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Abstract: Changes in flood loads and reservoir levels, produced by climate change (CC), represent an
increasing concern for dam safety managers and downstream populations, highlighting the need
to define adaptation strategies based on the dam failure risk management framework. Currently,
thousands of dams worldwide, varying in use, age, and maintenance, may represent a threat to
downstream cities in the case of structural failure. Several studies relate the failure of dams to several
issues in the spillway, which may be even more vulnerable in CC conditions. This study provides a
review of dam safety threats due to CC and approaches for the design/redesign of the spillway to
cope with CC. A general four-stage methodology is proposed: data gathering and hydro-climatic,
hydrological, and hydraulic analyses. Afterward, this methodology is applied to the spillway design
for the Sube y Baja dam in Ecuador. The Probable Maximum Precipitation (PMP) increases around
20% considering CC under the Representative Concentration Pathway 8.5. Such an increment derived
a 25% increase in the spillway maximum flow. These results show that the non-stationary hydrological
regimes related to CC require a revision of engineering design criteria for hydraulic structures in
general, and call for a consensus on design variables under CC.

Keywords: spillway; climate change; probable maximum precipitation; dam risks

1. Introduction

Humans have been building water management infrastructures for centuries to secure
surface water availability to cover all human needs. For instance, dams have been built for
irrigation, hydropower generation, transportation, and water consumption. Large dams
located upstream of population centers are usually designed for downstream flood-control
purposes; consequently, they are known as critical or high-hazard dams [1]. From 1950 to
2000, the number of large dams increased from 5000 to over 45,000 dams spread all around
the world in more than 140 countries, the equivalent of two dams built per day [2]. By 2020,
the number of dams worldwide already exceeded 55,000 [3]. The issue with the increasing
number of large dams is that they are vulnerable to natural and operational events that
may cause their failure. According to a US Army Corps of Engineers survey, almost 36%
of existing dams are unsafe due to various reasons, with the insufficient spillway capacity
being the main one [4].
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Figure 1 shows the distribution of dams worldwide by 2016 from the Global Reservoir
and Dam Database (GRanD). As can be seen, developed countries such as the US and
China have an important number of dams constructed before 2000 (red dots), but the
construction trend keeps increasing, especially in China (yellow dots). On the other hand,
developing countries do not have a big number of dams constructed before 2000, but there
is a trend toward an increase in the construction of these infrastructure projects [5]. In fact,
in 2018, an estimated 3700 hydroelectric dams were either planned or under construction
primarily in developing countries [6], with Ecuador being an example of this trend. In 2006,
hydropower accounted for about 44% of the country’s electricity generation, and by 2020,
it increased to 79% [7,8].
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When planning and operating water resource management projects, there are many
factors that might affect their performance [9,10]. Each component of a dam depends on
future meteorological, demographic, social, technical, and political conditions, all of which
may affect future benefits, costs, environmental impacts, and social acceptance [10]. With
the growing need of water for societies, industries, and agriculture expansion, the number
of dams will continue to rise, exacerbating the need for strong safety measures [3]. The
overall safety of critical dams throughout their life cycle is highly determined by how the
structure can safely handle extreme climate events [1]. Long-term concerns about improving
dam safety focus primarily on the consideration of future climate change impacts on dams,
especially due to the change in regular weather patterns and the increase in extreme rainfall
events [3].

Climate change (CC) can be evidenced by accelerated changes in the long-term trends
of precipitation and temperature, which can be attributed to rapid industrial development
and high greenhouse gas (GHG) emissions related to anthropogenic activities [11,12]. In-
deed, global warming and CC are responsible for an increase in floods and environmental
risks, causing negative impacts on humans and nature. Climate variations with negative
impacts, such as extreme droughts and heavy rains, cause significant effects on urban and
rural infrastructure [13,14]. Furthermore, CC constitutes a potential risk, mainly in areas
with lower socioeconomic development and high poverty rates which seem to overlook
safety threats related to CC. This includes the most vulnerable rural areas, where the infras-
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tructure is deteriorated or has not been built with the highest safety standards [6,15–17].
The lack of unifying criteria to conceive CC in the dam’s design on top of the limitations
of monitoring and control in developing countries may amplify the risks to downstream
populations, leaving major consequences [18,19].

Potential risks associated with dam failure are considerable and potentially result
in significant damage, including loss of life, massive property destruction, and severe
long-term consequences [20]. For instance, in southeast Asia, the Xepian-Xe Nam Noy
hydropower dam in Laos collapsed in July 2018 after a heavy rainfall event that released
over 5 billion cubic meters of water, affecting around 11,000 people [21]. More recently, in
the United States, a dam located in Central Michigan failed in May 2020 after two days
of rain, displacing about 10,000 people from downstream areas [22]. A large part of these
impacts can be mitigated and avoided if traditional design parameters consider climate
trends in future risk assessments [23]. Unless dams are constructed considering future CC
scenarios, they may present risks to society by fostering a sense of security that ignores
lessons from experience [19]. As described, dam safety considering the influence of CC
is an issue that needs urgent attention. A holistic analysis may serve as a dam safety
management supporting tool to evaluate dams’ vulnerability to CC and define future
adaptation strategies [24].

The inclusion of CC in the design and construction of dams has been growing as
societies have become increasingly aware of its effects. However, the methodologies
proposed in other studies do not detail the stages to be considered in a general way so that
the effects of CC could be included in studies and designs carried out worldwide, especially
in developing countries. For these reasons, in this work, the authors analyze the risks of
dams under CC conditions with a focus on the spillway as one of the most vulnerable
components. The analysis includes some worldwide cases in which dams failed and others
in which the risks were minimized by applying a variety of construction strategies. The
article also seeks to define a general methodology for the hydraulic analysis under CC
conditions, which is applied to a case study aiming to evaluate the impact of CC on the
original design of the spillway of the Sube y Baja dam in Ecuador. The plan is for this
dam to serve a population of ~18,471 inhabitants (2016), and its construction would be
especially for irrigation purposes, downstream flood-control, and, with lower priority, for
water consumption. To this end, issues related to the safety of dams in a changing climate
are presented in Section 2, in Section 3, some approaches to spillway design under CC
are reviewed, in Section 4, the Probable Maximum Precipitation (PMP) value is analyzed
as a means to make safer hydraulic infrastructure, in Section 5, a general spillway design
framework for CC conditions is proposed, in Section 6, the case of the Sube y Baja dam is
presented, and some concluding remarks and discussions are developed in Section 7.

