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Abstract: The article investigates some of the available measurements (Terra MODIS satellite data) of
the aerosol optical depth (AOD) taken in the Arabian Gulf, a zone traditionally affected by intense
sand-related (or even sand-driven) meteorological events. The Principal Component Analysis (PCA)
reveals the main subspace of the data. Clustering of the series was performed after selecting the
optimal number of groups using 30 different methods, such as the silhouette, gap, Duda, Dunn,
Hartigan, Hubert, etc. The AOD regional and temporal tendency detection was completed utilizing
an original algorithm based on the dominant cluster found at the previous stage, resulting in the
regional time series (RTS) and temporal time series (TTS). It was shown that the spatially-indexed
time series (SITS) agglomerates along with the first PC. In contrast, six PCs are responsible for 60.5% of
the variance in the case of the temporally-indexed time series (TITS). Both RTS and TTS are stationary
in trend and fit the studied data series set well.
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1. Introduction

Dust clouds and storms occur worldwide, especially in the Middle East, southwestern
United States, northern China, and the Saharan desert. The essential conditions trigger-
ing these phenomena are the existence of huge dust or sand sources, little vegetation,
strong surface winds, and an unstable atmosphere [1]. Dust particles primarily enter the
lower atmosphere through saltation bombardment, which depends on the meteorological
conditions near the surface, the soil texture, and particle size [2–5]. Dust is emitted as
hydrophobic particles, relatively ineffective as cloud condensation nuclei. However, during
their transport in the atmosphere, due to the interaction with gaseous and particulate
air pollutants, their hygroscopicity increases, fortunately enhancing the efficiency of dust
removal from the atmosphere through precipitation [6,7]. Haywood et al. [8] indicated that
the aerosols cause a strong radiative forcing of climate because of their efficient scattering
of solar radiation.

The most abundant aerosol in the atmosphere is dust, composed of oxides (silica, iron
oxides), quartz, feldspar, gypsum, and hematite [9]. Ginoux et al. [10] emphasized the
anthropogenic and natural dust sources.

Many studies [8,11–13] have already investigated and documented a significant vari-
ability of the airborne desert dust during the past decades in the Middle East, Africa, central
Asia, and South America, and identified Shamal (the north-westerly wind blowing over
Syria, Iraq, and the Arabian Gulf) as the significant natural trigger of dust storm activities
across the Arabian Peninsula. Shamal transports the dust lifted from Syria and Iraq to
the Arabian Gulf and Peninsula [14–18]. Still, Notaro et al. [16] identified increased dust
activity over eastern Saudi Arabia around the Ad Dahna Desert, with dust transported
from the Iraqi Desert and local sources. Yu et al. [18] concluded that a strong wind speed
determines higher dust activity along the coast of the Persian Gulf in north-central Saudi
Arabia, and one has to consider this influence when tracing the phenomenon along and
across United Arab Emirates territory.
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Different scientists analyzed the aerosol optical depth (AOD) distribution in south-
eastern Asia and the Middle East in correlation with the seasonal conditions [19–21] and
to determine the air quality modifications in China, Sahel, South Africa, and South Amer-
ica [22–25]. They showed that the atmospheric heating rates and the absorption character-
istics are linearly dependent, noticing a significant difference between the aerosols in the
Indian region and the zones with large deserts and high dunes (such as UAE) contributing
to the dust loadings in the atmosphere [26].

Other researchers provided the classification of the aerosol types taking into account
different characteristics—fine mode fraction and the aerosol index [27], AOD [4,28,29],
refraction index, and Ångström exponent [30–32].

The long-term trend of AOD over the Arabian Peninsula, and eastern and southern
Asia for 2002–2009, estimated based on AERONET data, was increasing. The same tendency
was observed over most tropical oceans [33]. A long-term positive AOD trend over the
Arabian Peninsula occurred, with a higher seasonal tendency during spring and summer
(periods when the dust is transported) [26].

