. Additive decomposition of the PM10 data series at (a) GPE and (b) PR from 2006 to 2010.

Overall, one can notice that the decompositions in Figure 6 seem to follow the same
temporal pattern for both islands. PM10 average concentrations are the lowest in 2009,
while they are higher in 2007 and 2010 in PR and GPE for the reasons aforementioned.

3.3. Analysis of Seasonal Effects

The decomposition method plotted in Figure 6 shows a strong seasonal component in
the PM10 data in GPE and PR. The autocorrelation function represented in Figure 7 also
illustrates the existence of this seasonality. The vertical lines, with equations v = 365n, n ∈
{1, 2, 3, 4, 5}, represent offsets that are multiples of 365. They are thus retrogrations of the
seasonal period.

Figure 7. Autocorrelation function (ACF) of PM10 data at (a) GPE and (b) PR from 2006 to 2010 before
the Box–Cox transformation and the seasonal differentiation. The gray vertical lines of equation
v = 365n, n ∈ {1, 2, 3, 4, 5} denote the offsets that are multiples of 365.

To build the model, the differentiated series modeling was firstly performed. As the
original data series is stationary but exhibits seasonality, we chose a seasonal differentiation
before choosing the appropriate orders for our process. Yeo and Johnson’s formula in
(4), which is derived from the Box–Cox transformation, was applied to solve some data
skewness problems. Figure 8 represents the PM10 time series obtained after the Box–Cox
transformation and differentiation. Although transformed, some lags were observed in
both PM10 time series.
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Figure 8. Chronogram of PM10 data at (a) GPE and (b) PR from 2006 to 2010 after the Box–Cox transformation
and the seasonal differentiation.

3.4. Selection of the PM10 Model

Table 3 shows goodness of fit and the selection of the two SARIMA(1, 0, 3)(0, 1, 0)[365]
and SARIMA(0, 0, 5)(0, 1, 0)[365] processes as models with the smallest AIC intended to
explain the behavior of PM10 data in GPE and PR from 2006 to 2010, respectively.

Table 3. Checking of the PM10 model information criteria in GPE and PR.

PM10GPE PM10PR
Model AIC Model AIC

SARIMA(3, 0, 1)(0, 1, 0)[365] −2964.79 SARIMA(1, 0, 1)(0, 1, 0)[365] −3112.59
SARIMA(2, 0, 1)(0, 1, 0)[365] −2961.21 SARIMA(2, 0, 1)(0, 1, 0)[365] −3108.94
SARIMA(4, 0, 2)(0, 1, 0)[365] −2961.61 SARIMA(0, 0, 1)(0, 1, 0)[365] −3005.81
SARIMA(2, 0, 0)(0, 1, 0)[365] −2960.96 SARIMA(1, 0, 2)(0, 1, 0)[365] −3109.79
SARIMA(1, 0, 3)(0, 1, 0)[365] −2965.30 SARIMA(0, 0, 5)(0, 1, 0)[365] −3114.69

Student’s t test for significance of the model parameters constructed allows to reject
the H0 hypothesis corresponding to nullity coefficients. The latter are therefore significant.
Table 4 shows that this criterion was validated (p-value < 5%). Moreover, the t-test
equivalent to the quotient of each coefficient divided by the standardized error is greater
than 1.96 in absolute value.

Table 4. Estimation and significance of PM10 model parameters in GPE and PR; C.I.: Confidence
Interval.

Model Parameters Estimate Std. Error t-Test p-Value
Coefficient C.I.