2. Dams’ Safety in a Changing Climate

Although there are some uncertainties in CC studies, especially regarding future
precipitation, they are mostly related to inter-model differences in amounts, rather than
to the trend of expected changes [25]. Inter-model uncertainties related to changes in
temperature are very limited. An approach to implement the effects of CC in recent studies
is the use of Representative Concentration Pathways (RCPs), which are predictions of
how greenhouse gas (GHG) concentration in the atmosphere would change in the future.
Indeed, as the emission scenario worsens (from RCP 2.6—optimistic scenario to RCP 8.5—
pessimistic scenario), the discharge contributions and the increase in evapotranspiration
related to the rise in temperatures are expected to reduce the water levels in dams during
dry seasons [14], and the increase in precipitation may produce higher levels during wet
seasons. RCPs are considered useful in CC studies because they facilitate the prediction of
long-term temperature and precipitation behavior under radiative forcing scenarios that
include physical and anthropogenic factors. The use of RCPs is appropriate to consider the
effects of CC in the design of water management infrastructure, including assessment and



Atmosphere 2022, 13, 828 4 of 25

dam design improvements [1,24,26], as in the case of the Sube y Baja dam, the subject of
this study (see Section 6).

CC is causing the hydrological cycle to quicken as rising temperatures increase the
rate of evapotranspiration. On average, the increase in evapotranspiration is causing more
precipitation [27]. Hence, CC modifies the frequency and intensity of precipitation events,
disrupting the hydrological pattern, and generating a direct impact on the resilience of
dam operation [28–30]. Extreme rainfall results in an increase in dam flow, leading to a
higher possibility of floods, which compromise the structure and operation of dams. The
challenge when an extreme event occurs is to minimize the flood peak at the control point
downstream and ensure that the water level is below the critical height [22,31]. If CC
effects are not considered, there is a high potential to increase failure risk due to insufficient
existing storage and spillway capacity and the underestimation of the outcomes of extreme
events [31]. Although particularly complex, dam risk evaluation can provide a reasonable
basis for risk management, the importance of which has increasingly been recognized by
both academic researchers and managers [32].

Throughout the lifetime of a dam, it is continuously exposed to risk due to extreme
precipitation events and other natural or operational hazards. CC may exacerbate this
exposure due to its effects on Earth’s atmosphere, which has a direct connection with the
water cycle and, therefore, with the water level in dams [26,33]. In the past, most risk
assessment approaches assumed stationary conditions in precipitation and water routed
to reservoirs [1,14,33]. Nevertheless, CC is affecting weather patterns and the frequency
of extreme events that influence dam failure risks; thus, the assumption of a stationary
climatic background is no longer appropriate for long-term dam safety adaptation and
support for decision making [24,31]. Therefore, there is an urgent need worldwide to
modify traditional approaches considering CC to improve design parameters and reduce
risks that may produce major consequences to populations downstream [34–36].

CC consideration in the design of dams is not a regular engineering practice to date [37].
However, several reports attribute the failure of dams to extreme events related to CC, the
frequency and intensity of which is projected to increase in this century [1,13,14,22,31,32].
A summary of possible CC impacts in dams is presented in Table 1.

Table 1. Possible climate change impacts in dams. Adaptation of (Fluixá-Sanmartín et al., 2018.).

Dams’ Risk Factors Vulnerability of Dams Risks Related to Climate Change

Floods

Dam inflow that exceeds the available storage
and spillway discharge capacity can lead to

overtopping, failure, and potential harm to the
population, and significant downstream

damages [38] In addition, reservoirs below
25,000 m3 have small spillways and therefore,
they are most likely to fail before the crest level
is reached [39]. Floods are the main reason for

dam overtopping, which according to the
International Commission on Large Dams
(ICOLD) is responsible for about 35% of all

earth dam failures [32].

CC is expected to increase flood risk by
changing the distribution, variability, and

intensity of rainfall events. Floods are
associated with heavy rainfall patterns,
snowmelt processes, soil moisture, and

vegetation clearing [13,14].

Change in reservoir water
levels

It is necessary to consider the reservoir water
level in a dam risk analysis, as this is

associated with the volume of water released
[39] and hence, related to floods. Dry periods
related to the increase in temperature should

be also considered because they may affect the
structure, operation, and integrity of dams.

Reservoir water levels can be altered due to
precipitation variability, potential

evapotranspiration, and a decrease in ice
storage related to CC, also due to changes in
water demands [14]. Current precipitation

trends show an increase in runoff in the
reservoirs during wet seasons and a decrease
in dry seasons, leading to the occurrence of

problems in dams’ operations [40].
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Table 1. Cont.

Dams’ Risk Factors Vulnerability of Dams Risks Related to Climate Change

Spillway gates performance

The failure or misoperation of spillway gates
may cause downstream flooding that can range
from minor to catastrophic, as seen in several

cases worldwide [41]. The structural
components of gates should be regularly

observed for signs of overstress, corrosion,
fatigue, cracking, or other issues [42]. From the

worldwide dam failures caused by
overtopping, 27% are due to spillway gate

failure [43].

Changes in temperature related to CC may
cause stress and deformation of the spillway

gates. Additionally, extreme precipitation
events increase the sediment content, making
spillway gates prone to abrasion processes [14].

Dam operation

Deposited sediment reduces the reservoir
storage capacity, which diminishes

functionality and lifespan of the structure [44].
The second cause of large dams’ failure

worldwide is due to internal erosion
accounting for 27% of failures [43].

The increase in temperature combined with
possible dry or wet weather may cause

additional mechanical stresses in the structure
of concrete dams. These are also affected by

water level fluctuations and drier soils causing
problems such as internal erosion and

embankment dams [14].

Dams, as important and high-hazard structures for water and electricity supply,
need ancillary components and facilities, such as spillways, to allow them to pass design
floods [4]. Spillways are designed to release excess water or floodwater that cannot be held
in the assigned storage space. The excess is normally drawn from the top of the reservoir
and routed through a constructed waterway back to the river or some natural drainage
channel. The importance of a safe spillway cannot be sufficiently emphasized; many dam
failures have been caused by poorly designed spillways resulting in dam structure and
downstream population damage [45]. CC increases the risk factors for dams due to changes
in atmospheric conditions (Table 1), making it necessary to design more hydraulically
efficient spillways to ensure the safety of existing and new dams. To this end, it is required
to modify or update the design parameters used for the construction of spillways, so that
they consider CC as part of the analysis of future atmospheric conditions [46].

