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Abstract: Optimal use of Hierarchical Bayesian Model (HBM)-assembled aerosol optical depth
(AOD)-PM2.5 fused surfaces in epidemiologic studies requires homogeneous temporal and spatial
fused surfaces. No analytical method is available to evaluate spatial heterogeneity. The temporal
case-crossover design was modified to assess the spatial association between four experimental
AOD-PM2.5 fused surfaces and four respiratory–cardiovascular hospital events in 12 km2 grids. The
maximum number of adjacent lag grids with significant odds ratios (ORs) identified homogeneous
spatial areas (HOSAs). The largest HOSA included five grids (lag grids 04; 720 km2) and the smallest
HOSA contained two grids (lag grids 01; 288 km2). Emergency department asthma and inpatient
asthma, myocardial infarction, and heart failure ORs were significantly higher in rural grids without
air monitors than in urban grids with air monitors at lag grids 0, 1, and 01. Rural grids had higher
AOD-PM2.5 concentration levels, population density, and poverty percentages than urban grids.
Warm season ORs were significantly higher than cold season ORs for all health outcomes at lag
grids 0, 1, 01, and 04. The possibility of elevated fine and ultrafine PM and other demographic and
environmental risk factors synergistically contributing to elevated respiratory–cardiovascular chronic
diseases in persons residing in rural areas was discussed.

Keywords: spatial heterogeneity; AOD-PM2.5; respiratory-cardiovascular; lag grids; urban–rural; season

1. Introduction
1.1. Literature Review

Published studies emphasize the detrimental effects of acute and chronic exposure
to elevated ambient PM2.5 (fine particulate matter) concentration levels on respiratory–
cardiovascular chronic disease morbidity [1–18]. Along with PM2.5, PM0.1 (ultrafine par-
ticulate matter) adversely impacts respiratory-cardiovascular chronic diseases [19–26]. A
major difference between fine PM and ultrafine PM is aerosol particle size, with the lat-
ter being smaller than the former [18,27]. Ambient PM2.5 aerosol particles are inhaled
through the mouth and nose and travel down the trachea and bronchial tubes deep into the
lungs [25,27,28]. Ultrafine PM can traverse lung tissue, enter the circulatory system, and can
be deposited into heart tissue [27,29]. Various authors have suggested that PM’s adverse
physiologic and health outcome effects are inversely related with aerosol particle size, with
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smaller aerosol particles producing greater physiologic and epidemiologic disruptions
from normal functioning than larger aerosol particles [21,26,28,30,31]. Currently, ongoing
population-based PM monitoring only occurs for PM2.5, and not for ultrafine PM [20]. Sev-
eral publications have described associations between ambient ultrafine PM and adverse
health outcomes [19,21,23,24,30], but a recent review of epidemiologic studies evaluating
the association between PM0.1 and respiratory-cardiovascular outcomes concluded that
the available results are equivocal [26]. Therefore, at this time, epidemiologic study results
have not been able to confirm all the anticipated worse health outcomes following acute
or chronic exposure to ultrafine PM compared to acute or chronic exposure to fine PM on
respiratory-cardiovascular diseases.

Frequent, accurate, and timely measurements of ambient PM2.5 concentration levels,
obtained from on-the-ground air monitors, are essential for protecting human health and
decreasing respiratory-cardiovascular morbidity and mortality [5,8,11,12,32–35]. There are
challenges in using ambient PM2.5 air monitors, especially those maintained by the U.S.
Environmental Protection Agency Air Quality System in epidemiologic studies [34]. The
majority of these PM2.5 filter-based monitors measure ambient PM2.5 concentration levels
every three or six days most often in urban areas with higher population density [34]. Fewer
studies have evaluated the effects of ambient fine PM exposure on health outcomes in rural
areas [36–42]. Increasing the number of stationary ambient PM2.5 air monitors in rural
areas would provide accurate readings of fine PM concentration levels and, at the same
time, decrease spatial heterogeneity. Epidemiologic studies could use PM2.5 readings made
in rural areas to determine fine PM’s short- and long-term contribution to the occurrence
of respiratory-cardiovascular hospital events [3]. Unfortunately, this type of enhancement
to the U.S. Environmental Protection Agency Air Quality System air monitoring network
would be expensive to implement and maintain.