2.5% 97.5%

SARIMA(1, 0, 3)(0, 1, 0)[365]

AR1 0.8275 0.0933 8.87 0.000000 0.6446 1.0104
MA1 −0.2186 0.0989 −2.21 0.027081 −0.4124 −0.0248
MA2 −0.2338 0.0698 −3.35 0.000811 −0.0970 −0.0970
MA3 −0.0931 0.0463 −2.01 0.044123 −0.0024 −0.0024

SARIMA(0, 0, 5)(0, 1, 0)[365]

MA1 0.5947 0.0261 22.75 0.000000 0.5435 0.6460
MA2 0.2878 0.0304 9.46 0.000000 0.2282 0.3474
MA3 0.1457 0.0313 4.66 0.000003 0.0844 0.2069
MA4 0.1112 0.0295 3.77 0.000161 0.0534 0.1689
MA5 0.0959 0.0259 3.70 0.000216 0.0451 0.1468

• The expression of the stochastic process (Xt) describing PM10 in GPE and following a
SARIMA(1, 0, 3)(0, 1, 0)[365] is written:

(1− 0.8275B)(1− B365)Xt = (1− 0.2186B− 0.2338B2 − 0.0931B3)ζt (17)
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Equivalently,

Xt = 0.8275Xt−1 + Xt−365 − 0.8275Xt−366 − 0.2186ζt−1 − 0.2338ζt−2 − 0.0931ζt−3 + ζt (18)

with ζt ∼WN(0; 0.0875) and B, the backward operator.
• The background sources of the PM10 at PR can be described by the stochastic process

(Yt) following a SARIMA(0, 0, 5)(0, 1, 0)[365]. The mathematical expression of Yt is
then written:

(1− B365)Yt = (1 + 0.5947B + 0.2878B2 + 0.1457B3 + 0.1112B4 + 0.0959B5)εt (19)

m

Yt = Yt−365 + 0.5947εt−1 + 0.2878εt−2 + 0.1457εt−3 + 0.1112εt−4 + 0.0959εt−5 + εt (20)

with εt ∼WN(0; 0.08313) and B, the backward operator.

Figures 9 and A3 serve as a comparison between the actual transformed series data
and the computed values of the SARIMA model. A slight discrepancy can be observed
between these two quantities. This bias may be due to the mathematical transformations
used on the empirical data such as the Box-Cox transformation for example.

Figure 9. Fitting of model computed values and transformed data of PM10 in (a) GPE and (b) PR.

3.5. Stationarity of Each PM10 Model

The process (Xt) is stationary if the zeros of polynomials φp(x) = 1− 0.8275x and
θq(x) = 1− 0.2186x− 0.2338x2− 0.0931x3 (p = 1 and q = 3) have moduli exceeding 1 or if
the roots of each equation φ1(x) = 0 and θ3(x) = 0 are outside the unit circle. So we have:

φ1(x) = 0⇐⇒ x ∈ {1.21} (21)

θ3(x) = 0⇐⇒ x ∈ {1.9914308147i− 1.9506390977;−1.9914308147i− 1.9506390977; 1.39} (22)

Similarly, the process (Yt) is stationary if zeros of polynomial θq such that
θq(y) = 1 + 0.5947y + 0.2878y2 + 0.1457y3 + 0.1112y4 + 0.0959y5 (q = 5) have moduli
exceeding 1 or if the roots of equation θ5(y) = 0 are outside the unit circle.

θ5(y) = 0⇐⇒ y ∈ {0.9789451206 + 1.356173123i; 0.9789451206− 1.356173123i;

−0.7807991779 + 1.336453025i;−0.7807991779− 1.336453025i;−1.555833074} (23)

The non-seasonal first-order autoregressive function φ1 and third-order moving aver-
age function θ3 of the PM10 model in GPE, as well as the moving average function θ5 from
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PM10 at PR admit zeros with the modulus of each exceeding 1. Stationarity conditions
for constructed models require that the complex zeros of each function φ1, θ3, θ5 must be
outside the unit circle. Equivalently, their inverse is inside the unit circle as illustrated in
Figure 10 [53].

Figure 10. Stationarity of the PM10 SARIMA model at (a) GPE and (b) PR from 2006 to 2010.

3.6. Dynamics of Conditional Heteroskedasticity of the Residuals from the SARIMA Model

Visual evidence of the GARCH effect for residuals from the SARIMA model is il-
lustrated in Figure 11. In fact, we observed locations of high and low variability. This
clustering is noticeable in Figure 12 of the squared residuals.