Multivariate statistical analysis became one of the most utilized tools for extracting the
common characteristics of big data sets issued from environmental sciences [34–38]. The
spatio-temporal analysis of AOD is mainly performed by Principal Component Analysis
(PCA, also named EOF—Empirical Orthogonal Functions), non-negative matrix factoriza-
tion (NMF), and combined Principal Component Analysis (CPCA). These tools helped
capture the aerosol regimes, the factors influencing the AOD’s concentrations, and the
trends [20–25].

Recent studies on dust-aerosol in the UAE evaluated the regional distribution of this
type of aerosol and the dust storms’ intensity [26,39–41]. Using AERONET data collected
from 2006 to 2015, Abuelgasim and Farahat [26] found an increasing trend of AOD in
summer and spring and a 4.32% mean annual variation of the aerosol loading. They
estimated a variation of 11.36% of the mean annual Ångström exponent for the study
period. The highest concentration of aerosols was found in summer, while from November
to March, an increasing tendency was found during 2011–2016.

Other scientists [40,41] studied the frequency of the dust storms for nine years, using
hourly data recorded at eight airports in the UAE. The variation of the aerosol radius was
presented in [4], based on monthly series collected at 387 points for 15 years.

Despite the investigations performed to determine the aerosol’s characteristics and
the effect of meteorological conditions on their loadings and transport in the Arabian Gulf
region, many aspects of the aerosol’s properties in the UAE remain to be studied.

The AOD time series varies depending on the data structure, aerosol extinction, and
surface reflectance [22–24]. Still, here, we shall not analyze the connection between these
variables, but the spatial and temporal variation of the AOD series for 178 months. This
research continues the attempt to understand the aerosol characteristics in the UAE, aspects
that have not been treated in the studies [4,26,40,41].

The main contributions of this research are:

(1) Performing the PCA to extract the principal components that describe the AOD series’
characteristics in time and space;

(2) Group the series in clusters (in spatial and temporal dimensions);
(3) Build the ‘regional time series’ (RTS) and the ‘temporal time series’ (TTS) of the AOD,

employing an original algorithm based on the clusters previously determined;
(4) Compare the RTS and TTS of AOD with those of the ‘regional time series’ and ‘tempo-

ral time series’ of the aerosol radius (AR) [4] to emphasize the common tendencies.

2. Methods and Data Series

The methods employed at the first stage of our investigations are PCA, also called
EOF, and Clustering.

The first one was used to estimate the similarity in terms of linear dependence within
the data and eventually to qualify regional/global aspects. The second one was performed
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to evaluate dissimilarity, the natural tendency of grouping (if present) in data, and identify-
ing aspects and events localized in time and/or space.

PCA is a statistical technique that (linearly) transforms (and deflates) a large set
of (possibly correlated) variables into a smaller set of orthogonal uncorrelated variables
representing the most significant information of the initial variables set. Initially employed
in the study of meteorological series [42], its use became frequent in other fields such as
ozone series evaluation [43,44] and isolating aerosols’ sources [23] based on AOD retrieved
from satellite data.

The PCA method is shortly described in the following.
Let us consider the matrix X, whose columns are the series recorded at each point. If n

is the number of series (367, in this case), and m is the number of time units (178 months,
here), X is an m × n matrix. It was shown that X can be written as a product of two matrices,
Y (m × m) and Z (m × n), of orthogonal functions of position and time.

The equation X = YZ is equivalent to

xik =
m

∑
j=1

yijzjk,i = 1, m, k = 1, n, (1)

so, the vector of the values recorded at a certain point is a linear combination of the Y
columns (with different weights), under orthogonality conditions.

Formula (1) is called the PCA analysis.
For a symmetric matrix,

A = XXT = YZZTYT (2)

there is a decomposition such as
A = YΛYT (3)

where Λ is the diagonal matrix formed by A’s eigenvalues. Therefore, from (1) and (3) it
results that

zik =
m

∑
j=1

yjixjk,i = 1, m, k = 1, n, (4)

because Z = YTX.
The j-th eigenvector has a contribution of λj/ ∑m

i=1 λi to X, where λi, i = 1, m are the
eigenvalues [25].

When a small dominant set of principal components exists, the technique detects the
common characteristics of the data samples and reveals the regional or temporal aspects.
The absence of dominant principal components results in the data series independence, so
the phenomenon is localized [45].