An alternative and more cost-effective solution would be to utilize remote sensing
methodology instead of expanding the on-the-ground ambient fine PM monitoring network,
especially in rural areas [3,6,7,15,17,36,40,42–45]. Different investigators have combined
satellite aerosol optical depth (AOD) readings with PM2.5 air monitor measurements by
utilizing HBM or other statistical procedures to attain continuous (homogeneous) temporal-
spatial aerosol concentration level fused surfaces that purport to accurately represent
ambient PM2.5 measurements in urban areas that have air monitors as well as concentration
level estimates in rural areas that do not have air monitors [3,15,42,46–50]. Urban and rural
areas also differ on residents’ demographics. Urban areas have more poverty, greater pop-
ulation density, and more non-Hispanic non-White residents than rural areas [3,33,37,38].
Numerous publications have emphasized the importance of describing the temporal and
spatial attributes of PM2.5 concentration levels measured by ambient air monitors [33,51–54]
and AOD-PM2.5 model estimates in areas with and without air monitors [3,42,47,55–61].

1.2. Research Questions

The 99 12 km2 CMAQ (Community Multiscale Air Quality) grids that define the
Baltimore study area are temporally and spatially heterogeneous on resident demographics,
placement of on-the-ground air monitors, and ambient PM2.5 concentration levels. How-
ever, the Baltimore study area’s spatial heterogeneity consists of differences in ambient fine
PM concentration levels between urban grids with air monitors and rural grids without
air monitors [3]. Urban grids with air monitors should represent a more spatially homo-
geneous area given the a priori criteria that were used to select those locations to install
permanent on-the-ground ambient air monitors. The 15 urban grids with air monitors in
the Baltimore study area appear to share similar demographic and air pollution attributes
that include higher poverty, greater population density, and elevated ambient PM2.5 con-
centration levels. Since the number of rural grids without air monitors is higher than the
number of urban grids with air monitors by 560%, it is possible that there could be a smaller
and more homogeneous subgroup of rural grids without air monitors that resembles the
urban grids with air monitors by also demonstrating higher poverty, population density,
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and elevated ambient PM2.5 concentration levels. Residents in higher risk homogeneous
rural grids should also resemble residents in urban grids by displaying a similar association
between elevated fine PM concentration levels and increases in respiratory-cardiovascular
emergency department (ED) visits and inpatient (IP) hospitalizations.

To identify homogeneous spatial areas (HOSAs) that demonstrate a similar relationship
between elevated AOD-PM2.5 concentration levels and increased respiratory-cardiovascular
ED visits or IP hospitalizations, we modified, for the first time, the temporal lag day
case-crossover design to identify homogeneous spatial grids. In the temporal lag day case-
crossover design, all exposure-health outcome assessments occur in the patients’ grid of
residence. The date when the patient received medical care is the index day or lag day
0. The day preceding the index day is lag day 1. The two to four days before the index
day are identified as lag days 2–4. The spatial lag grid case-crossover design evaluates
the association between exposure and outcome on the same day but in different grids.
The patients’ grid of residence is the index grid. It has a lag grid value of 0. The grid
that is next to and spatially precedes the index grid is lag grid 1. The two to four grids
that spatially precede the index grid are referred to as lag grids 2–4. The lag day and
lag grid case-crossover formatted linked exposure–health outcome data files were both
analyzed using conditional logistic regression (CLR). CLR analyses compute odds ratios
(ORs) for lag days and lag grids. Significant ORs identify lag days or lag grids with elevated
AOD-PM2.5 concentration levels and increased respiratory-cardiovascular ED visits or IP
hospitalizations.

HOSAs represent grids with significant ORs, while heterogeneous spatial areas in-
cluded all other grids that do not have significant ORs. HOSA size in km is determined by
the number of adjacent grids that have significant ORs and the total area in km2. Since each
HOSA consists of a single CMAQ grid with the dimensions of 12 km wide by 12 km tall, or
144 km2, the size of the HOSA will be a multiple of 144 km2. By implementing the spatial
lag grid case-crossover design in the Baltimore study area, it should be possible to identify
HOSAs that share the same relationship between AOD-PM2.5 and PMB fused surface con-
centration levels and increased respiratory-cardiovascular ED visits or IP hospitalizations
in all grids, in urban grids with air monitors, and in rural grids without air monitors. To
our knowledge, this novel use of the traditional temporal lag day case-crossover design to
identify spatial lags grids and the maximum length of similar interconnected lag grids that
operationally define HOSAs has not been reported in the published scientific literature.

