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Abstract: An assessment and prediction of PM2.5 for a port city of eastern peninsular India is presented.
Fifteen machine learning (ML) regression models were trained, tested and implemented to predict the
PM2.5 concentration. The predicting ability of regression models was validated using air pollutants
and meteorological parameters as input variables collected from sites located at Visakhapatnam, a port
city on the eastern side of peninsular India, for the assessment period 2018–2019. Highly correlated air
pollutants and meteorological parameters with PM2.5 concentration were evaluated and presented
during the period under study. It was found that the CatBoost regression model outperformed all
other employed regression models in predicting PM2.5 concentration with an R2 score (coefficient of
determination) of 0.81, median absolute error (MedAE) of 6.95 µg/m3, mean absolute percentage
error (MAPE) of 0.29, root mean square error (RMSE) of 11.42 µg/m3 and mean absolute error (MAE)
of 9.07 µg/m3. High PM2.5 concentration prediction results in contrast to Indian standards were also
presented. In depth seasonal assessments of PM2.5 concentration were presented, to show variance in
PM2.5 concentration during dominant seasons.

Keywords: air pollution; PM2.5; gradient boosting; machine learning; CatBoost regression model

1. Introduction

The World Health Organization (WHO) has reported that 9 out of 10 people breathe air
containing high levels of pollutants, and it is also estimated that air pollution is responsible
for approximately 7 million deaths every year [1]. The burden of ill-health is not equally
distributed, as approximately two-thirds of deaths occur in the developing countries of Asia.
Air pollution in Asian countries is mainly due to increasing trends in economic and social
development. In India, rapidly increasing industrialization, urbanization, and demand for
transportation influence air pollution in many Indian cities [2]. The major health impacts
of air pollutant PM2.5 are shown in Figure 1, which indicates that PM2.5 is the main air
pollutant responsible for the most significant health problems viz. impacts on the central
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nervous system, breathing problems, chronic obstructive pulmonary disease, lung cancer,
cardiovascular diseases, impacts on the reproductive system, etc., [3,4]. Therefore, it is of
utmost importance to determine and forecast the PM2.5 concentration with more reliable
and better forecasting models.
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Many studies have reported on pollutant forecasting models using ML approaches
because it is very difficult to estimate originator pollutants with varying environmental
conditions by traditional methods. ML approaches are capable of determining the causes
of high pollutants, along with better forecasting of the increase and decrease in pollutants
in the environment. Forecasting can help regulatory agencies or the government to control
emission levels of pollutants such as nitric oxide (NO), nitrogen dioxide (NO2), nitrogen
oxides (NOx), ammonia (NH3), sulphur dioxide (SO2), carbon monoxide (CO), benzene
(C6H6), toluene (C7H8), etc., and alert residents to avoid outdoor activity, especially patients
with respiratory problems.

ML approaches are based on data collected through various sensors located in different
parts of the city. ML algorithms have advanced over the past few years, and their prediction
is based on the quality of the data collection, i.e., data required for training the models. In
our study, we considered the data collected at Visakhapatnam, a port city on the eastern
side of peninsular India, for the assessment period 2018–2019.

This paper is organized as follows: Section 2 provides information about the literature
review; Section 3 introduces the study area, methods of data collection, and descriptions
of data and the machine learning regression model. Section 4 describes performance
measurement indicators. Section 5 describes the results related to Visakhapatnam’s three
predominant seasons and a comparison of prediction results of fifteen ML regression
models. Section 6 presents the conclusion of the proposed work.

2. Literature Review

A number of studies have reported the implementation of ML approaches for urban air
pollution, including PM2.5 concentration in recent years. Masood and Ahmad [5] presented
a comparison of support vector machine (SVM) and artificial neural network (ANN) for the
prediction of anthropogenic fine particulate matter (or PM2.5) for Delhi, based on various
meteorological and pollutant parameters corresponding to a 2 year period from 2016 to 2018.
ANN provided faster prediction and better accuracy, compared with SVM. Deters et al. [6]
carried out research on the prediction of PM2.5 with the help of ML regression models
considering selected meteorological parameters, and reported a high correlation between
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estimated data and real data. Moisan et al. [7] compared the performances of a dynamic
multiple equation (DME) model in forecasting PM2.5 concentrations, with an ANN model
and an ARIMAX model. They concluded that, although ANN in very few instances showed
more significant and accurate results than the DME model, the overall performance of
the DME model was slightly better than the ANN. Jiang et al. [8] reported the prediction
of PM2.5 with the help of a long short-term memory (LSTM) model, with better accuracy.
Suleiman et al. [9] compared three air quality control strategies, including SVM, ANN
and boosted regression trees (BRT) for forecasting PM2.5 and PM10 concentrations in the
roadside environment. They found that regression models with neural networks had better
prediction performance, compared with SVM. A regression model which used extra trees
regression and AdaBoost, for further boosting, was proposed for estimating PM2.5 for Delhi
by Kumar S. et al. [10]. Regression and statistical methods were proposed by Chandu and
Dasari [11] to study the causal relationship between PM2.5 and gaseous pollutants for the
city of Visakhapatnam, but no forecasting model was proposed.

We chose Visakhapatnam, a port city of east peninsular India, which is surrounded on
three sides by mountains and the Bay of Bengal on the fourth. This city is studded with
major industries, including Hindustan Petroleum Corporation Limited (HPCL), Hindustan
Zinc Limited (HZL), Bharat Heavy Plates and Vessels (BHPV), Hindustan Polymers Limited
(HPL), Visakhapatnam Steel Plant (SP), Coastal Chemicals (CC), Andhra Cement Company
(ACC) and Simhadri Thermal Power Corporation (STPC) [11]. Approximately 200 ancillary
industries operate to supplement these main industries thereby causing air pollution, hence
air quality research becomes a priority.

There are many ML regression-based models available in the literature; of these, fifteen
ML regression models (presented in Section 3.3) were tested and implemented to predict
the PM2.5 concentrations for Visakhapatnam. Among them, gradient boosting models
(CatBoost, XGBoost and LightGBM) and voting regression models provided significant
prediction results. Overall, the CatBoost model (that utilizes oblivious decision trees as
the base learner) as proposed by Yandex Company [12] resulted in excellent prediction
performance. The CatBoost model was able to archive comparable results, as obtained
by other state of the art regression models such as RNN–LSTM [13], multivariate linear
regression model [14] and LSTM [15]. Prediction accuracy of these regression models
was validated using air pollutants (NO, NO2, NOx, NH3, SO2, CO, C6H6, C7H8) and
meteorological parameters (relative humidity (RH), wind speed (WS), wind direction (WD),
solar radiation (SR) and barometric pressure (BP), and temperature) as input variables.

This research work is different from previously reported studies on PM2.5, in multiple
ways. In this study, in-depth seasonal and yearly variations in PM2.5 concentration were
analyzed for two years. Fifteen machine learning methods were analyzed for optimal
performance, compared with only two to three methods in most other studies, offering
a more robust analysis for comparing models for real world implementation [6–10].