3. Approaches to Spillway Design to Cope with Climate Change Conditions

In dams’ operation, the spillway releases the excess water from an elevated reservoir
into a stilling basin to dissipate energy prior to downstream discharge into the river.
Optimized spillway design minimizes the river scour and controls the erosion of bed
material. Proper and sustainable dam operation requires a systematic discharge of excess
water based on the water level and rainfall events, as well as the provision of sufficient
capacity [31]. The spillway must be hydraulically and structurally adequate and must be
well located so when it releases water, it does not erode or undermine the downstream
base of the dam [45]. The spillway type and design are major hydraulic challenges, and the
right selection and layout are critical for dam safety. Topography, hydrology, geology, dam
body type, dam construction, and site conditions are key in the selection of the spillway
type and location [47]. Essentially, considerations are largely based on the experience of
engineers in practice.

The best location for the spillway is within the dam body. Although topography is
the main factor in the spillway design and construction, the maximum discharge capacity
should not be neglected. For instance, when the discharge is high and the conditions of
the site are challenging due to topography and geological formation, spillways are built in
tunnels on the abutments. This is the case for earthfill and rockfill dams, where spillways
are built on the side of the dam with adequate geological formation. In engineering practice,
lateral flow spillways are mostly used for extreme conditions [47]. Based on discharge
capacity, spillway Type III and VII are used for 1000 m3/s, Type V for 1500 m3/s, and Type
IV and VIII for more than 2000 m3/s; however, Type III is usually preferred for low flow
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discharge and Type V for asymmetric flow patterns caused by a combination of low and
high values of approach velocity. Type VII is commonly used in roller-compacted concrete
and hardfilll dams. Finally, ungated spillways are generally used in Type II, Type III, Type V,
and Type VII for irrigation, flood control, or recreational purposes (Figure 2) [45,47].
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There are several cases where spillways or dams’ designs have not been able to
cope with the effects of CC. Therefore, various proposals to mitigate this issue have been
discussed. For instance, the implementation of auxiliary spillways, such as the Warragamba
Dam in New South Wales, Australia [48]. The auxiliary spillway works in the case of an
extreme flood event supporting the dam discharge capacity. The central spillway of the
dam manages the normal discharge of floodwater up to around the Annual Exceedance
Probability (AEP) flood [48] Another approach could be the implementation of fuse plugs
defined on the existing spillway, as at the Douglas Dam in Fort Collins, Colorado, USA.
Fuse plugs are basically earth and rockfill embankments constructed across the upstream
crest of the spillway. They improved flood control by increasing the auxiliary spillway
capacity to pass the incoming floodwaters [49]. Another example is the implementation
of a bypass or a diversion dam, which was defined as a proposal for flood control in the
Cañar and Bulubulu rivers in Ecuador to reduce the impact of floods in the dam under
CC conditions. The bypass allows for the diversion of a part of the river’s flood to another
river system, whether natural or artificial [50].

4. Considerations Related to the Probable Maximum Precipitation (PMP)

As we showed in previous sections, every element of a dam design is important to its
stability. However, according to the US Bureau of Reclamation (USBR), the spillway design
flow of a dam must consider water uses and land or social impacts around its location. In
the event of dam failure, the spillway must be capable of evacuating the flood caused by
the Maximum Probable Precipitation (PMP) as a climatological risk [45]. Commonly, the
design flow for maximum flood is defined by analyzing the available historical data from
hydrometeorological stations that are located within or nearby the river basin. However,
historical data may not properly reveal the reality of CC trends. For instance, in 2017,
extreme events in California increased the water levels of Oroville Lake, damaging the
spillway. This event ended in the evacuation of around 188,000 people and USD one billion
in repair costs [51]. Another example is the well-known case of the Chapucal dam break
(Santa Elena province, Ecuador), which occurred during El Niño 97-98 ENSO phase, where
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the lack of discharge capacity of the spillway produced dam breakage, affecting a great
portion of the nearby population [52].

PMP was introduced in engineering practice as a safety design standard to consider
the climatological risk while designing a dam [1]. It represents the theoretical maximum
amount of rainfall to which a particular area can be exposed for a given period under
current meteorological conditions [1,53]. PMP, which is a key parameter in the design of
a variety of hydrological structures, also plays a critical role in floodplain management,
where it is set to correspond to the extreme potential risk of flooding at a given time and
place. PMP is consequently very useful for hydrologists to estimate the probable maximum
flood and thus, the most appropriate spillway type to minimize the risk of overtopping in
a particular hydraulic structure, such as a dam. With the correct selection and design of
the spillway, the risks of human losses, damages, and impacts on the community can be
minimized and managed [54].

PMP estimations, along with watershed models to calculate flood runoff, have been
widely accepted in recent decades as a basis for the evaluation and design of spillways in
dams where structure failure cannot be tolerated [55]. However, a drawback of conventional
PMP estimation is the omission of a long-term climatic trend analysis, which is expected to
continue in the future. In fact, CC trends suggest that the intensity and frequency of extreme
precipitation events will change [1,56]. Under the effects of CC, like other hydroclimatic
variables, PMP is also expected to increase over the years due to the increase in atmospheric
moisture content and consequently, higher levels of moisture transport into storms [57].
Thus, traditional PMP estimation does not provide any information on uncertainty, making
it less appealing for risk assessment scenarios. Because of this, it is important to study more
alternatives to this commonly used parameter; for instance, it has been determined that
there is a potential to develop more physically based PMP estimation approaches [1].

Some studies have recently analyzed shortcomings related to conventional PMP
estimation [1,24,31] and as a design tool for meteorological risk, state its importance when
it is modified under CC considerations [31]. The research presented by Chen and Hossain
(2019) explored a “hybrid” method merging both the conventional PMP estimation of
moisture maximization and Earth System Model (ESM) data in the U.S. Pacific Northwest.
The hybrid approach tends to provide more consistent PMP estimations of the historical
period, which makes the interpretation of future increases easier. This study showed the
importance of an evaluation of common methods used in dam design considering CC
trends to avoid issues with the infrastructure and operation in the future. The necessity of
this methodological improvement becomes more pressing when considering the failures
that have occurred in dams worldwide [21,22,51,52].

5. Methodology Considering CC in the Spillway Design/Redesign

The spillway design including CC analysis is based on four stages: data gathering and
hydro-climatic, hydrological, and hydraulic analyses (design/redesign) (Figure 3).

During the data gathering stage, all input data from previous studies, observed data
of hydrometeorological stations, satellite remote sensing information, data from Global
Climate Models (GCMs), and cartographic maps are collected. Previous studies provide a
general project overview and contribute to the methodology and therefore decision making.
At first, having data from hydrometeorological stations near or around the project site is
desired; however, this is not always possible due to the lack of data or the non-existence
of nearby stations. So, other options must be considered, such as satellite data or the use
of other stations by applying well-known methodologies, e.g., regression analysis and
interpolation with other stations, among others.