Figure 11. Chronogram of PM10 SARIMA model residuals in (a) GPE and (b) PR from 2006 to 2010. Selected red
and black portions denote locations with high and low residual error variability, respectively.
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Figure 12. Chronogram of squared residuals of the SARIMA model of PM10 in (a) GPE and (b) PR from 2006
to 2010.

The results of the McLeod–Li autocorrelation test in Figure 13 and Arch Engle test
in Table 5 allow to confirm the residual variability indicated in Figures 11 and 12. Thus,
residual errors of both PM10 models in GPE and PR exhibit a GARCH effect and are
therefore auto-correlated. Some extreme events may involve these shocks in PM10 data for
both islands.

Figure 13. McLeod–Li test for PM10 model residual errors in (a) GPE and (b) PR from 2006 to 2010.

Table 5. Normality, autocorrelation, and heteroskedasticity tests of residuals from the SARIMA
model.

PM10GPE PM10PR
Hypothesis Tests Statistics Df p-Value Statistics Df p-Value

Shapiro–Wilk 0.97 NA <2.2 ×10−16 0.97 NA <2.2 ×10−16

Jarque–Bera 302.24 2 <2.2 ×10−16 175.77 2 <2.2 ×10−16

ARCH LM-test 175.46 20 <2.2 ×10−16 114.48 20 <3.0 ×10−15

NA : Not Available.

The null hypothesis H0 of homoskedasticity between residuals from the SARIMA
was rejected because the p-value of the McLeod–Li test was less than 5%. Therefore, the
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alternative hypothesis H1 of heteroskedasticity was accepted. Shapiro–Wilk and Jarque
Bera normality tests in Table 5 with p-values less than 5% show that residuals in the PM10
model do not follow a normal distribution. Figure 14 is a visual representation of this. It is
called a long-tailed distribution in the literature.

Contrary to other studies [24,30,32], our results showed that the residuals of the
SARIMA model do not follow a normal distribution (see Figure 14). This demonstrates the
special feature of PM10 fluctuations in GPE and PR. Consequently, the residual part of the
SARIMA model has been investigated by a GARCH model.

Figure 14. Shape for distribution of PM10 model residuals at (a) GPE and (b) PR from 2006 to 2010. The red
curve is the residual error density, while the green curve is the normal distribution.

Some non-linear models related to the GARCH process are presented in Table 6. By
using the Akaïke information criterion (AIC), we are able to choose the best of them, i.e.,
the one with the smallest AIC. This process allows us to describe the heteroskedasticity
of the residuals of the SARIMA model. In the stochastic process Xt, the GARCH model is
applied to the Ct term component (extreme events process).

Table 6. Residual model information criteria for the PM10 SARIMA process in GPE and PR.

PM10GPE PM10PR
Model AIC Model AIC

GARCH(1, 0) −2.3038 GARCH(1, 0) −2.4006
GARCH(1, 1) −3.3754 GARCH(1, 1) −3.8294
GARCH(2, 0) −2.3381 GARCH(2, 0) −1.1025
GARCH(2, 1) −3.3716 GARCH(2, 1) −3.8223
GARCH(2, 2) −3.3714 GARCH(2, 2) −3.8229
GARCH(3, 0) −2.7294 GARCH(3, 0) −3.0561
GARCH(3, 1) −3.3710 GARCH(3, 1) −3.8239
GARCH(3, 2) −3.3698 GARCH(3, 2) −3.8255

Finally, the residuals from each of the PM10 models in GPE and PR follow a GARCH(1,1)
process. The coefficients of this non-linear model are shown in Table 7.
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Table 7. Residual model parameters from the SARIMA process for PM10 at GPE and PR.