The main highlights of this manuscript are:

(1) Analysis of the concentration of PM2.5 and air pollutants in the air of the eastern
peninsular port city of India, on yearly and seasonal bases;

(2) Evaluation of the correlation between PM2.5 concentration, air pollutants and meteo-
rological parameters for the port city of Visakhapatnam;

(3) Observation of the CatBoost prediction model as the most efficient prediction model
for assessing and predicting the concentration of PM2.5 in the air;

(4) Analysis of high PM2.5 concentration prediction results for the period under observation.

3. Materials and Methods
3.1. Study Area

Figure 2 shows the area under observation and wind rose diagram of the observation
period. The study area, Visakhapatnam, a port city on the eastern side of peninsular
India, with latitude 17◦42′15′′ N and longitude 83◦17′52′′ E, is located in the Indian state
of Andhra Pradesh. The monitoring station for data collection was set up by the Andhra
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Pradesh Pollution Control Board (APPCB) [16]. Visakhapatnam is the largest city of Andhra
Pradesh and the second largest east coast city in India, lying between the coast of the Bay
of Bengal and the Eastern Ghats. According to the 2011 Indian census, Visakhapatnam had
a population of 1,728,128 with a population density of 18,480/km2 [17].
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Figure 2. Location of port city Visakhapatnam (courtesy: google maps), and wind rose diagram
(2018–2019) of study area.

Visakhapatnam observes tropical wet and dry climates during the year, with
three dominant seasons: a summer season from March to June, a monsoon season from
July to September, and a winter season from October to February. Though the summer
extends from March to June, the maximum temperature is observed mainly in the month
of May. The monsoon season extends from July to September, where an annual average
rainfall of 44.05 inches was witnessed [18]. During winter, the minimum temperature is
observed mainly in the month of January. The annual mean temperature of the city varies
from 24.7 to 30.6 ◦C and observes an RH in the range of 68–80% [18].

During the period of observation, wind in the city blew with a mean speed of 2.32 m/sec
in the direction of southwest (213.80 degrees, mean direction). The wind rose diagram in
Figure 2 (based on a 24 h mean value) represents the direction of the wind, speed of wind
and wind frequency of the location under observation for 2018–2019. The extent of the
spoke determines the frequency of wind blowing in a specific direction. It is noted that the
current PM2.5 concentration in Visakhapatnam air is 8 times above the WHO annual air
quality guideline value [2]. Due to the extreme variation in climatic conditions and a very
high concentration of PM2.5, there is a need to analyze ambient air quality, in addition to
the impact of climatic factors, on the air quality of the city.

3.2. Data Description

In the present work, the data for air pollutants and PM2.5 concentration in the air, along
with meteorological parameters, were collected for two consecutive years 2018–2019. Visakha-
patnam has nine monitoring stations located at Industrial Estate Marripalem, Parawada,
GVMC, Raitu Bajar, Police Barracks, Pedagantyada Gajuwada, Naval Area, Seethammad-
hara and Ganapuram Area, to measure the air quality index of the city. The original
readings of air pollutant concentration and meteorological parameters were provided by
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the Central Pollution Control Board (CPCB) website [2] and APPCB [16] on 30 min, 1 h,
4 h, 8 h, 24 h and annual bases. For the present study, 24 h mean values of concentration of
air pollutants and meteorological parameters were noted and utilized as prime variables
for our prediction models. The raw dataset contained the record of air pollutants and
meteorological parameters for 730 days. Of these days, the records for 32 days (19 days
in 2018, and 13 days in 2019) were completely missed (either due to power failure, device
failure or other reasons). After removing the 32 days, approximately 5% to 6% of values
were further missed due to various parameters. The missing values were imputed using
K-Nearest Neighbour (KNN) imputation method, and the values were imputed using
the mean value from the n nearest neighbors. The value with k = 1, using the heteroge-
neous euclidean overlap metric (HEOM) distance, was chosen for the missing imputation
for the presented dataset. After carefully processing, and missing value imputation, the
observational record of air pollutants and meteorological parameters for 698 days was
considered for our PM2.5 concentration analysis. The statistical descriptions of primary
variables considered for analysis are presented in Table 1. For the period under observation,
the city observed mean PM2.5 concentration of 48.63 µg/m3 with standard deviation of
30.05 µg/m3. Similarly, Table 1 shows the mean, standard deviation, minimum and maxi-
mum values of air pollutants and meteorological parameters.

Table 1. Statistical description of air pollutants and meteorological parameters for the assessment
period 2018–2019.

Variable Unit Mean Std. Deviation Min. Value Max. Value

PM2.5 µg/m3 48.63 30.05 3.06 202.52

NO µg/m3 13.4 11.47 0.45 99.32

NO2 µg/m3 38.37 16.26 0.56 131.53

NOx ppb 31.82 15.97 0.31 129.9

NH3 µg/m3 10.96 6.31 0.16 63.62

SO2 µg/m3 12.05 7.42 1.32 60.83

CO mg/m3 0.78 0.27 0.15 2.18

C6H6 µg/m3 4.46 1.75 0.01 11.69

C7H8 µg/m3 10.15 5.33 0.01 54.29

Temperature ◦C 29.26 1.95 23.36 42.68

RH % 71.81 5.57 43.77 86.56

WS m/s 2.32 0.83 0.47 5.56

WD degree 213.80 50.44 79.45 351.46

SR W/m2 137.39 53.48 6.00 520.41

BP mmHg 744.19 13.82 701.00 766.58

3.3. Machine Learning Model Description

For the prediction of PM2.5 concentration, 15 regression models, namely, voting regres-
sion (VR) [19], CatBoost regression (CB) [20], LightGBM regression (LGBM) [21], XGBoost
regression (XGB) [22], LASSO least angle regression (LR-LA) [23], random forest regression
(RF) [24], multi-layer perceptron regression (MLP) [25], LASSO regression (LAR) [26], par-
tial least square regression (PLS) [27], quantile regression (QR) [28], multi-task ElasticNet
(MTE) [29], ridge regression (RR) [30], Bayesian ridge regression (BRR) [31], KNN regres-
sion (KNN) [32] and linear regression (LR) [33] were trained and tested using data collected
for the years 2018–19. The notion behind the consideration of 15 regression models was
that the models broadly cover different regression approaches, thus offering more robust
results. The broad regression approaches for models under consideration were:
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(a) Gradient boosting decision tree regression models: LGBM, XGB and CB;
(b) Ensemble regression models: VR and RF (tree-based bagging ensemble technique);
(c) Penalized regression models: LR–LA (lasso model with least-angle regression algo-

rithm), LAR (lasso regularization technique to derive the coefficients exactly to zero),
MTE (regularize multi-tasking using lasso and ridge norms) and RR (regularization
technique to derive weights nearer to the origin);

(d) Linear regression models: LR (using linear equation, i.e., linear relation of inputs and
single target), BRR (linear regression using probability distribution) and;

(e) Miscellaneous regression models: MLP (supervised neural network model), PLS
(covariance-based statistical approach), QR (evaluates the median or other quantiles of
target variable conditional on feature variables) and KNN (k-nearest neighbors algorithm).