The hydro-climatic analysis stage is developed with the use of climate projections that
enable the inclusion of CC in the analysis. The projections used come from the international
efforts on CC, where the Intergovernmental Panel on Climate Change (IPCC) presented
four emission scenarios called Representative Concentration Pathways (RCPs) for the
development of future projections in the context of CC [58]. The trajectories in the IPCC’s
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fifth report present an optimistic scenario of low GHG emissions (RCP 2.6), two stabilization
scenarios, considered neutral (RCP 4.5 and RCP 6.0), and a pessimistic scenario with high
emissions (RCP 8.5). In this stage, it is important to define the trajectories to be selected
depending on the objectives of the study [58,59]. For instance, for high-hazard dams, the
use of the less conservative scenario (RCP 8.5) is recommended. Once the future scenario is
selected, the atmospheric variables such as temperature and precipitation must be obtained
as inputs for the following stages.
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For the hydrological analysis, the model is set up, and then, calibration and validation
processes are carried out to ensure that the model replicates the hydrological processes of
the basin [60]. For the model calibration process, hydrological parameters are evaluated
and readjusted to match observed and simulated flows. Once the model is acceptable based
on performance indicators, a validation process is developed with a different set of input
data to verify the capacity of the hydrological model. Once the model is validated, the
output data (projected flood flows) will become key input data for the next stage [52,60].

Finally, the hydraulic analysis includes two options: design or redesign, which de-
pends on the project’s objectives. In the case of a new dam/reservoir project, the spillway
design is developed based on the maximum flood flow considering CC. On the other hand,
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if there is existing construction on the project site or if the design phase is already completed,
a redesign of the spillway considering CC analysis could be required. In this regard, it is
necessary to make decisions to improve the physical performance of the spillway such as
spillway optimization, including an auxiliary spillway, incorporating a bypass-diversion
dam, or including fuse plugs, among others [48,49,52].

6. Case Study: Evaluating the Impact of Climate Change in the Spillway Geometry of
the Sube y Baja Dam in Ecuador

The north-central part of Santa Elena Province is affected by dry seasons and the low
availability of water resources. These meteorological conditions impact socio-economic
activities by blocking the development of crop areas that could be incorporated into the
national agricultural production. The Sube y Baja project aims to supply water permanently
to 80% of the agricultural sector of Santa Elena from Chongon reservoir and then transfer
it to a new reservoir called Pedregalito (Figure 4). During the planning stage, it was
discussed that a failure of the dam structure would have major consequences affecting the
Zapotal hydrological system, specifically the Sube y Baja town (~18,471 inhabitants) and the
infrastructure downstream of the dam. Damage would be mainly reflected in the El Azucar
dam, the drinking water treatment plant that supplies a large portion of the inhabitants
of the province, the Azucar–Río Verde irrigation canal, and the Guayaquil–Santa Elena
Road [61].
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6.1. Study Area

The Sube y Baja dam is located in the Cachul river basin, in Santa Elena province, in
the coastal region of Ecuador (Figure 4). The basin has an area of 137 km2 and belongs to
the Zapotal hydrographic system that drains to the El Azúcar dam, located at the bottom
of the commune of the same name [62]. Santa Elena province is characterized by a dry,
arid climate, mainly in the coastal areas; therefore, the province needs water transfer for its
productive activities. Santa Elena receives water through the Chongón–Santa Elena transfer
system, supplied by the Daule-Peripa reservoir, which diverts flow to San Vicente and El
Azúcar dams [62]. The soils of the region are colluvial–residual in nature, dominated by
different geological units such as volcanic and sedimentary bedrock [63].

The study area has an average annual rainfall ranging between 600 and 750 mm [64].
However, in the western part of Santa Elena Province, this average drops to 150 mm per year.
There are two main seasons, the dry season from June to November and the rainy season
from December to May [64]. The main source of interannual climate variability is El Niño
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Southern Oscillation (ENSO), and decadal climate influences are caused by Pacific Decadal
Oscillation (PDO) [65]. The warm phase of ENSO affects the coastal region of Ecuador
during austral summer, with increasing precipitation levels, which have historically affected
water infrastructure, especially in populations with incipient development. This impact
also affects the inhabitants’ health due to the collapse of sewage systems or overflowing of
wells and water reservoirs, which causes an increase in tropical diseases such as Dengue
and Chikungunya [66].

6.2. Basic Information of the Original Design of the Overflow Spillway

The design parameters of the Sube y Baja dam are defined in Table 2. The dam
includes drainage to allow occasional emptying for maintenance purposes or in the case of
an emergency event. The dam was also designed to be able to operate as a water intake to
supply water and cover the demands for irrigation [61].

Table 2. Design parameters of the Sube y Baja dam components.

Parameter Value

Reservoir
Storage capacity 200 Hm3

Maximum operating level 97.00 m.a.s.l.
Minimum operating level 94.50 m.a.s.l.

Overflow spillway
Design flow 135 m3/s
Crest height 3.00 m
Crest length 16.00 m

Maximum crest load 2.41 m
Source: [61].

The Sube y Baja dam was designed with loose material and clay. The crest elevation
is at 100 m.a.s.l., and the dam’s total height and length are 38 m and 550 m, respectively.
The overflow spillway has a rectangular shape with a Creager profile crest. The structure
material of the spillway is reinforced concrete, which is located on the left bank of the Sube
y Baja dam. Figure 5 shows the implementation plan of the overflow spillway and the
stilling pool placed at the bottom of the dam.
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6.3. Methodology for the Spillway Optimization for the Sube y Baja Dam

The methodology proposed in the previous section was applied to the case of the Sube
y Baja dam. It follows the four-stage procedure presented earlier, e.g., data gathering and
hydro-climatic, hydrological, and hydraulic analyses. All the theoretical and mathematical
support is presented in Appendix A.

6.3.1. Data Gathering Stage

At this stage, information about the pre-feasibility of the Sube y Baja dam project was
provided by the Santa Elena Government. The daily records of observed rainfall data were
collected from Sube y Baja and Julio Moreno meteorological stations from the National
Institute of Meteorology and Hydrology (INAMHI). Additionally, daily precipitation data
were obtained from the Third Climate Change National Communication (TCN) for present
and future CC scenarios. Finally, cartography, topography, geomorphology, land use, and
soil cover maps were obtained from online platforms of local entities. The soil type in
the study area is mainly constituted of fine materials such as clays, silts, shales, and fine
to medium-grained sandstones [67]. Table 3 shows the information details gathered for
this study.

Table 3. Spatial and temporal information available.

