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Abstract: Intensive animal agriculture is an important part of the US and North Carolina’s (NC’s)
economy. Large emissions of ammonia (NH3) gas emanate from the handling of animal wastes at
these operations contributing to the formation of fine particulate matter (PM2.5) around the state
causing a variety of human health and environmental effects. The objective of this research is to
provide the relationship between ammonia, aerosol optical depth and meteorology and its effect on
PM2.5 concentrations using satellite observations (column ammonia and aerosol optical depth (AOD))
and ground-based meteorological observations. An observational-based multiple linear regression
model was derived to predict ground-level PM2.5 during the summer months (JJA) from 2008–2017
in New Hanover County, Catawba County and Sampson County. A combination of the Cumberland
and Johnston County models for the summer was chosen and validated for Duplin County, NC, then
used to predict Sampson County, NC, PM2.5 concentrations. The model predicted a total of six 24 h
exceedances over the nine-year period. This indicates that there are rural areas of the state that may
have air quality issues that are not captured for a lack of measurements. Moreover, PM2.5 chemical
composition analysis suggests that ammonium is a major component of the PM2.5 aerosol.

Keywords: fine particulate matter; ammonia; remote sensing; agricultural emissions; deposition

1. Introduction

Animal feeding operations (AFOs) are agricultural facilities where animals are kept
and raised in a small area. While animal agriculture is a large driver of the economy, these
farms also create a strain on the environment. The eastern region of North Carolina (NC)
has become highly populated with thousands of AFO farms, primarily housing poultry
and hogs [1]. NC is ranked 4th in the United States for hog production and 1st in the
United States for all poultry production due to the strong turkey production [2]. During
2016, Duplin and Sampson Counties, which are in Eastern NC, contained over 4 million
hogs and 100 million chickens [3].

Ammonia (NH3) emissions from AFOs account for more than half of the reactive
nitrogen released into the environment [4,5]. The largest emission source of NH3 into
the atmosphere is from agricultural sources [6,7]. NH3 plays a significant role in the
biogeochemical nitrogen cycle and causes health and environmental effects [8–17]. The
manure that is produced by the animals is frequently used as fertilizer and spread on
crops throughout the farm, further releasing the pollutant into the atmosphere. NH3 also
has several human health effects including eye, nose and throat irritation, dizziness and
headaches [18,19]. Once NH3 is released into the atmosphere it can then deposit by either
rainfall or dry deposition to regional waterbodies or it can react with other compounds
in the area to create other pollutants and cause further harm [14–17,20–22]. Gaseous NH3
in the atmosphere contributes to the formation of airborne fine particulate matter (PM2.5)
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through reactions with water vapor and other air pollutants, including oxidation products
of sulfur dioxide (SO2) or nitrogen oxides (NO and NO2, or NOX) [23]. Ammonium
compounds, including ammonium sulfates (NH4HSO4 and (NH4)2SO4) and ammonium
nitrate (NH4NO3), make up a large fraction of PM2.5 [24] (defined as particulate matter
with an aerodynamic diameter of 2.5 microns or smaller). Elevated concentrations of PM2.5
are associated with respiratory issues, heart problems and has been linked to premature
death [25–27]. Ammonia can be important in the nucleation of new particles [28,29]. These
ammoniated particles scatter light, attenuating visibility, and can result in some atmospheric
cooling [30]. Particulate matter emissions are released through primary sources (e.g., power
plants, transportation) [31] as well as secondary sources (e.g., gas to particle conversion).
However, in the United States, regulatory strategies to reduce PM2.5 have focused on
primary emissions of PM2.5 and on reductions of SO2 and NOX emissions; however, the
control of NH3 emissions can also be effective for reducing concentrations of PM2.5.

The North Carolina Clean Smokestacks Act has reduced sulfur dioxide emissions by
89% compared to 1998 emissions [32] and the improved regulations on vehicle manufac-
turers has helped to reduce NOx emissions. Because these reductions have already been
made, any additional effort to reduce both SO2 and NOx emissions would become less
cost effective. Thus, some studies have started to indicate that a reduction in ammonia
emissions would be a more cost-effective solution in terms of long-term reductions in
particulate matter concentrations [33–40]. However, ammonia is not a criteria pollutant.
Moreover, any reduction in particulate matter must be measured at monitoring stations,
leading to economic, political and logistical problems.