Differences between warm and cold seasons were evaluated in the New York City [17]
and Baltimore [3] study areas. Significantly higher ORs were found during the warm season
versus the cold season in the Baltimore study area, but not in the New York City study area.
Similar warm and cold season analyses are conducted in this spatial lag grid case-crossover
data analysis study, as they were previously implemented utilizing the temporal lag day
case-crossover design in the New York City and Baltimore study areas.

1.3. Research Objectives

The first objective of this research is to determine the size of HOSAs in the entire Baltimore
study area and in urban grids with air monitors and in rural grids without air monitors. The
second aim is to evaluate AOD-PM2.5 and baseline PMB fused surface concentration levels
in urban grids with air monitors and in rural grids without air monitors. The third goal
is to assess warm and cold season differences in in the entire Baltimore study area. The
final objective is to review the results from this spatial lag grid case-crossover study and the
previously completed temporal lag day case-crossover study [3] to identify similarities and
differences between the spatial lag grid analysis and the temporal lag day analysis.

2. Materials and Methods

We implemented the spatial lag grid case-crossover design and utilized the same
four experimental AOD-PM2.5 and PMB concentration level fused surfaces and the same
four respiratory-cardiovascular chronic disease ED visits and IP hospitalizations that
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were previously used in the temporal lag day case-crossover studies completed in the
Baltimore [3] and New York City [17] study areas. This section includes spatial lag grid
case-crossover study details. Other specific information about the temporal lag day analyses
is available in earlier publications describing the Baltimore [3] and New York City [17]
study areas.

2.1. Baltimore Study Area

Figure 1 is a map of the Baltimore study area. Map layers include (1) jurisdiction
names (counties and Baltimore city); (2) centroids (green circles) for the 11 (south [S] to
north [N]) by 9 (west [W] to east [E]) 99 12 km2 CMAQ grids—these are the grids that
define the Baltimore study area; (3) location of the 17 federal reference method ambient
PM2.5 air monitors (red triangles); and the (4) availability of respiratory–cardiovascular
chronic disease hospitalization data.

Table 1 provides additional specific location information about the 99 CMAQ grids
in terms of the 17 federal reference method PM2.5 air monitors, which were operational in
2004–2006, in the 15 urban grids with air monitors. The grids with ambient air monitors
are identified with row-column grid coordinates, and city/county abbreviations, and are
displayed in Table 1. There were 6 air monitors in Baltimore city, 4 in Anne Arundel, 3 in
Prince George’s, 2 in Baltimore, and 1 each in Montgomery county and Hartford county.

Table 1. Bidirectional spatial lag grid case-crossover analyses for the 99 12 km2 CMAQ grids with
(red) and without (dash, ‘-‘) ambient PM2.5 air monitors in the Baltimore study area 1−3.

Community Multiscale Air Quality (CMAQ) Grid Columns

1 2 3 4 5 6 7 8 9

(11,1) - - - N (11, 5) - - - (11, 9)

- - - - - - - - -

- - - - - - - - -

- - - - - (8, 6/B) - (8, (8, 8/H)) -

- - - - (7, 5/BC) (7, 6/BC) (7, 7/B) - -

W (6,1) - - - - (6, 6/BC) (6, 7/BC) - E (6, 9)

- - - - - (5, 6/AA) (5, 7/AA) - -

- - (4, 3/M) - (4, 5/PG) (4, 6/AA) - - -

- - - - (3, 5/PG) - (3, 7/AA) - -

- - - - - (2, 6/PG) - - -

(1, 1) - - - S (1, 5) - - - (1, 9)
1 CMAQ grid coordinates, shown in black and bold font, are 1–11 (S to N) rows and 1–9 (W to E) columns. 2 Grid
coordinates, displayed in red hue and in bold font, had one or more ambient federal reference method PM2.5 air
monitors. One urban grid (R6, C6) in Baltimore city had three different PM2.5 air monitors. The other 14 urban
grids with air monitors had one ambient PM2.5 air monitor per grid. 3 Abbreviations: AA = Anne Arundel
county; B = Baltimore county; BC = Baltimore city; H = Hartford county; M = Montgomery county; PG = Prince
George’s county.