Information Scale Period Source

Observed rainfall Daily 1975–2015 INMAHI
GISS RCP 8.5 rainfall Daily 2011–2070 TCN-MAE

Soil cover 1: 5000 2012 IEE
Topography 3 m × 3 m 2012 SIGTIERRAS
Cartography 1: 25,000 1984 IGM

6.3.2. Hydro-Climatic Analysis Stage

For this stage, the RCP 8.5 was selected. This RCP is the least conservative since it
assumes a high level of GHG emissions in the future [58,68]. Despite being considered
conservative, during the first twenty years of the present century, several studies show that
measurements of GHG emissions agree with RCP 8.5 [69,70]. The precipitation information
was obtained from the TCN climate dynamically downscaled data. The downscaling
process was developed with the Weather Research and Forecast (WRF) model. These data
have resolutions of 10 km and cover a period from 1981 to 2005 for the historical data, and
from 2011 to 2070 for the projections under CC conditions. The input files for the WRF
model came from CSIRO-Mk36, GISS-E2, and IPSL-CM5A-MR climatological models [71].
Percentile correction was applied using the QMAP library [72], which uses the comparison
and correction of the historical data modeled for the historical period (1981–2005) to the
future period (2011–2070).
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6.3.3. Hydrological Analysis Stage

PMP was estimated during the third stage. The daily future precipitation considering
CC, obtained as output from the previous step, was transformed into maximum 24-h
precipitation by multiplying it with a factor of 1.2 [73].

PMP was obtained based on the maximum 24-h precipitation using the Hershfield
method Ec. A1 (Appendix A—Appendix A.1.1). Once the PMP was estimated, the IDF
curves of Julio Moreno and Sube y Baja meteorological stations were developed (Figure A1,
Appendix A—Appendix A.1.2). With the IDF, the pluviometric equations were obtained
for PMP, which were used to estimate the maximum intensities for each time step and to
generate the hyetographs for PMP using the alternating block method which is presented
in Ec. A2 of Appendix A.1.2—Appendix A [74,75]. The hyetograph is the input data for the
HEC-HMS hydrological model.

In the model, the basin was divided into fifteen sub-basins characterized by differ-
ent land uses and soil types, in addition to the topographic features. Several parameters
related to the sub-basin features were considered in the HEC-HMS model in each of the
three calculation processes: the Infiltration Loss Calculation, the Rainfall-Runoff Trans-
formation, and the Flood Flow Calculation process. In the Infiltration Loss Calculation
Process, the Soil Conservation Service (SCS) method was used, and the Curve Number
(CN) parameter was defined for each sub-basin for agricultural, suburban, and urban land
uses. For the Rainfall-Runoff transformation process, the Clark unit hydrograph method
was used, the concentration (tc) and return time (tr) parameters were defined by using
Ec. A3 (Appendix A—Appendix A.2). Finally, for the Flood Flow Calculation process, the
Muskingum transit method was used (Ec. A4, Appendix A—Appendix A.2).

6.3.4. Hydraulic Analysis Stage

Finally, at this stage, the original design flow estimated in previous studies and the flow
under CC conditions were compared. The Sube y Baja spillway needs a redesign due to the
flow under CC conditions which was higher than the original design flow. More details can
be found in Appendix A—Appendix A.3. In this context, to optimize the spillway, the di-
mensions were redefined using the general equation for the discharge flow, which includes
variables of length (L) and height (H) of the spillway (Ec. A7, Appendix A—Appendix A.4).
The discharge coefficient C was obtained from Figure A2 (Appendix A—Appendix A.5).

6.4. Case Study Results

All results include the original design, as a reference, and the redesign determined
under CC conditions with RCP 8.5. Finally, the comparison between spillway dimensions
is presented to analyze the impact of implementing CC conditions in infrastructure projects
such as dams and their components.

6.4.1. Hydrological Analysis

The hyetographs with the representative rainfall of the watershed show around a 20%
increase from 290 mm to 350 mm in the precipitation peaks (12 h) when CC is considered
(Figure 6). The hyetographs are the input data for the hydrological model, thus directly af-
fecting the flood flows as the model output data. In this regard, the increase in precipitation
turns into larger water volumes, which are not considered in the original design.

HEC-HMS calculated the flood flow hydrographs for the Cachul watershed, showing
values of 2819.3 m3/s and 2253.5 m3/s using the PMP with and without CC, respectively,
which represents a difference of around 25% (Figure 7). The estimated design flows for
PMP considering CC will cause over-storage in the Sube y Baja dam reservoir, making it
necessary to verify the design capacity of the original spillway through a hydraulic analysis.
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Figure 7. Flood hydrograph for the probable maximum precipitation with (PMP W CC) and without
climate change (PMP W/O CC).

The original inflow hydrograph shows a peak of around 2200 m3/s, which is 25%
less than the one that considers the PMP with CC. The outflow hydrograph considering
CC has a peak of 228.99 m3/s, exceeding the maximum flow without CC of 135.32 m3/s
(Figure 8), which again implies a revision of the original design of the spillway is necessary.
Usually, the overflow structures are calculated based on a given flow rate, and therefore,
the underestimation of these structures will not provide the capacity to release the excess
flow that could occur under a CC scenario.
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6.4.2. Hydraulic Analysis

The original spillway design was developed to discharge the overflow water gradually
and in a controlled manner if the dam could support the design flood volume of 76 hm3.
However, when CC is considered, the dam does not have the capacity to store a larger flood
volume (~100.5 hm3). In this case, the spillway must evacuate the water to prevent the
water level from exceeding the dam crest. The considerable difference between the flood
flow with CC and the one without it led to a rigorous check of the spillway dimensions to
verify their capacity. Hence, it is necessary to redesign the hydraulic structure to allow the
evacuation of the excess water of the Probable Maximum Flood (PMF).

The redesign consists of a change in the spillway geometry, where the width was
modified from 17 to 62 m to adapt its capacity to the flood flow up to 633.61 m3/s under
CC conditions (Figure 9). The design load increased from 2.41 to 2.8 m, setting the crest
elevation al 101 m.a.s.l. (1 m above the original design). Under these considerations and due
to the topographic conditions of the study case, it was not possible to consider an increase
in the spillway height. Table 4 shows the hydraulic characteristics of the overtopping
spillway redesign under CC conditions.
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Table 4. Comparison of the hydraulic parameters between the original design and the redesign for
the Sube y Baja dam.

Description Original Design Redesign Units

Spillway width 17.00 62.00 m
Spillway elevation 97.00 97.00 m.a.s.l.