Recent studies in Europe using detailed chemical transport models and time resolved
NH3 emissions illustrate the strong nonlinearity between PM2.5 and NH3 emissions, and
the reduction in NH3 emissions significantly reduces PM2.5 levels in both summer and
winter periods [33]. The impact of NH3 emissions on PM2.5 depends on meteorological
parameters (e.g., temperature, relative humidity), the magnitude of the perturbation to NH3
emissions and the abundance of particulate nitrate (NO3

−), gaseous nitric acid (HNO3)
and particulate sulfate (SO4

= and HSO4
−), which are the products of the oxidation of SO2

and NOx, two byproducts of combustion [31,33,35]. Utilizing this foundational knowledge
of key processes and an integrated approach of using satellite measurements (ammonia
and aerosol optical depth) and ground-based measurements (meteorology and PM2.5), an
observational-based statistical model is developed to predict PM2.5 concentrations in these
rural regions in an effort to advance Earth system predictability. The abundance of NO3T
and SO4T was not measured.

Measurements of PM2.5 in rural regions (especially in intensively agricultural locations)
of the US are in general not conducted and are therefore not available. Recent studies [21,41]
have shown that increased ammonia from agriculture leads to increased PM2.5. Therefore,
the purpose of this work is to estimate PM2.5 concentrations in ammonia-rich environments
of Eastern NC using a combination of satellite and in situ data. Using satellite data will
allow us to develop a method for predicting ground-level PM2.5 concentrations in areas of
high agricultural influence which normally do not have a ground-based measurement site.
By utilizing satellite-derived ammonia concentrations and aerosol optical depth (AOD)
along with meteorological parameters, we can predict, with reasonable certainty, PM2.5
concentrations across NC. Moreover, a thorough review of the scientific literature did not
provide any studies offering predictions of PM2.5 in rural regions based on our process-
based approach (i.e., coupling of satellite and ground-based measurements). However,
a complex numerical air quality model such as the Weather Research and Forecasting-
Community Multiscale Air Quality (WRF-CMAQ) or WRF-Chem Modeling System may
also be utilized to predict PM2.5 and NH3 emission from agricultural land using these air
quality models across various regions of the world [42–45].
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2. Data and Methodology
2.1. Location Description

AFOs in Eastern NC, while good for the economy, create a strain on the environment.
For example, many residences of these high agriculturally active counties have started
filling nuisance lawsuits against large hog farms’ odor issues and a general decrease in
quality of life for those in the area. For these reasons, our study focuses on various areas in
NC, all of which, due to proximity and wind direction, will have a direct influence from
these farms. This ultimately will allow for further understanding of how these agricultural
areas affect ground-level PM2.5 concentrations.

The most recent measurements within the region of our study are for Kinston, NC,
in 2007, as part of the U.S. EPA Chemical Speciation Network for PM2.5. Ammonium
compounds formed a substantial portion of the mass of PM2.5 even during the summer
months [46], as shown in Table 1 and Figure 1.

Table 1. PM2.5 speciation in Kinston, NC, during the summer months of 2006 and 2007 *.

PM2.5 Composition (µg m−3)

Summer 2006 Summer 2007

Ammonium sulfates and ammonium nitrate 7.08 7.34
Organic carbon 4.44 5.10

Elemental carbon 0.22 0.24
Other and unidentified 2.28 2.45

Total 14.03 15.13
Fraction ammonium sulfates and nitrate 50% 49%

Fraction EC/OC 33% 35%
* Data source: PM2.5 Chemical Speciation Network (CSN) for the months of June, July and August. https://www.
epa.gov/amtic/chemical-speciation-network-csn, https://www.epa.gov/outdoor-air-quality-data/interactive-
map-air-quality-monitors, accessed on 30 October 2019.
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Figure 1. Speciation of PM2.5 (µg m−3) during the summer months of 2007 in Kinston, NC, USA.