Modifications of PCA have been proposed, such as sPCA [46] (that proposes sparse
loadings), CPCA [47] (to investigate the pattern of a specific element), Common PCA (to
simultaneous reduce the dimensionality in different groups) [48], or Combined PCA (to
compare the modes in the AOD decomposition) [23,24,49]. PCA was chosen here because
we are interested in the common characteristics of the series.

To determine the number of principal components, the scree plot, the Kaiser criterion,
and the proportion of the variance explained by each component may be utilized [50–52].
Here we employed the combined scree plot and variance explained by each component.

Clustering is a method for identifying patterns and similarities within the data and
the natural grouping tendency of the similar objects within a data set of interest.

Different scientists introduced various tests for detecting the optimal number of
clusters. Although some are more commonly used (because they are well-known or easier
to compute), there is no reason to give more credit to one or another, mainly because
they rely on different mathematical and computational techniques. Therefore, the strategy
for establishing the optimal number of clusters was a multi-criteria decision obeying the
majority rule after performing 30 different tests, including silhouette [53], gap, Duda, Dunn,
Hartigan, Hubert, and so on [54]. For example, if 15 tests voted for two clusters, eight for
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three, five for four, and the rest for six, the chosen number is two. This approach assures
choosing the number of clusters with the highest probability among the possible number
of such groups. In the previous example, the probability associated with two clusters is
15/30 = 1/2, compared to 4/15, 1/6, and 1/15, associated with other choices.

Agglomerative Hierarchical Clustering has been performed using the R software.
The agglomerative coefficient was computed to determine the grouping quality. The

higher this coefficient is, the best the clustering is. The dendrogram showing the elements
in each cluster was also plotted.

The regional time series (RTS) (temporal time series (TTS)) was built using the spatially-
indexed time series (SITS) (temporally-indexed time series (TITS)) and the following algo-
rithm, which is a modified version of Method II [4] based on the resulting clusters.

Given k data series each containing n values, consecutively recorded at the same time,
denote by Y = (yji) (j = 1, . . . , n, i = 1, . . . , k) the matrix whose column i is formed by the
elements of the i-th series (i = 1, . . . , k). The steps of the algorithm for determining the
representative series are:

(I) Choose the number of clusters, m, and perform the series’ clustering, based on a
selection algorithm. Here, the choice is made using 30 criteria presented in [54] and the
majority principle: m is the number resulting from the highest number of algorithms.

(II) Among the m clusters computed at step (I), choose the one containing the highest
number of series (N) and construct a new matrix, Y1, with the series in this cluster.

(III) Select the representative value in the j-th line of the matrix Y1 to be the average of the
values in line j.

(IV) Evaluate the error by using the Mean Standard and Mean Absolute Errors (MSE and
MAE) corresponding to all the observation sites.

(V) Plot the resulted series.

The novelty of the approach proposed here consists of the following.

1. While selection of the number of clusters in the initial algorithm was left to the user,
in this article, an efficient selection procedure is employed.

2. If, in the second step, two clusterings are providing the same maximum number of
elements in one of the sets, the chosen one is that which maximizes the distances
between the clusters and minimizes those inside the groups.

3. If, after applying the second criterion, there are two clusters with the same number of
elements, the computation is performed with each of them. The best result (that gives
the minimum mean average error—MAE, mean standard error—MSE, and mean
absolute percentage error (%)—MAPE) is reported.

The trend and level stationarity of RTS and TTS has been checked using the KPSS
test [55]. The null hypothesis, H0, was the series stationarity in level (trend), and the
alternative one, H1, was the series nonstationarity in level (trend).

Remember that a time series is stationary if the statistical properties of the process gen-
erating it remain unchanged over time. Therefore, the mean, variance, and autocorrelation
structure are constant over time.

One of the common causes of the violation of H0 is the existence of a trend in the
mean due to the presence of a unit root or the existence of a deterministic trend. In the first
case, the stochastic shocks have persistent effects. In contrast, in the second one, they have
only transitory effects after which the variable tends toward a deterministically evolving
(non-constant) mean (and the process is called a trend-stationary).