Maximum load 2.41 2.80 m
Maximum discharge coefficient 2.25 2.25 -

Dam crest elevation 100.00 101.00 m.a.s.l.
Total height of dam 38.00 39.00 m
Maximum inflow 2819.30 2819.30 m3/s

Maximum outflow 228.98 633.61 m3/s
Flood volume under CC conditions 100.50 100.50 hm3

Figure 10 shows the comparison between the spillway overtopping original design
versus the redesign and their maximum load levels. The redesign ensures that reservoir
water levels do not exceed the maximum head level and stay below the crest level of the
dam. An excessive increase in the reservoir water volume implies additional pressure forces
over the dam structure, which might affect the spillway’s stability and might compromise
the operation of the dam.

Atmosphere 2022, 13, x FOR PEER REVIEW 16 of 25 
 

 

 

Figure 10. Comparison of reservoir levels with maximum flood for the Sube y Baja Dam. 

7. Discussion 

Dams are mainly designed under the hypothesis of climatic stationarity, then calcu-

lating the PMP, and making use of derived flows. To consider non-stationarity in the cli-

matic signal is not a mere academic exercise, but an urgent procedure to evaluate the ca-

pability of dams to cope with CC conditions. The Santa Elena Province, where the Sube y 

Baja dam is located, is bordered by the Pacific Ocean, where El Niño produces above-

average precipitation. To date, no studies related to the safety risks of dams in this region 

are available, especially during El Niño 1982/1983 and the so-called “The Monster” El 

Niño 1997/1998, in which reservoirs were overflooded, and in the latter event, the Chapu-

cal dam failed due to the inadequacy of the spillway “Morning Glory”, ending in the de-

struction of more than 40 houses and the displacement of 120 families. Such events make 

evident the importance of revisiting hydraulic structures design criteria under CC condi-

tions, especially in regions where more rainfall and extreme events are expected. 

In the case of the Sube y Baja dam, the inclusion of CC using precipitation projections 

under RCP 8.5 showed a PMP increase of ca. 20%, and a 25% increment in the maximum 

flow over the spillway. These results agree with previous studies. In [76], non-stationary 

PMP recalculations were reported at South Holston Dam in Tennessee, Folsom Dam in 

California, and Owyhee Dam in Oregon in the United States, indicating that currently 

accepted PMP values are significantly increased when future changes in dew points from 

observational trends or numerical models are considered. In the Alabama–Coosa–

Tallapoosa (ACT) river basin, [77] produced high-resolution simulations for 120 storms 

using the Weather Research and Forecasting model, WRF, with future climate models. 

They reported that PMP increased ca. 20% for 2021–2025 and 44% for the 2017–2100 pe-

riod, in relation to the 1981–2010 baseline. They suggest that the projected increase in pre-

cipitation extremes in a warmer environment is reasonable for a more in-depth examina-

tion of the PMP. 

In Section 5 of the present study, we propose a general four-stage methodology. 

However, the consideration of the uncertainties related to each stage is still lacking [78]. 

In [79], the sensitivity of 120 relative-humidity PMP storms for present and future climate 

was evaluated over the Alabama–Coosa–Tallapoosa (ACT) river basin in the southeastern 

United States, showing that the most sensitive factors were those related to meteorological 

and climate forcings, followed by antecedent soil moisture, reservoir storage, and finally, 

Figure 10. Comparison of reservoir levels with maximum flood for the Sube y Baja Dam.

7. Discussion

Dams are mainly designed under the hypothesis of climatic stationarity, then calculat-
ing the PMP, and making use of derived flows. To consider non-stationarity in the climatic
signal is not a mere academic exercise, but an urgent procedure to evaluate the capability
of dams to cope with CC conditions. The Santa Elena Province, where the Sube y Baja dam
is located, is bordered by the Pacific Ocean, where El Niño produces above-average precipi-
tation. To date, no studies related to the safety risks of dams in this region are available,
especially during El Niño 1982/1983 and the so-called “The Monster” El Niño 1997/1998,
in which reservoirs were overflooded, and in the latter event, the Chapucal dam failed due
to the inadequacy of the spillway “Morning Glory”, ending in the destruction of more than
40 houses and the displacement of 120 families. Such events make evident the importance
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of revisiting hydraulic structures design criteria under CC conditions, especially in regions
where more rainfall and extreme events are expected.

In the case of the Sube y Baja dam, the inclusion of CC using precipitation projections
under RCP 8.5 showed a PMP increase of ca. 20%, and a 25% increment in the maximum
flow over the spillway. These results agree with previous studies. In [76], non-stationary
PMP recalculations were reported at South Holston Dam in Tennessee, Folsom Dam in Cali-
fornia, and Owyhee Dam in Oregon in the United States, indicating that currently accepted
PMP values are significantly increased when future changes in dew points from observa-
tional trends or numerical models are considered. In the Alabama–Coosa–Tallapoosa (ACT)
river basin, [77] produced high-resolution simulations for 120 storms using the Weather
Research and Forecasting model, WRF, with future climate models. They reported that
PMP increased ca. 20% for 2021–2025 and 44% for the 2017–2100 period, in relation to the
1981–2010 baseline. They suggest that the projected increase in precipitation extremes in a
warmer environment is reasonable for a more in-depth examination of the PMP.

In Section 5 of the present study, we propose a general four-stage methodology.
However, the consideration of the uncertainties related to each stage is still lacking [78].
In [79], the sensitivity of 120 relative-humidity PMP storms for present and future climate
was evaluated over the Alabama–Coosa–Tallapoosa (ACT) river basin in the southeastern
United States, showing that the most sensitive factors were those related to meteorological
and climate forcings, followed by antecedent soil moisture, reservoir storage, and finally,
land use and land cover change. For instance, in under-monitored basins which are
usual in developing countries, at least the most sensitive factor, the climate change signal,
is advisable to be considered. In fact, projections of climate change are characterized
by considerable uncertainties, e.g., future climate scenarios, the selection of adequate
global climate models and downscaling approaches, especially for impact studies, and
bias correction [80]. To quantify the uncertainty related to each stage of this climatic signal
would take enormous effort, which should be added to the evaluation of uncertainties in the
remaining factors. In the Sube y Baja case study, the inter-model uncertainty was partially
addressed due to the computational burden of using a regional model to downscale the
global climate models. When using statistical downscaling approaches which are less
computationally costly, the use of more climate models is advisable [81].