However, despite predicting efficient results, regression models have their advantages
and limitations. Table 2 presents the pros and cons of the proposed regression models for
prediction of PM2.5 concentration.

Table 2. Pros and cons of presented regression models.

Models Pros Cons

LGBM

• Less training time is required;
• Requires low memory as the model

replaces continuous values to discrete bins;
• The model supports parallel learning.

• Suffers with overfitting
problem in small size datasets;

• More tuning parameters.

XGB

• No need for scaling, normalisation
and other feature engineering;

• Effect of outliers are minimal;
• Feature importance can be evaluated.

• Large number of tuning parameters;
• The models are hard to interpret.

CB
• Handles categorical features;
• Reduces the need for extensive hyper-parameter

tuning and hence reduces the chances of overfitting.

• Good for heterogeneous data, but may not be
the optimal learner for homogeneous data.

VR

• The performance of voting regression combines
the performance of many models, so poor
performance of one model can be offset by
strong performance of other models;

• The performance of voting regression is not
largely affected by one strong/weak model.

• Due to use of multiple models, the voting
models are computationally intensive.

RF
• Efficiently handles missing values in a dataset;
• Gives estimation about feature importance.

• Suffers with overfitting for noisy data;
• Biased in the case of categorical data

with different levels.

LR-LA
• Efficient for datasets having a number of

features greater than the number of samples;
• Easily adapted for other estimators.

• Sensitive to noisy data.

MTE
• Multiple features share similar spareness patterns;
• Advantage of lasso and ridge norms.

• Difficult to solve due to non-smoothness
of lasso and ridge regression.

RR

• Reduces the variance;
• Avoids overfitting of the model;
• Well suited for datasets with large

numbers of independent variables.

• Not able to select important features;
• Shrinks the regularization coefficient towards

zero and hence the model is difficult to interpret.
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Table 2. Cont.

Models Pros Cons

LR

• Simple and computationally efficient;
• Able to derive the influence of input

variables on the target variable;
• Works well irrespective of size of dataset.

• Strong assumption that input variables and target
are linearly related, which may not be the case;

• The linear regression models
assume homoscedasticity.

BRR
• Effective for a large or small dataset;
• Well suited for real time learning.

• Computationally less efficient as it
requires more execution time;

• Least suited for large datasets.

MLP
• Suited for real time learning;
• Can be applied to non-linear models;
• Handles large datasets.

• Not able to define feature importance;
• High execution time.

PLS

• Can handle multiple variables
(nominal, continuous and ordinal);

• Deals with multicollinearity;
• Handles multi-dependent and

multi-independent variables.

• Difficult to interpret the model;
• No information regarding

distributional properties of features.

QR

• Models are more robust to
outliers and non-normal errors;

• Changes the quantile variations
with change in covariates.

• Coefficient estimates can be noisy;
• Coefficients are non-monotonic

across the quantile.

KNN

• Non parametric algorithm, and has no assumptions;
• Based on instance-based learning and hence does not

require learning during the training phase;
• Addition of new data during training phase

does not impact the prediction accuracy.

• Sensitive to outliers, noisy and missing data;
• Finding the optimal value of k is challenging.

3.4. CatBoost (Based on Gradient Boosting Algorithm) Model Description

Gradient boosting is a significant and effective machine learning technology imple-
mented to deal with noisy, diverse features and complex correlated information. Using
iteration, the technique amalgamates weak machine learning models with the aid of gradi-
ent descent in function space [34]. A gradient boosting based CB model was proposed by
Yandex Company and the model utilizes oblivious decision trees as the base learner [12].
The decision trees are implemented for regression. Each tree indicates division of fea-
ture space and output value. Decision rule/splitting criteria are used during division of
trees. Individual splitting criteria resembles a pair p = (q, m) having a feature indicator
q = 1, 2, . . . .n, and threshold value m ε D. On implementing the decision rule/splitting
criteria, a set of feature vectors X can be disjointed into two subsets of XC and XD, so that
for every x =

(
x1, x2, x3, . . . .xn)ε X, we have:

x ε

{
XC i f xq ≤ m
XD i f xq > m

(1)

After implementing decision rule/splitting criteria to e disjoint sets X1, X2 . . . . . . .Xe ε Dn,
we obtain 2e disjoint sets XC

1 , XD
1 , XC

2 , XD
2 . . . . . . . . . XC

e , XD
e . For a specified collection
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of sets N = {X1, X2, X3, . . . . . . ., Xe} and the target variable Y : Dn → D , the decision
rule/splitting criteria can be given as:

arg minp{G(p, Y, N)} (2)

where N functions to estimate the optimality of the splitting criteria/decision rule p and
the collection N with respect to the target variable Y. For an oblivious decision tree, G can
be defined as:

G(p, Y, N) =
1

∑e
a=1|Xa|

[
e

∑
a=1

∣∣∣XC
a

∣∣∣Var
{

Y
(

XC
a

)}
+
∣∣∣XD

a

∣∣∣ Var
{

Y
(

XC
a

)}]
(3)

where Y(Xa) is the target variable score with respect to the sample Xa. In contrast to other
regression models, the CB model has following advantages:

(a) Categorical features: The model is capable of handling categorical features. In con-
ventional gradient boosting decision tree-based algorithms, categorial features are
replaced by their mean label value. If mean values are used to characterize features,
then it will give rise to an effect of conditional shift [35]. However, in CB, an approach
known as greedy target statistics is employed, and the model inculcates prior values
to greedy target statistics. The employed technique reduces overfitting with minimum
information loss;

(b) Combining features: CB implements a greedy way to amalgamate all of the multiple
categorical features and their combinations by the current tree during the formation
of the new split. All the splits in the decision tree are considered as categories with
two disjoint values and are employed during amalgamation;

(c) The CB models are fast scorers. They are based on oblivious decision trees which are
balanced and less inclined to overfitting.

4. Performance Measurement Indicators

Evaluation matrices for verification of high PM2.5 concentration: The National Ambi-
ent Air Quality Standards (NAAQS) [36] were developed by the Central Pollution Control
Board, Ministry of Environment and Forests (Government of India), to regulate pollutant
emissions into the air. According to the standards, a mean 24 h PM2.5 concentration of
60 µg/m3 was classified as higher concentration. For evaluating the high PM2.5 concentra-
tion, the following evaluation parameters were used: hit rate (HR), false alarm rate (FAR),
threat score or critical success index (CSI), and true skill statistics (TSS). These parameters
were evaluated using the contingency table shown in Table 3, and are presented in Table 4.
The parameters were defined in terms of “Hit”, “Miss”, “False Alarm” and “Correct Rejec-
tion”. The terms “Hit” and “Correct Rejection” were possible cases when the prediction
was accurate, and “False Alarm” and “Miss” were possible cases when the prediction was
not accurate. The classification accuracy of the forecasting model was assumed to be good
if “Hit” and “Correct Rejection” cases were predominant, with very low cases of “False
Alarm” and “Miss”.