The KPSS test is based on the time series decomposition into a deterministic trend,
a random walk, and a stationary error. In the case of stationarity, the series has a fixed
element as intercept, or the series is stationary around a fixed level.

The test was performed at the level of significance of 0.05. If the p-value is less than
0.05, the null hypothesis is rejected.

Data used in this study are monthly AOD series retrieved by Terra MODIS (at a
wavelength of 412 nm) at 387 points from July 2002 to April 2017 in the Arabian Gulf
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Region (Figure 1a), between 24.95–26.25 latitudes and 51.55–55.75 longitudes. The series
retrieved at the point of coordinates 26.15 latitude and 51.55 longitude is presented in
Figure 1b and the series recorded in January 2003 is shown in Figure 1c.
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Figure 1. (a) Observation area (https://www.google.com/mymaps/, 2022); (b) the series retrieved
at the point of coordinates 26.15 latitude and 51.55 longitude (SITS); (c) series recorded in January
2003 (TITS).

The sites are ordered in increasing order in latitude, and subsequently, by decrease
latitude, from the left corner on the map of the studied region to the lower right corner.
Details on the study area may be found in [4,40,41]. The coordinates of the sampling points
are given in Table S1 in the Supplementary Materials. Data have been organized in a matrix,
X, whose columns contain the AOD at each point, and the lines contain the monthly values
at the observation points.

3. Results and Discussion
3.1. PCA and Clustering

Table 1 shows the computed eigenvalues greater than 1, the proportion of the variance
explained by each component, and the cumulative proportion of the variance explained
for SITS.

https://www.google.com/mymaps/
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Table 1. Eigen-analysis of the correlation matrix of SITS.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Eigenvalues 350.98 10.99 4.09 3.79 2.55 1.33 1.17 1.12
Proportion of variance 0.902 0.028 0.011 0.010 0.007 0.003 0.003 0.003
Cumulative proportion 0.902 0.931 0.941 0.951 0.957 0.961 0.964 0.967

Although eight eigenvalues are greater than 1, the first component (PC1) explains
90.20% of the variance within this set. The second component (PC2) explains only 2.8%
of the variance within SITS, while the others have even smaller contributions. The first
two principal components (PCs) are enough to extract the essential information within the
time series set, which proves to be highly PCA compressible. Only 9.80% of the variance
within this data is outside the direction of the first dominant PC, and 6.90% is outside the
plane determined by PC1 and PC2. These small percentages reveal that the series similarity
(linear dependence) is high in this set because the data points agglomerate along with PC1.
Therefore, the sand aerosols over the Arabian Gulf have a regional nature, the AOD values
being relatively similar (linearly dependent) across the analyzed area.

The optimal number of clusters—two—was selected after running the NbClust pack-
age in R. Figure 2 displays the silhouette chart (one of the 30 methods run). The agglomera-
tive clustering has been performed for SITS setting the number of clusters equal to two. The
computed agglomerative coefficient was 0.7678, indicating a good partition of the series in
two sets. The highest this coefficient is, the better the clustering is.
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The dendrogram displaying the groups of the observation points is presented in
Figure 3.
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Analyzing the elements in the clusters related to the positions of the points on the
map (Figure 1a and Supplementary Table S1), results in that one cluster contains the points
situated on the eastern side of the region and (very few) near the Qatar shore, while the
second one contains the rest of the locations. So, one cluster contains the sites situated in
the direction where the Shamal blows—between the red borders in Figure 1.

Figure 4 shows the scree plot of the TITS (the lines of the data matrix). The computation
found 25 eigenvalues greater than one, with only six PCs explaining 60.5% of the variance.
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Figure 4. The scree plot for TITS.

The majority principle decided that the number of clusters to classify the series is also
two for the TITS. Figure 5 contains the elements in the clusters and the dendrograms for
the TITS. The agglomerative clustering provided an agglomerative coefficient of 0.92802,
which indicates a strong separation between the groups.
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Figure 5. (a) Clusters (the values on the axes represent the scores on PC2 and PC1) and (b) the dendro-
gram from the hierarchical clustering of TITS. The elements in different clusters are in different colors.