Although the PMP increase highlights the risks related to CC conditions, in Section 2 of
this study, the description of the vulnerability of dams under CC conditions was presented.
Risks caused by erosion, temperature changes, blockage due to debris from changes in
the basin, and sedimentation should be also considered (Atkins, 2013). Thus, to consider
the risks of dams, an evaluation of risks related to catchment conditions is key to an
adequate assessment. Among several, the main impact mechanisms related to rainfall are
the increase in storms leading to higher runoffs and landslides or the drying of catchments
producing sediments around the spillway. Additionally, with the increase in the frequency
of stored floodwaters, keeping the soil with high moisture affects the health of trees and
vegetation, which may increase the potential of spillway blockage. In line with this threat
is the occurrence of droughts followed by strong rainfall seasons, which is a characteristic
feature of CC due to increasing extremes (Atkins, 2013). Therefore, the assessment of risks
related to CC should not only be limited to the hydrologic component, but rather should
encompass a broader analysis of factors affecting the flows in the catchment under study.

Biophysics risks have the potential to affect the structure and functioning of a dam;
nevertheless, the decision of its construction also considers the social impacts of the project.
Thus, multipurpose dams bring many benefits to the direct population and in general
to the entire region since the main objective is to cover different water deficits that are
one of the causes of the stagnation of economic growth. In general, a dam represents job
opportunities, investment, economic development, among other assets [82]. However, it
should not be forgotten that many large-scale dams have brought serious consequences to
the environment and to the population nearby the construction site in terms of fishing and
agricultural losses [83,84]. These communities are also exposed to flooding and in many
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cases even involuntary resettlement. There are several opinions about the significance of
the risk associated with the construction of a dam, and there are arguments for and against
it, but the final decision is mostly dependent on the previously defined benefits.

In fact, the relevance of the implementation of the Sube y Baja dam lies in its strategic
geographical location and the adequate storage capacity, which would allow the provision
of permanent irrigation water to approximately 80% of the agricultural land in the Santa
Elena Province. The irrigation area will cover 5620 ha, which will mainly benefit the
Sube y Baja, Calicanto, and Azucar communities. This project will also supply water to
the Pedregalito reservoir which benefits an approximate population of 18,471 inhabitants.
In this regard, the dam has a strong social contribution not only to the local sector but
also at a provincial level. The irrigation water supply enables the population to develop
economically in the agricultural sector, which will improve the life quality of the inhabitants.
However, the final version of the current project design does not include climate change
scenarios, and yet, the excess spillway was designed with maximum probable precipitation
unable to withstand the magnitude of the extreme precipitation events calculated under
CC conditions, and therefore, its future construction may represent a potential risk to the
population downstream if climate change remains ignored.

8. Conclusions

In this study, the main safety issues of dams due to climate change were reviewed,
and then, the case of the redesign of the Sube y Baja dam’s spillway was shown. Dams
are one of the most vulnerable and expensive types of infrastructure and could present
structural failure after extreme weather events. CC is responsible for several threats to the
safety of dams, as reported by several studies. For instance, climate change is expected
to increase flood risk by changing the distribution, variability, and intensity of rainfall
events. Additionally, reservoir water levels can be altered due to precipitation variability,
potential evapotranspiration, and a decrease in ice storage related to climate change. The
spillway performance may be also affected by changes in temperature related to CC,
causing structural deformations to the spillway gates. Such changes in temperature may
affect other concrete dam components, whereas extreme precipitation may increase the
sediment content, making spillway gates prone to abrasion processes. Thus, several risks
to the dam’s safety are exacerbated by CC, and several studies have highlighted spillways
as especially vulnerable to extreme events related to CC.

The flow under CC conditions should be included in the spillway design during
the conceptualization of development projects due to its vulnerability to climate change
effects. Meanwhile, for dams that are already built, a comparison between the original
flows with the flows under CC will determine a spillway redesign or a search for other
alternatives such as, but not limited to, (a) the construction of an auxiliary spillway, (b) the
enlargement of the dam, (c) the increase in the storage volume to buffer the flood, (d) fuse
plugs to relieve excess water in a progressive and controlled manner, or (e) diversion
dams to reduce the inflow to the reservoir. Regarding the Sube y Baja dam case study,
resizing was proposed as a decision-making tool for the redesign at the hydraulic analysis
stage. However, modifications to the original design without CC may cause additional
construction costs. For future works and research, further exploration of these alternatives
could be developed in depth. The measures to be taken require a holistic analysis and will
depend on the spillway type being analyzed and the difference between calculated flows.

For the design of hydraulic infrastructure oriented to spillway design, the PMP calcu-
lation method is traditionally considered. PMP, as a climatological risk, allows the floods
that the spillway must be able to evacuate to be defined. However, under CC conditions,
this method may have two main caveats if used in the traditional way, e.g., (i) given the
considerable trends measured in meteorological variables, should PMP be applied to data
measured from the past, or applied to projected data, or better, a compromise of both may
be more adequate; (ii) the PMP method is mainly based on statistical groundings; should
we consider more physically based criteria, as some authors have proposed? This issue is
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not closed, but it is rather important to consider if CC will be included in the design process.
In this context, a comparison of the different methods to be applied for PMP estimation
involves a big opportunity for future works to know how the methods differ from each
other and how they affect the design. In this study, the PMP was estimated with projected
data by using the Hershfield method (Equation (A1)), which is the most used, and it is
based on the statistical analysis only from the annual series of maximum daily rainfall,
including the mean and standard derivation in the equation.

This study and others related to infrastructure design emphasize CC as a key factor
in hydraulic design practices. Due to the exponential increase in dams around the world
in recent decades, climate change analysis becomes imperative for all hydraulic designs
(in the case of new dams) or redesigns (in the case of existing dams). The proposed
methodology is very general, and it aims to establish the main steps to make a complete
analysis that includes climate change, hydrological modeling, and hydraulic design to
ensure that the overflow spillway has the capacity to evacuate the excess flows to protect
the infrastructure itself and especially the downstream inhabitants. Certainly, each reservoir
has unique characteristics, and therefore, the methodology is a guide rather than a tailor-
made approach. Although the proposed methodology has its limitations, the main intention
is to highlight that if climate change scenarios are not considered in the design or redesign
of excess reservoir spillways, the consequences could be deadly. Decision makers and
authorities working in flood hazard and risk assessments ought to consider the outcomes
of these studies as scientific evidence for changing policies and regulations that require
the inclusion of climate change scenarios for hydraulic infrastructure projects that could
potentially compromise the safety of communities downstream.
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Appendix A

Appendix A.1. Calculation of the Design Storm Based on the PMP with Historical and
Future Precipitation

Appendix A.1.1. Estimation of Probable Maximum Precipitation (PMP)

The PMP calculation requires 24-h annual maximum precipitation [73]. The Hershfield
method was used, which is based on the general frequency equation of Chow [54].