PM10GPE PM10PR
Parameters Estimate Std. Error t Value Pr(>|t|) Estimate Std. Error t Value Pr(>|t|)

ω 8.652 ×10−7 0.000000 2.18 0.029506 8.567 ×10−8 0.000001 0.06 0.94943
a1 1.622 ×10−1 0.009482 17.10 0.000000 1.951 ×10−1 0.009912 19.68 0.00000
b1 8.368 ×10−1 0.008301 100.81 0.000000 8.039 ×10−1 0.008671 92.71 0.00000

The expression of each of the residual models from the SARIMA process of PM10 in
GPE and PR is given by Equations (24) and (25), respectively. ζt = σtZt, Zt ∼WN(0, 1)

σ2
t = 8.652e-07 + 0.1622ζ2

t−1 + 0.8368σ2
t−1

(24)

 ζ ′t = σ′t Zt, Zt ∼WN(0, 1)

σ′t
2 = 8.567e-08 + 0.1951(ζ ′t−1)

2 + 0.8039(σ′t−1)
2

(25)

The GARCH processes built from the residuals of the PM10 SARIMA model in GPE
or PR and defined in the Equations (24) and (25) are stationary as the persistence of the
variability represented by the sum of the coefficients a1 and b1 is less than 1. The coefficients
ω that are included are 8.652× 10−7 and 8.567× 10−8, respectively . They represent the
lower boundary below which the variability of PM10 values cannot cross. The a1 coefficients
0.1622 and 0.1951 denote the effect of extreme events on the PM10 distribution at GPE and
PR. On the other hand, the b1 coefficients 0.8368 and 0.8039 indicate the persistence of the
phenomenon.

Figures 15 and 16 show the conditional variances estimation of the squared residuals
from the SARIMA model and the computed GARCH one. We therefore observed a kind of
collinearity between them.

Figure 15. Collinearity between variance of residuals from the SARIMA model and computed variance of the
GARCH model in (a) GPE and (b) (PR).
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Figure 16. Variance of residuals from the SARIMA model against computed variance by the GARCH model in
(a) GPE and (b) PR.

3.7. Forecasting of the PM10 Model

After calibrating the model with five years of data, we perform the forecast in this
section. The red curve in Figure 17 illustrates the prediction of the SARIMA model, con-
tained in the 80% confidence interval (light gray). It shows the stochastic nature of PM10
concentration throughout time.

Figure 17. Forecasts of PM10 data series in (a) GPE and (b) PR after the Box–Cox transformation and seasonal
differentiation. The light gray band represents the 80% confidence interval. The red curves contained in this
region are the forecasts beyond 2010.

The predicted values from the coupled SARIMA-GARCH model for PM10 on both
islands are validated by the forecast error measurements contained in Table 8. Fore-
cast accuracy indexes as MASE and Theil’s U statistic are overall lower in the coupled
SARIMA-GARCH model compared with the other models separately. The MASE index
gives more conclusive results than the MAPE. It is due to the fact that these metrics are
computed on transformed PM10 data where both negative values and values close to zero
are present [58].
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Table 8. Forecast accuracy of PM10 models in GPE and PR.

PM10GPE PM10PR
Models n

(data point)
MAPE

(%)
MASE U1 U2 n

(data point)
MAPE

(%)
MASE U1 U2

SARIMA 350 3.743 0.025 0.083 0.167 350 2.312 0.009 0.034 0.070
GARCH 365 134.238 0.775 0.556 0.882 365 141.817 0.773 0.551 0.884

Coupled SARIMA-GARCH 350 15.127 0.069 0.045 0.091 337 2.396 0.008 0.034 0.069

Figure 18 illustrates the GARCH model forecast from standard deviation σt. It describes
the variability in PM10 365 days after the study period ending in 2010. The concept of the
low and high dust seasons is noticeable. We observed a kind of collinearity between the
predicted values and those of the residuals from the SARIMA taken in the absolute value.

Figure 18. 365-day rolling forecast of PM10 variability from the GARCH model in (a) GPE and (b) PR.