2.1.1. ED and IP Hospitalization Cases

The assessment included the four respiratory-cardiovascular chronic disease hospi-
talization end points, consisting of ED visits (asthma) and IP hospitalizations (asthma,
myocardial infarction, MI; heart failure, HF). The 4 health data files contained all the
2004-2006 ED visits and IP hospitalizations in Maryland reported by State statute to the
Maryland Health Services Cost Review Commission [62]. Individual electronic patient
records did not include patient names, social security numbers, or residential addresses.
However, each electronic patient record had temporal information about the ED visits and
IP hospitalizations: year (2004-2006), quarter (winter, spring, summer, fall), day of week
(Sunday through Saturday), date of birth, gender, race, health insurance, spatial location
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for the residential address, five-digit U.S. Postal Service residential Zone Improvement
Plan (ZIP) code [63], and one primary and multiple secondary diagnostic fields, with
International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)
billing codes [64]. ICD-9-CM codes permitted the identification of electronic patient records
with ED asthma visits and IP asthma (493), MI (410), and HF (428) hospitalizations in the
primary diagnosis field. In addition, ICD-9-CM codes identified which electronic patient
records had one or more of the three comorbid chronic diseases of atherosclerosis (414, 440),
diabetes mellitus (250), and hypertension (401). The study’s protocol, including the pro-
posed data analyses, were approved by the Maryland Department of Health Institutional
Review Board [65] and the Maryland Health Services Cost Review Commission [62]. The
Maryland Department of Health’s Institutional Review Board concluded that since this
study only utilized administrative hospital data, and because there was no contact with
patients, it was approved through an exempted review.

2.1.2. Controls

There were three controls for each case. While the electronic patient records for the
controls were the same as those for the cases, the cases had different quarterly PM2.5
exposure values than the quarterly PM2.5 exposure values assigned to the controls. Three
different monthly control exposure sampling strategies were utilized: the first control was
assigned the mean of the PM2.5 concentration levels for January (winter), April (spring),
July (summer), and October (fall); the second control included mean PM2.5 concentration
levels for February (winter), May (spring), August (summer), and November (fall); and the
third control comprised mean PM2.5 concentration levels for March (spring), June (summer),
September (fall), and December (winter).

2.1.3. Case and Control Strata

Each stratum included one case and three controls. There were four different quarterly
strata, each including a case with a different quarterly mean PM2.5 concentration level
exposure value. Three controls were in each of the four quarterly strata but, as stated above,
they differed from the cases on the assigned mean quarterly PM2.5 concentration level
values. The case and control means of the monthly ranks were used to confirm that the
Braggio et al. [3] study utilized a bidirectional temporal lag day case-crossover design [66].
Months were ordered in ascending order, from January (1) through December (12), and
then the 1–12 monthly ordinal ranks were assigned to each month. Cases with quarterly
exposure values had mean monthly ranks of 2.0 for winter, 5.0 for spring, 8.0 for summer,
and 11.0 for fall. The mean monthly ranks for the three controls were 5.5 for the first control
(1 = January; 4 = April; 7 = July; 10 = October), 6.5 for the second (2 = February; 5 = May;
8 = August; 11 = November), and 7.5 for the third (3 = March; 6 = June; 9 = September;
12 = December). For the first and second strata, mean quarterly ranks for the three controls
were higher than the mean quarterly ranks for the two cases. In the last two strata, the
mean quarterly ranks for the three controls were lower than the mean quarterly ranks for
the two cases. Each case and the three associated controls were matched on age, gender,
race, health insurance, residential ZIP code, year, and day of the week. PM2.5 concentration
levels and effect modifiers varied temporally by year (3), quarter (4), day of the week (7),
and spatially by CMAQ grid (99), thereby resulting in 8316 different possible variable
combinations for the four AOD-PM2.5 and PMB fused surfaces. Of the 99 CMAQ grids
with complete AOD-PM2.5 and baseline PMB fused surface fine PM concentration level
values, 72 grids also had associated health data: all 15 grids with air monitors, and 57 of the
84 without air monitors. Warm and cold season differences were preserved for subsequent
analyses by using this bidirectional lag grid case-crossover design.
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2.2. Confounders and Effect Modifiers

The comorbid health conditions included atherosclerosis, hypertension, and diabetes.
Other confounders were pollen and apparent temperature. Apparent temperature includes
ambient temperature (◦F), wind speed, and relative humidity [3,17]. Ambient temperature
values were computed for grids stratified on year, month, and day. Major holidays (and the
day after) were coded as dummy variables (1 = holiday or the day after, 0 = no holiday)
in each annual ED visit and IP hospitalization file. Dummy variables were used to code
snowstorms (1 = yes, 0 = no) in each of the three annual files.