Table 3. Contingency table.

Observed/Actual

Yes No

Forecast/
Predicted

Yes Hit (a) False Alarm (b)

No Miss (c) Correct Rejection (d)

Evaluation matrices for ML regression models: The prediction performance of re-
gression models has been evaluated in terms of R2 Score, also known as “coefficient of
determination”, MedAE, MAPE, RMSE, and MAE. Table 4 provides the performance
measurement indicators utilized to validate the proposed prediction model.
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Table 4. Performance measurement indicators for regression prediction model validation and verifi-
cation of high concentration.

Parameter Significance Mathematical Representation

HR
Used to measure accurate forecasts of events. Its
value ranges between 0 and 1. A value close to 1

indicates excellent prediction performance.
HR = a

a+c

FAR

Measures the ratio of false alarms and gives
an indication of the occurence of an event when

there is no event. Its value ranges between 0 and 1;
a value close to 0 indicates better prediction.

FAR = b
b+d

CSI
Together takes into account hits, misses and false

alarms. Its value ranges between 0 and 1. A value close
to 1 indicates excellent prediction performance

CSI = a
a+b+c

TSS

Determines the ability of the model to distinguish
between “Yes” and “No” cases. Its value ranges

between −1 and 1, with 1 indicating a perfect forecast,
0 defining a standard forecast, and a negative
value indicating a below-standard forecast.

TSS = a
a+c −

b
b−d = HR− FAR

R2 Score/Coefficient
of determination

Provides a degree of
discrepancy in dependent variables. R2(A, Â

)
= 1− ∑s

j=1(Aj−Âj)
2

∑s
j=1 (Aj−Aj)

2

MedAE
Provides the median value of the absolute

difference between forecasted and true values.
The MedAE is least influenced by outliers.

MedAE
(
A, Â

)
= median

(∣∣A1 − Â1
∣∣, . . . .,

∣∣As − Âs
∣∣)

MAPE
Predicts the accuracy of a regression model.
It defines the relative percentage error of the

predicted value against the true value.
MAPE

(
A, Â

)
= 1

s

s
∑

j=1

|Aj−Âj|
max(∅, |Aj|)

RMSE Used to evaluate the standard
deviation of predicted errors. RMSE

(
A, Â

)
=

√
∑s

j=1(Aj−Âj)
2

s

MAE Evaluates the mean of absolute values of the
difference between the predicted value and true value. MAE

(
A, Â

)
= 1

s

s
∑

j=1

∣∣∣Aj − Âj

∣∣∣
Where Aj and Âj are the true and predicted values of the dependent variable for jth sample, respectively. s is
the total number of samples, ∅ is a very small positive number to define the result if Aj = 0 and Aj can be given
as 1

s ∑s
j=1 Aj.

5. Analysis of Results

In this section, we report a comprehensive analysis of the results, which comprises
Sections 5.1–5.4. Section 5.1 presents the correlation of PM2.5 concentration with air pollu-
tants and meteorological parameters. Seasonal variation in PM2.5 concentration, along with
other parameters, is presented in Section 5.2. PM2.5 concentration prediction using ma-
chine learning based regression models is reported in Section 5.3, and Section 5.4 presents
an evaluation of the results for verification of higher concentration.

5.1. Correlation of PM2.5 Concentration with Air Pollutants and Meteorological Parameters

To statistically explore the relation between the concentration of PM2.5 with concen-
tration of air pollutants and meteorological parameters, the correlation coefficients were
calculated using Pearson’s correlation method, and are presented in Table 5. The Pearson’s
correlation coefficient for two variables x and y can be evaluated as:

Pearson′s Correlation Coefficient = ∑(xi − x)(yi − y)√
∑(xi − x)2 ∑(yi − y)2

(4)
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where xi and yi are the values of ith sample of variables x and y, respectively. x and y are
the mean values of the variables x and y, respectively.

Table 5. Correlation of PM2.5 with air pollutants and meteorological parameters.

Parameter Pearson’s Correlation
Coefficient Parameter Pearson’s Correlation

Coefficient

NO 0.26 C7H8 −0.01

NO2 0.54 Temperature 0.05

NOx 0.44 RH −0.25

NH3 0.33 WS −0.49

SO2 0.16 SR −0.16

CO 0.60 BP 0.42

C6H6 0.25

Positive and negative correlations between the concentration of PM2.5 with the con-
centration of air pollutants and meteorological parameters were observed.

The air pollutants CO, NO2 and NOx formed a strong correlation with PM2.5 con-
centration. Among the meteorological parameters, WS, BP, and RH attained significant
correlation with PM2.5 concentration. The air pollutant C7H8 showed a very low correlation
value with PM2.5 concentration, which may have occurred due to fewer C7H8 emission
sources in the city. An increment or decrement in the concentration of air pollutant stip-
ulated a direct impact on the increment or decrement of PM2.5 concentration. All the
meteorological parameters except BP and temperature exhibited a negative correlation
with PM2.5 concentration. The meteorological parameter temperature marked a very low
value of Pearson’s coefficient, which was probably due to insignificant variation in mean
temperature values during the major seasons. The city observed an approximate mean
temperature of 29 ◦C during the major seasons. It was noticed that WS reported a strong
negative correlation with PM2.5 concentration.

5.2. Seasonal and Annual Behaviour of PM2.5 Concentration with Air Pollutants and
Meteorological Parameters

An in-depth analysis of seasonal and annual behavior of PM2.5 concentration is pre-
sented in Sections 5.2.1 and 5.2.2.

5.2.1. Seasonal Behavior of PM2.5 Concentration with Air Pollutants and Meteorological Parameters

For assessing the seasonal impact of air pollutants and meteorological parameters
on PM2.5 concentration, a detailed statistical analysis is presented in Table 6. It was com-
prehended that the air pollutant concentration reported significant seasonal variations.
A rise in PM2.5 concentration during December–February, and decrease from March–
August, was observed for the study period. The seasonal variations in PM2.5 and air
pollutant concentration were primarily due to the varying speed and direction of the wind,
seasonal variation in SR, and lack of precipitation in winter which reduces surface vertical
mixing and can lead to limited dilution and dispersion [37].

It was found that the air pollutant and PM2.5 concentration exhibit maximum variation
in the winter season. The maximum value of PM2.5 concentration recorded during the
winter season was 202.52 µg/m3, which was 106.62 µg/m3 and 130.68 µg/m3 higher
than the maximum observed PM2.5 concentration during summer and monsoon season,
respectively. The monsoon season observed marginally greater mean and median values
of PM2.5 concentration (34.39 µg/m3 and 33.61 µg/m3, respectively) in contrast to the
summer season. However, the summer season observed significant PM2.5 concentration
variation (24 h) in contrast with the monsoon season, and observed higher minimum and
maximum PM2.5 concentration. The summer season observed a mean PM2.5 concentration
of 33.64 µg/m3 (standard deviation = 14.21 µg/m3) with minimum and maximum PM2.5
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concentration of 9.09 µg/m3 and 95.90 µg/m3, respectively. Due to precipitation in the
monsoon season, the air pollutant level dipped and led to a low concentration of air
pollutants and PM2.5 concentration in the air.