PMP = Xn + Km ∗ Sm (A1)

where PMP is the Probable Maximum Daily Precipitation in mm. Xn, Sm: are, respectively,
the mean and standard deviation of the annual series of maximum daily rainfall in mm.
Km is the frequency factor which is a function of the mean rainfall [54].

Both Xn and Sm are pre-corrected values by the maximum precipitation value observed
in the series and by the record length. K depends on the duration of the PMP (24 h) and the
annual mean of the maximum values [54].
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Appendix A.1.2. PMP Distribution Graph and 24-h-Design Hyetograph

Using the Hershfield method to obtain PMP and applying the universal relationships
described by Bell (1969) and Chen (1983) (Figure A1), the IDF curve (intensity, duration,
and frequency) was obtained for the Julio Moreno and Sube y Baja stations (Figure A1).
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The hyetograph for PMP was defined using the alternating block method (McCuen,
1998); this method specifies the amount of precipitation for successive time steps of duration
(∆t) over a total duration of Td = n ∗ ∆t [75]. The average intensities were obtained as a
function of the area covered by each station based on the Thiessen polygons for each return
period, and then the intensity is multiplied by the time (Equation (A2)).

P = I
(∆t)
60

(A2)

where P = precipitation height (mm); I = precipitation intensity (mm/h); ∆t = time step.

Appendix A.2. Crescent Flow Calculation Using the HEC-HMS Hydrological Model

The HEC-HMS hydrologic model uses the precipitation hyetographs obtained with
historical and climate change information for the generation of outflows at the end of the
basin. The SCS Soil Conservation Service method was used to calculate the Infiltration
Loss. Curve Numbers (CNs) were determined for each sub-watershed. For this case study,
antecedent moisture type II was chosen, which represents an average runoff potential based
on the total precipitation in the five days prior to the event [75].

The Clark unit hydrograph method was used to transform rainfall into the flow. This
is a robust method due to its theoretical foundation and fits the natural unit hydrograph,
which requires the values of concentration time and lag time. The concentration time was
determined using the California Culverts Practice (Equation (A3)), while the lag time was
0.6 times the concentration time.

Tc = 0.9545
(

L3

H

)0.385

(A3)

where Tc is the concentration time (h); L is the length of the main channel (km); H is the
difference in elevation between the farthest point and the analysis point (m).

Muskingum’s method is a hydrological flow routing model for routing hydrographs
through stream reaches, which describes the transformation of discharge waves in a
riverbed using two equations. The first one is the continuity equation (conservation
of mass), and the second one is the relationship between the storage, inflow, and outflow of
the reach (Equation (A4)) [85–87].

C0,1 = − KX∓0.5∗Tci
K−KX+0.5∗Tci

C2 = K−KX−0.5∗Tci
K−KX+0.5∗Tci

C0 + C1 + C2 = 1
(A4)
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where Qs = outflow; Qe = inflow; 1 and 2 = start and end of the interval Tci. K is the travel
time taken for the crescent to go through a given reach and is calculated by the equation:
K = 0.5Tc. Tc is the concentration time in the main channel of the sub-basin.

The X factor is a weighting parameter that determines the extent to which upstream
flows enter the analysis section. Values near 0 mean that there is no inflow or flows
upstream of the section, while a value of 0.5 indicates that there is no attenuation of the
incoming hydrograph. A value of X of 0.2 to 0.3 is widely used because they are average
values within the range of this factor. X is close to 0 in very fast-flowing streams and low
slopes, and it is close to 0.5 when the opposite occurs [88,89].

Appendix A.3. Evaluation of the Spillway and Reservoir Routing with Hydrograph Inflow Affected
by Climate Change

To perform the evaluation of the spillway discharge capacity, it is necessary to perform
a procedure known as Reservoir Routing through a reservoir. This procedure determines
the time and magnitude of a flow at a given site using known or assumed hydrographs at
one or more sites. The equation for storage routing is based on the conservation of mass;
specifically, the inflow (I), outflow (O), and storage (S) is expressed as (Equation (A5)) [90].

ds
dt

= I − Q (A5)

where ds is the change in storage during the time interval dt; I and Q are the inflow and
outflow as a function of time, respectively.

In this case, the Modified Puls Method was used to determine the outflow of the
reservoir with a horizontal water surface given the inflow hydrograph and the variation
curve of the water volume above the relief crest, as a function of the load He [88]. The
method is based on the continuity equation (Equation (A6)), developed for time steps t, and
assuming that the variation of inflow and outflow through the time is lineal. Equation (A5)
was substituted into the following equation:(

2Sj+1

∆t
+ Qj+1

)
=

(
Ij + Ij+1

)
+

(
2Sj

∆t
− Qj

)
(A6)

where S represents the reservoir volume, I, the inflow and Q, the outflow, j: beginning of
time; j + 1: end of time ∆t.

This method requires a relationship between the storage elevation–volume curve, with
the curve of flows discharged through the relief crest. This relationship is identified as the
storage vs. outflow function (2S/∆τ + Qs).

For its application it requires (i) the storage–elevation curve, (ii) the spillway geometric
design, and (iii) the storage and flood transit function. Finally, the reservoir level is
compared to the spillway level, and the hydraulic capacity of the spillway must be equal
to or greater than the reservoir discharge flow rate. If these conditions are not met, the
spillway geometric design must be changed, and so on iteratively.

Appendix A.4. Spillways Geometry Design

The general equation for the calculation of the discharge flow rate above the dam crest
in free flow is given by Equation (A7) [91,92].

Q = C × L × H1.5 (A7)

where Q is the discharge (m3/s), C is the discharge coefficient, L s is the crest development
length (m), and H is the load on the spillway (m).
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Appendix A.5. Discharge Coefficient C

The factors that influence the spillway discharge coefficient are (a) the relative depth of
approach P/Hd (US Army Corps of Engineers, 1990), (b) the slope of the upstream surface
of the crest, and (c) the relative load on the crest He/Hd (Figure A2).

Where P is the spillway wall; Hd is the design load equivalent to 0.75 Hm; Hm is
the maximum load; He is the head considered on the crest (including the velocity of the
approach head).
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The wall of the spillway, P, influences the discharge coefficient. For a ratio P/Hd > 1, flat
slopes upstream of the crest slopes tend to produce a decrease in the discharge coefficient.
The U.S. Army Corps of Engineers (1990) provided data on the depth of approach and
slope effects of the weir face. In this study, the upstream face of the crest is considered
vertical and the P/Hd ratio is equal to 1.0. With this parameter, the discharge coefficient C
was obtained from Figure A2B).
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