Ammonia is directly measured in North Carolina by passive monitors as part of the
Ammonia Monitoring Network (AMoN); however, the locations of these monitors is sparse,
with only 4 active sites across the state of North Carolina. Moreover, particulate matter is
measured at various locations throughout the state with monitors placed and maintained
by the Environmental Protection Agency (EPA) and the North Carolina Department of

https://www.epa.gov/amtic/chemical-speciation-network-csn
https://www.epa.gov/amtic/chemical-speciation-network-csn
https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors
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Environmental Quality (NCDEQ). The location of these monitors (Figure 2) is widespread
throughout the state and lacks the ability to monitor at a high spatial resolution. To
achieve the spatial resolution needed to accurately monitor PM2.5 reductions throughout
the state satellite data may be utilized. Satellites allow us to obtain both the spatial
and temporal data resolution needed to accurately determine if there is a relationship
between ammonia emissions from agricultural farms in Eastern North Carolina and PM2.5
concentrations. Satellite data can also be used to predict PM2.5 concentrations in areas with
a high agricultural trace gas emission.
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Satellite data are a relatively new data source in air quality monitoring [47–50]. These
satellites can be extremely useful in capturing a relatively high-resolution (such as 0.25◦ by
0.25◦ or 1 km by 1 km) air quality image over the entire world for a single day or multiple
days. For this reason, satellite data can be especially useful in rural areas around the
state, where monitoring networks are scarce. Using satellite data will allow us to develop
a method for predicting ground-level PM2.5 concentrations in areas of high agricultural
influence which normally do not have a ground-based measurement site. By utilizing
satellite-derived ammonia concentrations and aerosol optical depth (AOD) along with
meteorological parameters, we can predict, with reasonable certainty, PM2.5 concentrations
across North Carolina.

2.2. Satellite-Derived Ammonia Data

Satellite-derived ammonia retrievals from the Infrared Atmospheric Sounding Interfer-
ometer (IASI, version 2.1, EUMETSAT) were used with <25% cloud cover for 2008 through
to 2017. IASI was used because it provides a longer-term repository of measurement data
than other satellite platforms, such as the Cross-track Infrared Sounder (CrIS). IASI is a
collaboration between the European Organization for the Exploitation of Meteorological
Satellites and the National Centre for Space Studies (CNES) or the French government
space agency. IASI was launched in 2006 on the MetOp-A satellite, in 2012 on the MetOp-B
satellite and finally on the MetOp-C satellite launched in 2018. They are polar orbiting sun
synchronous satellites with an orbit altitude at around 817 km above the Earth’s surface.
IASI has an orbital period of about 90 min, crossing the equator at around 9:30 a.m. and
p.m. local time, with each subsequent pass displaced by about 22.5 degrees of longitude.
The satellite measures detailed infrared spectra over a broad angular swath with a spa-
tial resolution of about 12 km [51]. IASI researchers retrieve estimated total atmospheric
column loadings of NH3 and other pollutants based on patterns of infrared absorption.
Specific information on the development and comparison testing of the algorithm used to
derive ammonia measurements is seen in both [51,52].
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At the latitude of NC, morning and evening measurements are collected at about
10 a.m. and 10 p.m. local time. For this study, we used the morning pass to perform the
analysis because NH3 concentrations are typically higher during this time. This is because
during the morning hour, the mixing layer height is lower in the atmosphere, which allows
for NH3 concentrations to remain closer to the surface. The data were filtered by the error
estimate reported with the data. Only the points that had an error less than 100% were
used in this study.