Table 6. Seasonal behavior of PM2.5 concentration, air pollutants and meteorological parameters
during summer season (sum.), winter season (win.) and monsoon season (mon.).

Parameter PM2.5 (µg/m3) CO (mg/m3) NH3 (µg/m3) NO2 (µg/m3)

sum. win. mon. sum. win. mon. sum. win. mon. sum. win. mon.

Mean Value 33.64 69.84 34.49 0.67 0.90 0.75 10.37 12.83 8.75 35.08 42.85 35.54

Std. Deviation 14.21 34.50 12.36 0.19 0.29 0.25 6.35 6.70 4.48 11.55 20.87 10.51

Median Value 31.24 67.15 33.61 0.67 0.84 0.72 9.44 12.54 8.33 33.83 38.59 37.65

Min. Value 9.09 3.06 6.19 0.27 0.41 0.15 1.83 0.16 0.70 5.39 0.56 9.23

Max. Value 95.90 202.52 71.84 1.59 2.18 1.66 42.93 63.62 40.08 72.02 131.53 58.19

Parameter C6H6 (µg/m3) NOx (ppb) SO2 (µg/m3) NO (µg/m3)

sum. win. mon. sum. win. mon. sum. win. mon. sum. win. mon.

Mean Value 3.92 4.49 5.16 26.62 35.17 30.90 11.77 12.90 11.04 9.92 15.43 14.83

Std. Deviation 1.65 1.77 1.58 8.00 21.51 11.21 6.84 8.14 6.86 4.67 15.04 10.15

Median Value 3.87 4.38 5.06 25.71 30.17 30.55 10.69 10.32 10.66 9.37 11.18 12.69

Min. Value 0.86 0.01 0.51 6.44 0.31 7.56 1.97 1.84 1.32 1.22 0.45 1.48

Max. Value 10.41 11.69 9.90 52.37 129.9 92.99 40.47 60.83 46.36 27.86 99.32 93.45

Parameter C7H8 (µg/m3) WS (m/s) WD (degree) RH (%)

sum. win. mon. sum. win. mon. sum. win. mon. sum. win. mon.

Mean Value 8.38 9.33 13.91 2.79 1.85 2.45 239.96 180.80 231.95 71.89 70.00 74.68

Std. Deviation 4.40 4.66 5.71 0.73 0.66 0.82 46.43 39.28 41.00 4.55 6.18 4.48

Median Value 7.78 8.53 13.03 2.82 1.78 2.41 223.95 177.03 226.91 72.85 70.81 74.51

Min. Value 1.28 0.01 2.84 0.72 0.47 0.55 84.74 79.45 116.00 48.18 43.77 63.06

Max. Value 26.93 34.76 54.29 5.56 4.97 5.28 351.46 313.86 315.59 82.62 86.56 85.23

Parameter SR (W/m2) Temperature (◦C) BP (mmHg)

sum. win. mon. sum. win. mon. sum. win. mon.

Mean Value 167.18 120.51 124.12 29.16 29.75 28.59 745.58 751.36 730.54

Std. Deviation 56.02 38.33 54.04 1.08 2.61 1.31 6.51 12.44 13.52

Median Value 172.88 122.86 129.13 29.07 29.44 28.44 746.82 754.14 734.16

Min. Value 6.50 6.00 6.00 24.50 23.36 24.21 730.29 701.00 701.33

Max. Value 520.41 409.73 257.24 34.18 42.68 36.93 757.18 766.58 753.38

During the winter season, a higher air pollutant concentration was noticed. The maxi-
mum values observed for air pollutants CO, NO2 and C6H6 were 2.18 mg/m3, 131.53 µg/m3

and 11.69 µg/m3, respectively. Due to an increase in the concentration of CO and oxides of
nitrogen, a rise in PM2.5 concentration was observed. The rise in air pollutant concentration
was probably due to the slow WS and temperature inversion effect in the winter season. As
a result, the air pollutants and PM2.5 particles were trapped near the earth’s surface which,
in turn, increased the PM2.5 concentration [38,39].

A substantial variation in PM2.5 concentration (24 h) was observed during the sum-
mer season, and a variation from 9.09 µg/m3 to 95.90 µg/m3 in PM2.5 concentration
was reported during the period of observation. The season reported high SR (mean
value = 167.18 W/m2; standard deviation = 56.02 W/m2) and high WS (mean value = 2.79 m/s;
standard deviation = 0.73 m/s). Because of the high SR acquired by the earth’s near-surface
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atmosphere, the near-surface temperature increased, promoting upward movement, even-
tually diffusing PM2.5 concentration. In addition to higher SR, the high WS and high
precipitation diluted the air pollutant concentration at the surface and caused a significant
decrease in air pollutants and PM2.5 concentration during the summer season [38,39].

It was noted that the air pollutant SO2 concentration showed inadequate seasonal
variability and remained approximately constant throughout the year. This was possibly
due to SO2 emission sources (sulphur-containing fuels such as oil, coal and diesel) which
constantly emit SO2 pollutants in the city. The primary sources of CO, SO2 and nitrate
aerosols for the city are presumed to be power generation plants, engines in vehicles and
ships, ship-yard industries and steel plants. The key source of C6H6 emission in the city
is probably due to the presence of heavy chemical and petroleum industries, as C6H6 is
a natural element of petrol and crude oil and is produced as a by-product during the oil
refining process. In addition to major industries, the city is surrounded by many small
and medium-size industries which add to the concentration of air pollutants. Though
heavy, medium and small industries contribute to increasing air pollution, the city has the
advantage of sea breezes, by which most of the air pollutant emissions are disseminated to
sea and the impact of air pollutants on air quality is reduced. However, a relatively
constant NH3 concentration was observed during the assessment period, which was
probably due to the continuous emission of ammonia gases from industrial processes and
vehicular emissions.

It was found that the city experiences greater humidity during the monsoon season, i.e.,
from 63.06% to 85.23%, with a mean humidity of 74.68%, whereas a mean humidity of
70% and 71.89% was observed by the city in the winter and summer seasons, respectively.
As noted from Table 4, the metrological parameter ‘humidity’ exhibits a negative correlation
with PM2.5 concentration. In the highly humid season, raindrops influence gaseous air
pollutants by the phenomenon of absorption and collision. The phenomenon leads to wet
decomposition and reduces the PM2.5 concentration [40,41].