The coupled SARIMA-GARCH model built has an interest compared to the two models
applied separately. It concerns the case where the residuals of the SARIMA model have a
heteroskedastic behavior. Extreme events related to dust outbreaks or volcanic eruption
may explain this behavior. In addition, the values predicted by the coupled SARIMA-
GARCH model are obtained by summing the prediction values of both models. All the
forecast evaluation indexes in Table 8 confirm that the coupled model is a suitable approach
to predict PM10 behavior (see Figures 19 and A4).

Figure 19. Actual (blue curve) and predicted (red curve) values plot using the coupled SARIMA-GARCH model
for PM10 data transformed in (a) GPE and (b) PR.
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4. Conclusions

The goal of this study was to investigate the PM10 behavior in the Caribbean area.
To carry out this study, we first replaced the missing data in the time series using the
elaborated algorithms, those taking into account the low and high season of the African
dust. Thus, the dynamics of the PM10 time series were improved for model building.

Thereafter, the analysis of PM10 stochastic properties was performed using a coupled
SARIMA-GARCH model. The SARIMA process allowed us to understand and explain
the behavior of the PM10 time series in GPE and PR according to African dust seasonal-
ity. The Arch Engle and McLeod–Li tests exhibited the autocorrelations and conditional
heteroskedasticity in SARIMA residuals.

The coupled model defined in this study exhibited that PM10 measurements, as well
as the residual errors of the SARIMA, reject the normality assumption before and after
several transformations. In other words, this model highlights the special features of PM10
concentrations for the Caribbean area. Thus, the SARIMA-GARCH combination is a good
tool to forecast PM10 behavior in Caribbean area. The modeling results could be extended
to the nearby islands of GPE and PR to better understand the seasonal impact of dust
outbreaks on the environment and human health.

In this study, the main difficulty encountered during the modeling process concerns
the choice of the model. More precisely, we have had to choose between a hybrid frame
and a coupled frame to explain PM10 behavior in GPE and PR. In order to specify the
part of the SARIMA and GARCH temporal processes in the hybrid model, a simultaneous
estimation of the SARIMA-GARCH parameters is required. To overcome this drawback, the
coupled SARIMA-GARCH framework was selected. This latter allowed us to fully model
and forecast PM10 fluctuations while independently determining both models’ parameters.

Although our model provides significant results, it is based on an approach with fixed
seasonality. It does not take into account long memory processes, those characterized by a
decrease in their autocorrelogram following a power function. A future application of this
coupled model could be to investigate the impact of mineral dust from African deserts on
human health and the environment in Haiti.
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MAPE Mean Absolute Percentage Error
MASE Mean Absolute Scaled Error
PM10GPE Particulate Matter (diameter 10µm or less) in Guadeloupe
PM10PR Particulate Matter (diameter 10µm or less) at Puerto Rico
p-value (PR(> |t|)) Critical probability to reject a null hypothesis

SARFIMA
Seasonal Autoregressive Fractionally Integrated Moving
Average

SARIMA Seasonal Autoregressive Integrated Moving Average
Std. Error Standard Error
t-test t-value of Student’s test
U1, U2 Theil’s U statistic presented in its two forms
VARMA Vector Autoregressive Moving Average
WN White Noise

Appendix A

Appendix A.1. A Visual Look at the Symmetry and Normality of PM10 Data in Guadeloupe and
Puerto Rico

Figure A1. Histogram and Normal Q-Q Plot curve of PM10 from 2006 to 2010 in (a) GPE and (b) PR before and
after the Box–Cox transformation.

Appendix A.2. Results of Some Statistical Tests with

Figure A2. Statistical tests with .
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Appendix A.3. PM10 Values Measured and Modeled by the SARIMA Model

Figure A3. Actual and computed PM10 values in (a) GPE and (b) PR.

Appendix A.4. Forecast of the Coupled SARIMA-GARCH Model of PM10 Data in GPE and PR

Figure A4. Forecasts on the horizon h = 365 of the SARIMA-GARCH model of PM10 data in (a) GPE and (b) PR.
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