Poverty and population density were two geographic-based demographic variables
that came from the U.S. Census Bureau [67] and the Maryland Department of Planning,
Maryland Data Center [68]. Maryland Zip Code Tabulation Area (ZCTA) spatial polygons
for poverty and persons per square mile were obtained from the U.S. Census Bureau
website [67].

2.3. AOD-PM2.5 and Baseline PMB Fused Surfaces

The same four experimental AOD-PM2.5 and baseline PMB concentration level fused
surfaces, previously described in detail in earlier publications [3,17], were used in this
spatial lag grid case-crossover data analysis study. Two orbiting satellites, Terra and
Aqua, obtained daily readings, the first one in the morning (10:30 a.m.) and the other
in the afternoon (1:30 p.m.), local time. The AOD measurement column was continuous
from each satellite’s trajectory in space to the Earth’s surface. PM2.5 particles within the
AOD column changed the light refraction properties, thereby making it possible to obtain
AOD unitless measurements. Thus, the AOD readings represented proxies for ambient
PM2.5 measurements. The Moderate Resolution Imaging Spectroradiometer Collection 5
AOD data files for 2004-2006, at a 10 km2 resolution, were downloaded from the National
Aeronautics and Space Administration Level 1 and Atmosphere Archive and Distribution
System. The Moderate Resolution Imaging Spectroradiometer data were remapped to
CMAQ’s 12 km2 grid system. The previously established relationship between the AOD
unitless values and the ambient PM2.5 measurements was used to assign a corresponding
PM2.5 concentration level value to each AOD unitless value. Implementation of this
algorithm resulted in a continuous space-time AOD-PM2.5 fused surface [69–71].

The updated HBM permitted the fusing of two or three different input surfaces
with (not-Kriged) or without (Kriged) missing AOD-PM2.5 concentration level values.
PMC represented the inclusion of ambient PM2.5 monitor measurements with AOD-PM2.5
concentration levels. Satellite recording failure or the presence of cloud cover interfered
with obtaining the satellite’s recording of unitless AOD column readings, thereby resulting
in missing data values in the PMC fused surface. To minimize the loss of daily AOD
readings, a second AOD-PM2.5 fused surface was Kriged, resulting in the PMCK fused
surface—the HBM fusion of monitor PM2.5 measurements with Kriged PMC concentration
levels. For the two remaining AOD-PM2.5 fused surfaces, the HBM was used to combine
PMC (not Kriged) or PMCK (Kriged) with monitor PM2.5 measurements and CMAQ PM2.5
model estimates to produce PMCQ and PMCKQ, respectively. Using the HBM, it was also
possible to assemble the updated PMB—the baseline fused surface—by combining ambient
PM2.5 monitor measurements with CMAQ PM2.5 model estimates. The four experimental
AOD-PM2.5 and baseline PMB fused surfaces were displayed within the CMAQ grid system
by overlying the National Aeronautics and Space Administration native 10 km2 AOD grid
onto the U.S. Environmental Protection Agency native 12 km2 CMAQ grid.

Table 2 summarizes how the HBM was used to statistically fuse the four input surfaces
(first column) to form the four AOD–PM2.5 and baseline PMB fused surfaces (remaining
columns). The starting point for all five fused surfaces was the inclusion of the monitor
surface, as shown in the first column of Table 2. The monitor surface included ambient
PM2.5 monitor recordings.

The first three fused surfaces, columns 2 through 4 (baseline PMB, PMCQ, and PM-
CKQ), had the CMAQ PM2.5 model estimates input surface. The last two rows and the two
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middle two columns in Table 2 clearly show differences between PMCQ and PMCKQ—the
former included AOD-PM2.5 with missing readings and the latter had the AODK-PM2.5
Kriged surface without missing readings. Likewise, the last two rows and the last two
columns in Table 2 display how the other two AOD-PM2.5 fused surfaces were assem-
bled: AOD-PM2.5 with missing readings was added to ambient monitor PM2.5 recordings
to form PMC, and AODK-PM2.5 without missing readings was combined with monitor
PM2.5 recordings to form PMCK. Based on how the four AOD-PM2.5 fused surfaces were
assembled, one prediction could be that PMCQ and PMCKQ should more accurately
align with ambient PM2.5 recordings than PMC and PMCK, because only the first two
AOD-PM2.5 fused surfaces had two different input surfaces that provided continuous (and
uninterrupted) spatial coverage in grids with and without air monitors.