As observed from the wind rose diagram (Figure 3) and from Table 6, slow and the
infrequent wind blows during the winter season. To present a detailed analysis of WD,
the wind rose diagram is plotted in sixteen directions from N to NNE (counterclockwise).
The concentric circles in the wind rose diagram represent the probability percentage of
wind blow, and are labeled with percentages increasing outward. As shown in Figure 3,
the probability percentage concentric rings are placed at 5% intervals. For analysis, the WS
is divided into nine bins and the bins are differentiated, with colors ranging from red to
brown. The length of spoke around the circle is related to the frequency of time that the
wind blows from a particular direction. The dominant wind directions during the winter
season were found to be in the SSE and S directions, with a small secondary lobe in the
SSW direction, and with minor lobes in the SW and SE directions, indicating less frequent
wind blow in these minor lobe directions. The winter season observed a mean WS of
1.85 m/s, and approximately 65% of the time the wind blew in the direction of SSW to SSE
(230–305 degrees). During the season, only 1–2% of infrequent high-speed winds (greater
than 4.47 m/s) were observed. Approximately 20–25% of the time the wind blew at
a speed of 2.47 m/s to 2.97 m/s. During the remaining time, the wind blew at a speed of
less than 1.47 m/s. The summer and monsoon seasons observed frequent and high-speed
winds during the period of observation, and the wind blew mainly in a southwest direction
(primarily in direction of 180–250 degrees). During the monsoon season, approximately
40–45% of the time the wind blew with a speed greater than 3.18 m/s, and approximately
8–10% of the time the wind blew with a speed of 4.23 m/s to 4.75 m/s. However, infrequent
WS greater than 4.75 m/s blew for approximately 1–2% of the entire season. Similar high-
speed winds were observed for the summer season, with a SSW prominent wind direction.
For the summer and monsoon seasons, the high-speed winds swept the air pollutants away
from the city, hence, a low concentration of PM2.5 was observed during these months.



Atmosphere 2022, 13, 743 13 of 21

Atmosphere 2022, 13, x FOR PEER REVIEW 13 of 21 
 

 

1.47 m/s. The summer and monsoon seasons observed frequent and high-speed winds 

during the period of observation, and the wind blew mainly in a southwest direction (pri-

marily in direction of 180–250 degrees). During the monsoon season, approximately 40–

45% of the time the wind blew with a speed greater than 3.18 m/s, and approximately 8–

10% of the time the wind blew with a speed of 4.23 m/s to 4.75 m/s. However, infrequent 

WS greater than 4.75 m/s blew for approximately 1–2% of the entire season. Similar high-

speed winds were observed for the summer season, with a SSW prominent wind direc-

tion. For the summer and monsoon seasons, the high-speed winds swept the air pollutants 

away from the city, hence, a low concentration of PM2.5 was observed during these 

months.  

 

Figure 3. Wind rose diagram for summer, monsoon and winter seasons. 

5.2.2. Annual Behavior of PM2.5 Concentration, Air Pollutants and Meteorological Param-

eters 

Annual variation in PM2.5 concentration, air pollutant and meteorological parameters 

for 2018 and 2019 are presented in Table 7. As observed, a minor increase in PM2.5 concen-

tration was observed for 2018, and mean PM2.5 concentration values of 49.97 µg/m3 and 

47.32 µg/m3 were noted for 2018 and 2019, respectively. A substantial variation in CO and 

NO concentration was observed for 2018 and 2019. A rise of 0.15 mg/m3 in mean value of 

CO emission was observed during 2019. However, the maximum value of CO emission 

(2.18 mg/m3) was noted in 2018. An inconsiderable variation in the mean concentrations 

of NO2, C6H6, and NOx was observed during the entire period.  

Table 7. Statistical description of PM2.5 concentrations, air pollutants and meteorological parameters 

for the assessment year 2018–2019. 

Parameter PM2.5 (µg/m3) CO (mg/m3) NH3 (µg/m3) NO2 (µg/m3) 

Year 2018 2019 2018 2019 2018 2019 2018 2019 

Mean 49.97 47.32 0.71 0.86 11.94 10.01 38.88 37.86 

Std. 28.53 31.45 0.30 0.22 5.55 6.86 15.53 16.94 

Median 43.88 37.15 0.62 0.83 11.07 8.50 37.44 36.04 

Min. 5.04 3.06 0.15 0.38 0.16 0.70 0.56 5.39 

Max. 202.52 201.85 2.18 1.75 63.63 42.93 93.54 131.53 

Parameter C6H6 (µg/m3) NOx (ppb) SO2 (µg/m3) NO (µg/m3) 

Year 2018 2019 2018 2019 2018 2019 2018 2019 

Mean 4.81 4.12 30.72 31.63 11.13 12.96 12.60 14.18 

Std. 1.41 1.97 16.04 15.92 6.68 7.99 11.42 11.48 

Median 4.63 4.08 27.84 29.22 10.58 10.74 10.16 11.57 

Min. 0.01 0.51 0.31 6.44 1.32 1.97 0.45 1.95 

Figure 3. Wind rose diagram for summer, monsoon and winter seasons.

5.2.2. Annual Behavior of PM2.5 Concentration, Air Pollutants and Meteorological Parameters

Annual variation in PM2.5 concentration, air pollutant and meteorological parameters
for 2018 and 2019 are presented in Table 7. As observed, a minor increase in PM2.5 concen-
tration was observed for 2018, and mean PM2.5 concentration values of 49.97 µg/m3 and
47.32 µg/m3 were noted for 2018 and 2019, respectively. A substantial variation in CO and
NO concentration was observed for 2018 and 2019. A rise of 0.15 mg/m3 in mean value of
CO emission was observed during 2019. However, the maximum value of CO emission
(2.18 mg/m3) was noted in 2018. An inconsiderable variation in the mean concentrations
of NO2, C6H6, and NOx was observed during the entire period.

Table 7. Statistical description of PM2.5 concentrations, air pollutants and meteorological parameters
for the assessment year 2018–2019.

Parameter PM2.5 (µg/m3) CO (mg/m3) NH3 (µg/m3) NO2 (µg/m3)

Year 2018 2019 2018 2019 2018 2019 2018 2019

Mean 49.97 47.32 0.71 0.86 11.94 10.01 38.88 37.86

Std. 28.53 31.45 0.30 0.22 5.55 6.86 15.53 16.94

Median 43.88 37.15 0.62 0.83 11.07 8.50 37.44 36.04

Min. 5.04 3.06 0.15 0.38 0.16 0.70 0.56 5.39

Max. 202.52 201.85 2.18 1.75 63.63 42.93 93.54 131.53

Parameter C6H6 (µg/m3) NOx (ppb) SO2 (µg/m3) NO (µg/m3)

Year 2018 2019 2018 2019 2018 2019 2018 2019

Mean 4.81 4.12 30.72 31.63 11.13 12.96 12.60 14.18

Std. 1.41 1.97 16.04 15.92 6.68 7.99 11.42 11.48

Median 4.63 4.08 27.84 29.22 10.58 10.74 10.16 11.57

Min. 0.01 0.51 0.31 6.44 1.32 1.97 0.45 1.95

Max. 11.69 10.41 129.9 105.43 40.47 60.83 99.32 93.45

Parameter WS (m/s) WD (degree) RH (%)

Year 2018 2019 2018 2019 2018 2019

Mean 2.24 2.40 234.25 193.71 70.70 72.91

Std. 0.83 0.82 58.95 28.63 6.01 4.87

Median 2.19 2.34 244.56 199.72 71.99 73.07

Min. 0.47 0.55 79.45 84.74 43.77 57.72

Max. 4.97 5.56 351.46 263.23 85.23 86.56
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Table 7. Cont.