2.3. Satellite-Derived Aerosol Optical Depth

Satellite-based 550 nm AOD retrievals from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) from 2008–2017 were used in this study. MODIS is onboard National
Aeronautics and Space Administration’s (NASA) Aqua and Terra satellites which, similar
to IASI, are polar orbiting satellites. Aqua and Terra orbit at around 705 km above the
Earth’s surface and pass NC once per day. For this study, MODIS level 2 collection 6.1
high confidence AOD at 10 km × 10 km measurements from Aqua were used. Retrievals
onboard the Aqua satellite were used specifically due to deterioration issues with the
MODIS sensor on the Terra satellite. A visual example of these data can be seen in Figure 3.
The blank location in the image can be attributed to cloud cover over the area [51]. Another
reason for the blank locations in the image is the filtering process of the data. The data were
filtered to only include the best quality data, which NASA indicates is a quality assurance
flag of 3.
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2.4. Ground-Based PM2.5

The ground-based PM2.5 data were obtained from the Environmental Protection
Agency’s (EPA) Outdoor Air Data website, developed based on EPA’s Air Quality System
(AQS) network (https://www.epa.gov/outdoor-air-quality-data/download-daily-data;
accessed on 30 October 2019). The air quality stations around the state are a collaboration
between the EPA office in Research Triangle Park and NCDEQ. Two NC sites were chosen
(i.e., training data), one in Cumberland County (35.04 N, 78.95 W) and another in Johnston
County (35.59 N, 78.46 W) as input data to develop the statistical model. These locations
were chosen based on their proximity to high agricultural areas in NC. The PM2.5 data
were available at each of those sites for 3-day intervals for 2008–2017. PM2.5 data were then
collected (i.e., test data) from a site in Duplin County (34.95 N, 77.96 W), New Hanover
County (34.36 N, 77.84 W) and Catawba County (35.73 N, 81.36 W) to validate the model
performance. The monitor used in NC is an active monitor that takes in a predetermined
amount of air and pulls it through a filter within the sensor. After 24 h, the filter is then
taken out of the sensor and gravimetrically measured and the mass concentration in µg/m3

https://www.epa.gov/outdoor-air-quality-data/download-daily-data
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is reported [52]. PM2.5 was the only particulate matter size incorporated into this study
because PM10 only makes up around less than 20% of the measured PM concentrations in
these locations.

2.5. Meteorology Data

Ground-based meteorology data were obtained from the NC State Climate Office for
the entire study period from sites in Cumberland, Johnston, Duplin, Sampson, Catawba
and New Hanover Counties. Daily averaged temperature in degrees Celsius (◦C), pressure
in millibar (mb), wind speed in meters per second (m/s) and relative humidity in percent
(%) where available from each station and used in the development of the model. Days
with reported rainfall were excluded from the final analysis because they would lead to
washout events for both the ammonia and AOD data. Figure 4 shows the location of these
sites, which for Cumberland, Johnston, Duplin, Catawba and New Hanover are collocated
with the ground-level PM2.5 sites. The figure also shows the counties with the highest
agricultural production as of 2017 and the predominant wind directions to illustrate the
agricultural influence on each of these areas are shown in Figure 5.
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2.6. Methodology

IASI ammonia retrievals are filtered so that only those retrievals with a relative error
less than 100% are used. AOD retrievals are filtered to use only those observations with
the best quality rating (quality assurance flag = 3). For the Cumberland County training
case, a total of 135 observation days were identified for which NH3 retrievals and AOD
retrievals meeting the above filtration criteria could be compared with available ground-
level PM2.5 measurements. For the Johnston County training case, a total of 142 observation
days were identified. The quality assurance flag is given by the algorithm team as their
assessment of the data quality [53]. These retrievals are then collocated with the ground-
level meteorology sites and the ground-level PM2.5 sites. This is carried out through the
“average” approach [54,55]. In the averaging method, a 100 km radius of the PM2.5 ground
site and the ground-level meteorology station are averaged together to receive a single
value for the time period, which in this study is one day. This process is repeated every
day for the months of June, July and August for the 9-year period. June, July and August
were chosen because they would allow for the highest ammonia retrieval as, statistically,
the summer months have the highest ammonia concentrations in NC. Days with reported
rainfall are excluded from the analysis because this would result in a washout event for
both the PM2.5 data and the ammonia data as they are typically scavenged by rainfall [41].