Table 2. Matrix of the four PM2.5 input surfaces (first column) used to form the baseline PMB and the
four experimental aerosol optical depth (AOD)-PM2.5 fused surfaces (remaining columns).

PM2.5 Input Surfaces 1 Fused Surfaces 2,3

PMB PMCQ PMCKQ PMC PMCK

Monitor X X X X X
CMAQ X X X

AOD-PM2.5 X X
AODK-PM2.5 X X

1 Input surfaces for different PM2.5 sources: Monitor = ambient PM2.5 air monitor measurements;
CMAQ = Community Multiscale Air Quality PM2.5 model estimates; AOD-PM2.5 = AOD-PM2.5 with missing
readings; AODK-PM2.5 = Kriged AOD-PM2.5 without missing readings. 2 Hierarchical Bayesian Model (HBM)
was used to form the five fused surfaces, including baseline PMB. 3 AOD-PM2.5 fused surfaces with (PMCQ,
PMC) and without (PMCKQ, PMCK) missing readings.

2.4. Baseline PMB and AOD-PM2.5 Correlations

Correlations between the four AOD-PM2.5 fused surfaces and baseline PMB were
computed for the entire Baltimore study area, and in grids with and without air monitors.
In grids with air monitors, PMB concentration values are influenced more by the presence of
air monitors and less by CMAQ PM2.5 model estimates. In grids without air monitors, PMB
concentration level values reflect the greater influence of CMAQ PM2.5 model estimates.
Correlations between PMB and the four AOD-PM2.5 fused surfaces should be higher in
grids with air monitors than in grids without air monitors. This outcome should confirm
that the concentration levels of the five fused surfaces are influenced by the addition of
ambient fine PM measurements. Lower correlations in grids without monitors should
represent the differential contribution of AOD-PM2.5 with or without CMAQ PM2.5 model
estimates to each of the four experimental AOD-PM2.5 fused surfaces.

2.5. File Linkage

The use of a previously developed polygon correspondence file minimized the spatial
mismatch between the various irregularly shaped polygons [72]. The polygon correspon-
dence file made it possible to assign each U.S. Postal Service ZIP code polygon (health
outcomes), U.S. Census Bureau ZCTA polygon (poverty percent and population density),
and CMAQ 12 km2 grid template (four experimental AOD-PM2.5 and PMB concentration
level fused surfaces) to only one CMAQ grid. Assembling the polygon correspondence
file necessitated completing the following steps. (1) Obtain latitude-longitude centroid
coordinates for each ZIP code and ZCTA polygons [67,68]. (2) Use a geographic information
system to assign each residential ZIP code polygon or ZCTA polygon to a single CMAQ
12 km2 grid, based on the spatial location of each latitude-longitude centroid coordinate of
each polygon within a specific CMAQ grid [73,74]. By using the correspondence file, it was
possible to implement the CMAQ 12 km2 grid system as the standardized spatial polygon
template for this data analysis study. Each of the four linked AOD-PM2.5 files (one for ED
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asthma, a second for IP asthma, a third for MI, and a fourth for HF) was sorted on columns
first, and then sorted on rows second.

2.6. Spatial Lag Grid and Temporal Lag Day Analyses

The spatial lag grid case-crossover analysis resembled the temporal lag day case-
crossover analysis, except the spatial analysis evaluated lag grids, including the index
grid, which always had a value of 0 (as well as all lag grids 0-4, 01, 24, and 04), while the
temporal analysis assessed lag days preceding the index day, which always had a value
of 0 (in addition to all lag days 0-4, 01, 24 and 04). In the New York City and Baltimore
publications, we utilized a bidirectional lag day case-crossover design to determine if there
were differences due to asthma ED visits and IP asthma, MI, and HF hospitalizations among
the individual lag days (0-4) and summary lag days (01, 24, and 04). The lag day analysis
determined if ambient PM2.5 concentration levels, evaluated by the four experimental
AOD-PM2.5 and baseline PMB fused surfaces, differentially contributed to the subsequent
occurrence of one or more respiratory-cardiovascular ED visits or IP hospitalizations. As
stated previously, in the lag day analysis, all outcomes were evaluated on different days
but in the same grid. In the lag grid analysis, all outcomes were evaluated in different grids
but on the same day.

The primary objective of the lag grid case-crossover assessment was to identify the
number of 12-km-wide grids from the index grid that demonstrated the same association
between experimental AOD-PM2.5 or baseline PMB fused surface concentration levels and
one of the four respiratory–cardiovascular ED visits or IP hospitalizations—homogeneous
spatial areas (HOSAs).