Comparing the clusters’ content, it resulted that one of them mainly contains the series
recorded in the summer months (March to August), while the other contains the rest. So,
the classification is related to seasonality.

3.2. Estimating the RTS and TTS

Taking into account the results from the previous section, the RTS has been computed
by applying the algorithm (I)–(V) described in Section 2 to SITS (columns in the matrix
X). The AOD’s RTS (as a function of time) is presented in Figure 6a. One can remark on
the periodic behavior of this series, whose highest values of the AOD’s RTS are primarily
recorded in July, while the lowest is in November–January.
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Figure 6. (a). The AOD ‘s RTS; (b) AOD’s RTS monthly average.

Figure 6b shows that the AOD’s RTS monthly average value for July is about three
times higher than the corresponding average values for November–January. This result
is in concordance with those of Abuelgasim and Farahat [26] and Yoon et al. [56], which
indicated a significant increase of AOD over the Gulf Region, especially in summer, related
to the dust abundance [39–41,57,58].
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The trend and level stationarity hypotheses could not be rejected for the RTS (p-value > 0.1,
in both cases) when applying the KPSS test. This means that the RTS does not present a
variation in trend or level.

The TTS (Figure 7) was built from the TITS (the transposed matrix, YT) and the
same algorithm.
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The aspect of TTS, with peaks and troughs is related not only by the monthly charac-
teristics of the AOD (higher dust quantities in summer, and lower in winter), but also to the
position of the sampling points (Figure 1a) in the direction NW-SE in which Shamal blows.

The non-stationarity in the level and trend stationarity are emphasized by the results
of the KPSS test, whose p-values are lower than 0.01 (for level-stationarity) and 0.12376 (for
trend-stationarity).

The goodness-of-fit indicators are tools for assessing the fit quality. The lower their
values are, the better the fit is. For a correct model quality assessment, using more than one
indicator is recommended. For example, MSE can be influenced by values that significantly
deviate from the average. Therefore, three goodness-of-fit indicators have been utilized
here—MAE, MSE, and MAPE—the last one being non-dimensional, so it is more reliable
for comparisons between the two models.

All the values of the goodness-of-fit indicators corresponding to the RTS and TTS are
all very low (Table 2). They indicate a better fit for RTS than for TTS when reported to the
average indicators. Indeed, the mean values of MAE (MSE and MAPE, respectively) are
0.1724/0.0326 = 5.29 (21.88 and 4.38 times higher, respectively) for TTS than for RTS. The
minimum MAE and MSE are also lower for RTS compared to TTS, but the min MAPE is
higher for RTS.

Table 2. Goodness of fit indicators of RTS and TTS.

MAE MSE MAPE (%)

Min Mean Max Min Mean Max Min Mean Max

RTS 0.0207 0.0326 0.0598 0.0008 0.0025 0.0081 4.7925 7.7334 14.1450
TTS 0.0142 0.1724 0.6671 0.0003 0.0547 0.4481 4.3162 33.8819 68.4155

The maximum values of MAE (max MSE and max MAPE, respectively) is 11.15 (55.32
and 4.84, respectively) times higher for RTS than for TTS, indicating a higher variability at
the temporal scale than at the spatial one.

This means that RTS better represents the individual series than TTS, so there is a
higher homogeneity of the SITS than the TITS. The result is in concordance with the findings
related to the seasonal variability of AOD [26].
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4. Conclusions

This study extended our previous research on the aerosol radius, using the AOD series
collected during the same period at the same sampling points in the Gulf Region. The
novelty of the research consists of a dual analysis in time and space and the detection of
RTS and TTS that characterizes the AOD behavior over the study zone.

The approach combined the PCA with a new algorithm, building the RTS and TTS
series based on the classification provided by the clustering.

It was found that a single principal component explains more than 90% of the variance
of SITS, indicating that the series are agglomerated along with PC1. The TITS are scattered
(the first six dominant principal components accounting for only 60.5% of the variance in
the sets). Still, both RTS and TTS fit data well and are trend stationary.

We intend to extend the research to sets of series with missing data, given that most of
the available records present gaps.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13060857/s1, Table S1: Data series and the coordinates of
the locations.
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