At the sites in Cumberland and Johnston Counties, the data were then compiled for
each day using averaged meteorology parameters and subsequently averaged by month. A
multivariate regression model was run in the Statistical Analysis System (SAS) using the
IASI ammonia data, the MODIS AOD data and the meteorology data per month at both
locations. We then tested the accuracy (i.e., validated) of our model using data from Duplin
County. For the Duplin County test, a total of 175 observation days were identified, for
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which NH3 and AOD retrievals met the filtration criteria, and PM2.5 measurements were
available for comparison. Once the model was tested, PM2.5 values were then predicted
in Catawba County, New Hanover County and Sampson County to see the influence
of agriculture on PM2.5 concentrations across the state and in different eco-regions. For
Catawba County, 222 observation days were identified for which NH3 and AOD retrievals
met the filtration criteria, 168 valid observation days were identified for New Hanover
County and 490 observation days for Sampson County.

3. Results

Multiple linear regression is a classical and well-known statistical technique to quantify
the association of a variable (called the dependent variable) with several other variables
(called independent variables). ANOVA or analysis of variance is a statistical technique to
gauge the statistical significance and practical usefulness of the linear regression towards
explaining the dependent variable. In this analysis, we implemented multiple linear
regression and ANOVA to quantify the association of PM2.5 (the dependent variable) with
six independent variables: ammonia, AOD, T, P, WS and RH. Furthermore, we constructed
the ANOVA table to study the statistical significance of this multiple linear regression
model. Multiple linear regression models were created to assess the ability of remotely
sensed data to predict ground-based PM2.5 concentrations in rural areas that are usually
characterized as having high agricultural activity and no ground-based PM2.5 monitor.
The models were created for Cumberland and Johnston Counties in NC (i.e., training
data) and then validated from Duplin County NC (i.e., test data) against the ground-
based measurements located in the county. Cumberland and Johnston Counties were
chosen specifically because of their proximity to Sampson County, which has the highest
agricultural activity in that state next to Duplin County, which was chosen as the validation
site for this reason. Sampson County could not be used for validation because there is no
ground-based PM2.5 monitor in the county. After reviewing and testing different model
inputs (e.g., a variety of meteorological parameters with data from each county of interest),
a combination of Cumberland County and Johnston County data for the entire summer
period were chosen:

PM2.5 = EXP
(
15.14 +

(
1.05 × 10−17 ∗ Ammonia

)
+ (1.51 ∗ AOD)+

(0.26 ∗ T) + (−0.013 ∗ P) + (−0.040 ∗ WS) + (−0.013 ∗ RH))
(1)

where PM2.5 is given in units of µg m−3, Ammonia is the total atmospheric column loading
of ammonia as retrieved from IASI observations in molecules cm−2, AOD is the MODIS
aerosol optical depth, T is temperature in ◦C, P is pressure in millibars, WS is wind speed
in meters per second and RH is relative humidity in percent.

This model gave an r2 value of 0.43. The specific statistics can be seen in Table 2 (an
analysis of variance or ANOVA table). Here, DF stands for “degrees of freedom”, i.e.,
the number of values that are free to vary as we estimate the parameters of the model.
The total sum of squares (TSS) is the sum of the squared difference between each PM2.5
observation and the sample average, which is decomposed into two parts: the model sum
of squares which is the part of the TSS that can be explained by the regression model, and
the error sum of squares which is the remaining part of the TSS which cannot be explained
by the model. The mean squares are the sum of squares divided by the respective degrees
of freedom. The F value is the ratio of the model mean square to the error mean square,
which is a classical statistical metric to quantify the explanatory power of the regression
model and the final column is the p-value associated with the F value which indicates
the statistical significance of the model (lower means more significant). The F value and
the p-value seen in the table indicate that our model was able to explain a statistically
significant portion of the data variation [54,55]. Table 3 is a parameter estimate table. The
table indicates the significance of a parameter based on the t statistic used in the model.
For our model, the table shows that AOD is the most significant variable in our model.
This is to be expected, since AOD results from the presence of PM2.5 in the atmosphere.
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However, AOD is not directly proportional to the mass concentration of PM2.5, but is also
dependent on the particle size distribution and other properties of the aerosol and the
atmosphere. Relative humidity, temperature and ammonia are also significant variables in
our model. The intercept is also relatively significant while pressure and wind speed are
the least significant. We know this because Pr > F values have a significant range to them.
Anything less than 0.01 has strong significance while anything between 0.01 to 0.05 has
appreciable significances.