The implementation of the spatial lag grid case-crossover analysis is described in the
three examples shown in Table 3. The first illustration is for grids without air monitors
(top of the table). The Spatial Lag Grid Analyses columns display lag grid values, both
individual (0-4) and summary measures (01, 24, 04). The grid location for the individual
grids with monitors is shown in bold red font for grids with air monitors and bold black
font for grids without air monitors. The index grid location for the no monitor example is
Row = 9 and Column = 7 (R9, C7). This index grid has a lag grid value of 0. Moving from
the far-right side of the table (E) to the left side of the table (W), the grid adjacent to and
immediately to the left of the index grid has a lag grid value of 1, and its grid location is
R9, C6. The next three lag grids, with lag grid values 2–4, have sequential grid locations:
R9, C5; R9, C4; and R9, C3. Summary lag grids 01, 24, and 04 were obtained by computing
means for individual lag grid values. To illustrate, the summary lag grid 01 represents the
mean for lag grids 0 and 1. Lag grid 24 includes the mean for lag grids 2–4. Lag grid 04
refers to the mean for lag grids 0-4.

The second example, shown in the middle of the table, is for lag grids with air monitors.
Here, the index grid location is R6, C7. Again, the index grid has a lag grid value of 0. The
first two lag grids with monitors are in the 6th row, while the next three lag grids with
monitors are in the 7th row. Notice that column location decreases by 1 as the lag grid
value increases by 1.

The third example, at the bottom of Table 3, is for both monitor grid conditions
combined. The index grid location is R4, C7. All five individual lag grids, with lag grid
values of 0–4, are in the 4th row. Three of the five lag grids, 1, 2, and 4, include air monitors.
The other two lag grids, 0, and 3, represent grids without monitors.

Considering the spatial lag grid analysis descriptions summarized in Tables 1 and 3
above, it is possible to demonstrate that the three types of lag grid analyses described in
Table 3 represent the inclusion of lag grids that either preceded or followed the index grid,
based on the index grid column location. Each complete lag grid sequence always includes
five individual lag grid values, the index grid, and four additional lag grids. The four lag
grids are selected from 1-4 lag grids that always precede the index grid. This prior selection
of lag grids, relative to the location of the index grid, occurs in columns 9 E to 5 W. For the
remaining four columns, 4 E to 1 W, the selection of the four preceding lag grids, relative to
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the location of the index grid, will include 1-4 grids that always follow the index grid. To
illustrate, when the index grid has a column location value of 4, the selection of the four
preceding grids will result in the inclusion of column 3 for lag grid 1, column 2 for lag grid
2, column 1 for lag grid 3, and column 9, in one row above, for lag grid 4. When the index
grid is in column 3, two grids precede the index grid, and two grids follow the index grid.
The index grid for column 2 includes 1 grid that precedes the index grid and three grids
that follow the index grid. For the 4th lag grid, when the index grid is in column 1, all four
lag grids follow the index grid and are in the above row.

Table 3. Three examples of bidirectional spatial lag grid case-crossover analyses, by ambient PM2.5

air monitor status: no monitors, monitors, and both monitor grid conditions combined.

Grid Monitor Examples 1
Spatial Lag Grid Analyses 2

0 1 2 3 4 01 24 04

No Monitors
Rows (S to N) R9 R9 R9 R9 R9 R9 R9 R9

Columns (W to E) C7 C6 C5 C4 C3 C6–7 C3–5 C3–7
Monitors

Rows (S to N) R6 R6 R7 R7 R7 R6 R7 R6, 7
Columns (W to E) C7 C6 C7 C6 C5 C6–7 C5–7 C6–7, 5–7
Both—All Grids

Rows (S to N) R4 R4 R4 R4 R4 R4 R4 R4
Columns (W to E) C7 C6 C5 C4 C3 C7–6 C5–3 C7–3

1 Row (S to N) and column (W to E) grid coordinates for the Baltimore study area are shown here. Grids with air
monitors are shown in red hue and in bold font, while grids without air monitors are displayed in black hue and
in bold font. The sorting sequence was the column variable (1 to 9) first and the row variable (1 to 11) second.
2 Lag grid 0 is the index grid. Lag grid 1 refers to the grid that spatially preceded the index grid by 1 grid distance,
12 km. Lag grids 2 through 4 preceded the index grid by 2 to 4 grids, 24 km to 48 km, respectively. Lag grid 01
represents the mean of grid values 0 and 1. Lag grid 24 refers to the mean for grids 2–4. Lag grid 04 represents the
mean for lag grids 0-4.