Parameter SR (W/m2) Temperature (◦C) BP (mmHg)

Year 2018 2019 2018 2019 2018 2019

Mean 143.01 131.87 29.12 29.39 745.87 742.54

Std. 57.60 48.54 1.52 2.30 9.77 16.73

Median 141.97 131.34 29.14 28.95 748.18 747.07

Min. 6 6 23.36 24.50 701 701.33

Max. 520.41 261.92 38.33 42.68 766.58 765.57

A minor variation of 1.58 µg/m3 to 1.83 µg/m3 in the mean concentration of SO2
and NO was noted between 2018 and2019. As observed, the period under study observed
approximately continuous mean temperature. During the period of observation, the city
observed a mean temperature of approximately 29°C with approximately the same median
temperature in 2018–2019. In contrast to 2018, slightly stronger winds (mean speed of
2.40 m/s) blew during 2019, and the city observed maximal WS during the months of
April–July. During the period of observation, the wind blew in the mean direction of
234.25 degrees to 193.71 degrees, and a change in wind direction was noticed in the months
of November–January. A small variation of 3.33 mmHg in mean BP was observed for
2018–2019, and approximately the same values of minimum and maximum BP were noted
for the period under study. However, variations in BP were noted for 2019. A high SR
was observed in 2018 compared with 2019, and a mean SR of 143.01 W/m2 in 2018 was
noted in contrast to 131.87 W/m2 for 2019. Higher peak values of SR were noted for 2018
in contrast to 2019. Due to the cumulative effect of variation in air pollutant concentration
and meteorological parameters, continuous variable PM2.5 concentration was observed for
the period 2018–2019.

5.3. Machine Learning-Based PM2.5 Concentration Estimation

In the present study, the performance of the machine learning based regression models,
employed to estimate PM2.5 concentration in the air, were validated using data related to
eight air pollutants and six meteorological parameters collected for the year 2018–2019 for
Visakhapatnam. The air pollutants and meteorological parameters were utilized as inde-
pendent input variables to train 15 distinct machine learning regression models to predict
PM2.5 concentration. The model parameters were tuned using a grid search optimization
technique. The dataset was divided into training and test datasets with a ratio of 80–20%,
namely, 80% of observations were used to train the model and 20% of observations were
sed to test the model. In our proposed methodology, the dataset was randomly categorized
into a training dataset and a test dataset. The experiments were simulated using Python 3.8
open-source software on an IBM PC with Intel Core i-7–6700 CPU @ 3.40 GHz processor
supported with 8 GB RAM. Table 8 presents the performance matrices of 15 regression
models for the prediction of PM2.5 concentration. It was observed that the VR and gradient
boosting regression models (CB, LGBM and XGB) showed notable performance, in contrast
to other presented regression models.

Table 8. PM 2.5 concentration prediction performance analysis using various regression models.

Sr. No Regression Model R2 Score
MedAE
(µg/m3) MAPE RMSE

(µg/m3)
MAE

(µg/m3)

1 VR (GB + RF + LR) 0.73 7.98 0.31 13.74 10.23

2 CB 0.81 6.95 0.29 11.42 9.07

3 LGBM 0.76 8.05 0.29 12.94 9.85

4 XGB 0.71 7.8 0.30 14.03 10.34
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Table 8. Cont.

Sr. No Regression Model R2 Score
MedAE
(µg/m3) MAPE RMSE

(µg/m3)
MAE

(µg/m3)

5 LR-LA 0.57 8.75 0.43 17.26 13.10

6 RF 0.52 9.90 0.49 18.22 14.19

7 MLP 0.69 8.96 0.37 14.65 11.12

8 LAR 0.57 8.71 0.42 17.24 13.09

9 PLS 0.57 10.25 0.43 17.31 13.07

10 QR 0.47 10.33 0.46 19.18 14.21

11 MTE 0.58 8.35 0.43 17.09 12.86

12 RR 0.56 8.61 0.43 17.36 13.18

13 BRR 0.57 8.53 0.43 17.26 13.02

14 KNN 0.50 9.75 0.43 18.58 13.37

15 LR 0.56 8.65 0.43 17.38 13.20

5.3.1. Performance of Regression Models

From Table 8, it was noted that the gradient boosting and VR models achieved
a notable R2 score (0.71 to 0.81). The higher R2 score signified that the dataset values
were well fitted in the model. Furthermore, the gradient boosting and VR prediction
models achieved low error scores in terms of RMSE (11.42 µg/m3 to 14.03 µg/m3) and
MAE (9.09 µg/m3 to 10.34 µg/m3). The CB prediction model outperformed RMSE, MAE,
MAPE and MedAE, in terms of R2 score. The model yielded an R2 score of 0.81, RMSE of
11.42 µg/m3, MAPE of 0.29, and an MAE of 9.07 µg/m3. The prediction performance of
the LGBM model was found to have deteriorated in contrast to the CB which predicted
the results with an R2 score of 0.76, RMSE of 12.94 µg/m3, MAPE of 0.29 and MAE of
9.85 µg/m3. Comparable accuracies were observed for VR and XGB models. However, the
models showed lower prediction performance against CB and LGBM regression models.

As observed, in addition to high R2, the CB regression predicted the PM2.5 concen-
tration with minimum error amongst all the presented models. It was found that the CB
model attained minimum MedAE (6.95 µg/m3) and MAPE (0.29) errors, revealing that
the model was robust to the outliers presented in the dataset. Very low performance was
observed for QR and KNN regression models. Low-performance scores in terms of R2

and high errors attained by these models indicated their inefficacy to fit the dataset values
for predicting PM2.5 concentration. However, the RF model showed slightly improved
performance in comparison to the KNN model. Least prediction performance was observed
for the QR model, with low R2 scores (0.47) and unfavorable high error in terms of RMSE
(19.18 µg/m3), MAE (14.21 µg/m3), MedAE (10.33 µg/m3) and MAPE (0.46).

The MLP regression model showed marked performance degradation for predicting
the PM2.5 concentration. MLP predicted the results with an R2 score of 0.69, RMSE of
14.65 µg/m3, MAE of 11.12 µg/m3 and median absolute error of 8.96 µg/m3. All the
penalized regularization regression models (LA-LSR, LAR, MTE, RR and BRR) and the LR
model attained comparable prediction performance, with an approximate R2 score of 0.57,
and RMSE and MAE in the proximity of 17 µg/m3 and 13 µg/m3, respectively. The models
attained a median absolute error of approximately 8.75 µg/m3.

It was observed that the penalized–regularization model showed enhanced prediction
performance in contrast to MLP, and diminished performance in comparison to voting and
gradient boosting models. Comparative prediction performance with slightly increased
MedAE was noted for the PLS prediction model.