Table 2. Analysis of variance (ANOVA) table.

Source DF Sum of
Squares

Mean
Square F Value Pr > F

Model 6 18.84 3.14027 38.99 <0.0001
Error 309 24.88 0.08053

Corrected Total 315 43.73

Table 3. Parameter estimates for the model.

Variable Parameter
Estimate

Standard
Error Type II SS F Value Pr > F

Intercept 15.14 5.07 0.72 8.92 0.0030
Ammonia 1.05 × 10−17 2.99 × 10−18 0.98 12.21 0.0005

AOD 1.51 0.16 7.05 87.53 <0.0001
Temp 0.26 0.007 1.06 13.14 0.0003

Pressure −0.013 0.005 0.54 6.65 0.0104
WS −0.04 0.02 0.38 4.75 0.0301
RH −0.013 0.003 2.12 26.35 <0.0001

The model is dominated by data in the range of ~5 to ~25 micrograms per cubic meter.
The model Pr < 0.0001 and F Value of ~39 (Table 2), coupled with r2 of ~0.5 (Figure 6,
Duplin County), suggest that the model is offering a good prediction overall. Moreover,
having Pr for each of the variable (Table 3) less than 0.05 suggests the robust contribution
of each variable.

The results of the Duplin County prediction can be seen in Figure 6. The figure shows
four different scatter plots each representing a summer month (June, July and August) and
a total graph that included all three months in one plot. These plots act to illustrate a visual
representation of the model performance at this location. Table 4 illustrates the normalized
mean bias (NMB) and normalized mean error (NME) values, which are commonly used to
assess the performance of models [54,55].
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Figure 6. Scatter plots for Duplin County indicating model performance. The black points indicate
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modeled dataset. The red line indicated the one-to-one line and the blue line is the best fit line for the
dataset. The slope of the best fit line is indicated in blue in the corner of each figure.

Table 4. Normalized mean bias (NMB) and normalized mean error values (NME) for Duplin County
by month.

Month Normalized Mean Bias Normalized Mean Error

June 0.47% 25.31%
July 13.19% 24.66%

August 14.59% 25.23%

Once this model was verified for Duplin, it was then used to predict PM2.5 concen-
trations in New Hanover and Catawba Counties. These locations are also affected by
high agricultural production areas; however, they have very different meteorological con-
ditions and processes affecting them daily. The results of this analysis can be seen in
Figures 7 and 8. Figure 7 shows the results for New Hanover County and illustrates that
despite the different meteorological mechanisms, the model can predict PM2.5 concentra-
tions for this area at a relatively high degree of accuracy. Table 5 shows the model prediction
parameters used for this study and clearly shows the model’s prediction struggle in July.
This particularly high value is the result of the model’s dependence on AOD values. A
high AOD value will sometimes result in an overpredicted PM2.5 value.
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Table 5. Normalized mean bias (NMB) and normalized mean error values (NME) for New Hanover
County by month.

Month Normalized Mean Bias Normalized Mean Error

June 17.62% 28.55%
July 17.70% 43.61%

August 19.86% 28.04
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Similarly, Figure 8 shows the results for Catawba County; however, the model con-
sistently under predicts concentrations at this location compared to both New Hanover 
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orological mechanisms that dominate in Catawba County are not well understood by the 
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Figure 8. Scatter plots for Catawba County indicating model performance. The black points indicate
the modeled versus predicted point, and the grey bars indicate the ±1 standard deviation of the
modeled dataset. The red line indicated the one-to-one line and the blue line is the best fit line for the
dataset. The slope of the best fit line is indicated in blue in the corner of each figure.

Similarly, Figure 8 shows the results for Catawba County; however, the model con-
sistently under predicts concentrations at this location compared to both New Hanover
and Duplin Counties, which can be seen in Table 6. This indicates that the different me-
teorological mechanisms that dominate in Catawba County are not well understood by
the model. Catawba County is also at a different elevation than the other two locations,
which could explain some of the inconsistent predictions. Overall, these results suggest
that the multiple regression model can predict (at a relatively high certainty) for the eastern
portion of NC and loses some capabilities in the western portion of the state likely due to
topography.