Figures 4 and 5 present the regression plots and residual error plots for the test
dataset. Figure 4 shows the regression plots mapped between observed and predicted
PM2.5 concentrations. As observed from Figure 4, compared with other models, the data
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points for CB model were highly concentrated on the ‘fitting line’ in the regression curve,
indicating that the values were well fitted in the model. A low concentration of data points
was observed on the ‘fitting line’ for LGBM, XGB and VR regression models, indicating
that the values were not well fitted to the models.
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Figure 5 presents the residual error plots with their histograms showing residuals
of the regression models evaluated for the test dataset. The results report that for XGB
and VR regression models, the residuals and histogram peaks reside at around 0 to −20,
yielding negatively biased results. It indicates that the model’s prediction was too high,
and that the models probably predict higher PM2.5 concentration than compared with
observed PM2.5 concentration. The LGBM model shows satisfactory improvement having
a random and dispersed distribution of residual. However, the model observes low
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negatively biased residual error, and the results turn out to be slightly negative, biased with
a moderate difference between predicted and observed PM2.5 concentrations. Amongst all
the fifteen implemented models, the CB model shows significant prediction performance
with minimum residual error. As observed from the residual error plot Figure 5, the model
is least biased to positive and negative residuals and shows random residual distribution.
The residual error in CB lies in the range of −20 to 30, with maximum residual present in
the range of −10 to 10.

Time series and scatter plot between true and predicted PM2.5 concentrations for the
test datasets are presented in Figure 6. As marked in Figure 6a, the models show adequate
prediction performance and, as compared with other models, the CB model relatively
follows the true PM2.5 concentration. The scatter plot presented in Figure 6b shows that in
contrast to VR, XGB and LGBM models, the CB model predicts PM2.5 concentration in the
proximity of observed/true PM2.5 concentration at maximum instants of time. For the CB
regression model, Figures 5 and 6 show fine agreement between the observed/true and
predicted PM2.5 concentrations.
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5.3.2. Impact of Input Variables (Air Pollutant Concentration and Meteorological
Parameters) on the CB Model

To interpret the CB model, the impact of feature variables (air pollutants and meteoro-
logical parameters) on PM2.5 concentrations were evaluated, and are presented in Figure 7.
The influence of feature variables was measured using Shapley additive explanations
(SHAP) values [42].

The SHAP framework defines the prediction in terms of a linear combination of binary
variables that are used to describe whether an input feature is present in the model or not.
The framework defines results in terms of Shapley values. Shapley (SHAP) values define
the feature importance and impact of features on the prediction model by considering
three required properties: (a) local accuracy, (b) missingness, and (c) consistency [42]. The
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y-axis points to the input variables indicating their impact on the model. The input variables
on the y-axis are arranged according to their importance. The values on the x-axis indicate
SHAP values, and points on the plot indicate Shapley values of input variables for the
instances. The color gradient (blue to red) indicates variable importance from low to high.
The higher the SHAP value, the higher is the variable’s impact on the model. As shown
in Figure 7, variables NH3, BP, CO and NO2 significantly influenced the predicted PM2.5
concentration with positive correlation, i.e., the predicted value increased with the high
feature values of NH3, BP, CO and NO2, and conversely, predicted value decreased with
the lower feature values of NH3, BP, CO and NO2.
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However, the variables SO2, NOx, and C6H6 also positively influenced the predicted
results but had less impact on the prediction result. The variables WS, WD, SR, temperature,
C7H8 and RH influenced the predicted PM2.5 concentration with negative correlation, i.e.,
higher values of WS, WD, SR, temperature, C7H8 and RH tended to decrease the predicted
value, and vice versa.

5.4. Evaluation of High PM2.5 Concentration

During the period of observation, the city was exposed in 2019 to a higher value of
PM2.5 concentration compared with 2018. Among the three dominant seasons of the city, the
winter season observed a maximum number of days with higher PM2.5 concentration than
NAAQS standards. The NAAQS standards classify a mean of 24 h PM2.5 concentration of
60 µg/m3 as higher concentration. However, the summer and monsoon seasons observed
very few days of PM2.5 concentration greater than NAAQS standards.

Table 9 presents the prediction results for high PM2.5 concentration using the CB
regression model for the period of observation. The high concentration prediction perfor-
mance was evaluated using HR, FAR, CSI, TSS and OR measurement indices. The results
for high concentration were evaluated on the test dataset. The results showed that the
model achieved a high Hit rate of 0.85 for measuring accurate predictions and achieved
a low score of 0.02 for false alarms.

Table 9. Evaluation of predictions for high PM2.5 concentration using CB model on the test dataset.

Variable HR FAR CSI TSS

PM2.5 0.85 0.02 0.80 0.83

The model also achieved high CSI and TSS scores, indicating the model’s excellent
performance and its ability to correctly classify between “Yes” and “No” cases. Moreover,
the CSI represented the model’s sensitivity to correct forecasts of high concentration, and
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the high value obtained by the CSI indicated that the high concentration cases of PM2.5
were generally predicted correctly.

It was found that, for the period under observation, the winter season encountered
166 days with PM2.5 concentrations greater than the standards set by NAAQS. Approx-
imately 55–60% of days during the winter season witnessed higher PM2.5 concentration
than the prescribed NAAQS standards. In contrast, approximately 4–5% of days witnessed
higher PM2.5 concentration than the prescribed NAAQS standard in the summer and winter
season. For approximately more than 90 days of the winter and monsoon seasons, the city
was under the impact of higher C6H6 concentration than the prescribed standards.

6. Conclusions

In the present study, fifteen machine learning models were presented for analysis and
prediction of PM2.5 concentration based on time series data. This study provided detailed
insight into the air pollutants and meteorological parameters contributing to PM2.5. We
targeted the statistical behavior of 24 h average air pollutant and PM2.5 concentrations along
with meteorological parameters observed at the eastern coastal city of Visakhapatnam,
India. Using Pearson’s correlation coefficient, the correlation of PM2.5 with air pollutants
and meteorological parameters was determined. Seasonal behavior of air pollutants,
PM2.5 concentration and metrological parameters were studied by extracting significant
information from raw data collected from the Central Pollution Control Board and APPCB.
It was deduced that the summer and monsoon seasons showed lower PM2.5 and air
pollutant concentrations, compared with the winter season. The results revealed that the
CB machine learning model is an efficient predictive model. For comparative analysis
with other prediction models, we used R2 score, RMSE, MAE, and MedAE as MAPE
performance parameters. The performance of the CB model was not only better than
traditional models, such as the linear regression model and MLP, but also better than
voting and other boosting models such as XGBoost and LightGBM. The prediction of
PM2.5 concentration is a challenging task, owing to changing metrological and pollutant
concentration, yet an amount of credibility in prediction results can be attained using
copious data. The present study was carried out for a small period and notable results
were achieved, however, significant improvement in forecasting results can be expected
by examining the information over a greater period and, in addition, considering nearby
geographical locations.
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