Table 6. Normalized mean bias (NMB) and normalized mean error values (NME) for Catawba
County by month.

Month Normalized Mean Bias Normalized Mean Error

June −9.68% 23.92%
July −13.19% 26.01%

August −14.85% 27.10%

We then used the combination model to predict PM2.5 values in Sampson County. As
previously mentioned, Sampson County has one of the highest concentrations of agricul-
tural activity (both animal and crop) in the state. Due to its rural landscape, there is no
PM2.5 monitor available and thus no PM2.5 data for this location. Our model results showed,



Atmosphere 2022, 13, 821 13 of 16

also seen in Figure 9, that the PM2.5 concentrations are low; however, the model did indicate
that six days out of the nine-year period were over the EPA NAAQS of 35 µg m−3. In order
to further investigate how many exceedances were predicted by the model, the normalized
mean error values calculated for New Hanover County were used to see how the model’s
error would affect the number of exceedances calculated. New Hanover County errors
were used because they were the highest of the three errors calculated for the different
counties. Given the errors in the model, the number of exceedances could range from ten
to three during the ten-year period. This could indicate that areas near agricultural activity
could see higher PM2.5 values, most of which are not being captured due to monitoring
locations. This could also suggest that a reduction in ammonia emissions could have a
positive impact on PM2.5 concentrations in these high agricultural areas.
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Figure 9. Histogram plot illustrating the model predictions in Sampson County for June (a), July (b),
August (c) and total (d). The blue lines indicate the number of times (y-axis) the PM2.5 concentrations
reached a certain amount (x-axis). The red line indicates the NAAQS exceedance value.

4. Conclusions

We have created a multiple regression model that can predict PM2.5 mass concentra-
tions in counties with the highest agricultural activity in NC. High agricultural activity
results in high concentration of ammonia being released from agricultural farms. Ammonia
is also a precursor to PM2.5 formation and may cause an increase in PM2.5 concentrations
in these areas which could lead to poor air quality and quality of life for those living in
the area.

This model was developed using remotely sensed data (column ammonia and AOD)
and ground-based meteorology, making it resistant to issues in the scarcity of ground-
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based PM2.5 monitors around the state. Many of the areas around these agricultural farms
are rural and have no monitor in place to track these concentrations daily. Satellite data,
however, can introduce other limitations. For example, the instrument cannot directly
measure ammonia concentrations at the surface, the concentrations are calculated through
an algorithm developed by researchers which introduces limitation on the accuracy of the
concentrations from the satellite. The same issues can be said for the AOD data. Despite the
limitations, satellite algorithms are improving over time and as they improve, utilizing these
data will become more important. Satellite data can also be utilized for the meteorology
data if ground-based data are not available. Modern-era retrospective analysis for research
and applications (MERRA) data is globally modeled meteorological data based on GEOS-
5 atmospheric data assimilation system. The data models ground-based temperature,
pressure and wind speed well. However, the data do not contain relative humidity, thus it
must be obtained experimentally or mathematically. Moreover, PM2.5 chemical composition
analysis (Figure 1) suggests that ammonium is a major component of the PM2.5 aerosol.

The model was developed (i.e., training data) for the Cumberland and Johnston
Counties. The model was validated (i.e., tested) for Duplin County and applied to predict
PM2.5 in New Hanover, Catawba and Sampson Counties, all of which have a predominate
influence from these agricultural farms. The model predicted PM2.5 values in Sampson
County that were above the National Ambient Air Quality Standard (NAAQS) limit of
35 µg m−3. The need to investigate an ammonia reduction strategy due to its effects on
PM2.5 concentrations in high agricultural areas is becoming more prevalent. If the PM2.5
reduction strategies seen in the past, such as the Clean Smokestacks Act and the Clean Air
Act, have been as successful as they can be, then reducing ammonia emissions will not only
provide air quality improvements, but also a reduction in PM2.5-related issues.
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