The second example, shown in the middle of the table, is for lag grids with air monitors.
Here, the index grid location is R6, C7. Again, the index grid has a lag grid value of 0. The
first two lag grids with monitors are in the 6th row, while the next three lag grids with
monitors are in the 7th row. Notice that column location decreases by 1 as the lag grid
value increases by 1.

The third example, at the bottom of Table 3, is for both monitor grid conditions
combined. The index grid location is R4, C7. All five individual lag grids, with lag grid
values of 0–4, are in the 4th row. Three of the five lag grids, 1, 2, and 4, include air monitors.
The other two lag grids, 0, and 3, represent grids without monitors.

Considering the spatial lag grid analysis descriptions summarized in Tables 1 and 3
above, it is possible to demonstrate that the three types of lag grid analyses described in
Table 3 represent the inclusion of lag grids that either preceded or followed the index grid,
based on the index grid column location. Each complete lag grid sequence always includes
five individual lag grid values, the index grid, and four additional lag grids. The four lag
grids are selected from 1-4 lag grids that always precede the index grid. This prior selection
of lag grids, relative to the location of the index grid, occurs in columns 9 E to 5 W. For the
remaining four columns, 4 E to 1 W, the selection of the four preceding lag grids, relative to
the location of the index grid, will include 1-4 grids that always follow the index grid. To
illustrate, when the index grid has a column location value of 4, the selection of the four
preceding grids will result in the inclusion of column 3 for lag grid 1, column 2 for lag grid
2, column 1 for lag grid 3, and column 9, in one row above, for lag grid 4. When the index
grid is in column 3, two grids precede the index grid, and two grids follow the index grid.
The index grid for column 2 includes 1 grid that precedes the index grid and three grids
that follow the index grid. For the 4th lag grid, when the index grid is in column 1, all four
lag grids follow the index grid and are in the above row.
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These are the results for all grids that preceded or followed the index grid: For grids
with monitors, 62.0% of the grids preceded the index grids, and 38% followed the index
grids. For grids without monitors, 69.3% preceded the index grids, and 30.7% followed
the index grids. The combined monitor and no monitor condition included 68.4% of the
grids that preceded the index grids, and 31.6% of the grids that followed the index grids.
To summarize, these results support the conclusion that this spatial lag grid case-crossover
design had lag grids that preceded or followed the index grid. This outcome demonstrates
that we implemented a bidirectional spatial lag grid case-crossover design [3,66].

2.7. Statistical Analyses

The 20 linked exposure-health outcome files (four experimental AOD-PM2.5 and base-
line PMB fused surfaces with ED asthma, IP asthma, MI, and HF) were analyzed using
conditional logistic regression (CLR) statistical software included in the SAS (Statistical
Analysis System)/STAT proportional hazards regression (PHREG) Procedure, version 14.3,
along with Base SAS version 9.4 [75–79]. PHREG performs CLR analyses on survival data,
based on the Cox Proportional Hazards model, by quantifying the effects of explanatory
variables on survival times. The chi-square test evaluated group differences between cate-
gorical variables, such as case and control status, and race [77]. Assessment of continuous
variables of poverty percent and population density (converted to L10 values before anal-
ysis) involved comparing a case group mean to a control group mean and its associated
95% confidence interval (CI). Means and 95% CIs were computed by Proc Means in Base
SAS [77]. If the case mean was below or above the 95% CI lower or upper limit of the
control group mean, this outcome was significantly different at p ≤ 0.05 [75]. If the case
mean was within the 95% CI lower and upper limits of the control mean, this outcome was
not significant, p > 0.05.
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2.7.1. Variable Selection

The CLR runs consisted of a PM2.5 fused surface (baseline PMB, PMC, PMCK, PMCQ,
PMCKQ) and one respiratory-cardiovascular endpoint (ED asthma, IP asthma, MI, or HF).
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CLR runs evaluated individual lag grids 0-4, and summary lag grids 01, 24, and 04. The
base CLR analysis controlled for the following confounders: apparent temperature, AT—at
each lag grid; AT2—at lag grids 0, 1, 01, and 04; pollen; snowstorms; and major holidays.
Four separate CLR runs evaluated effect modifiers: (1) diabetes mellitus, hypertension, and
atherosclerosis; (2) gender, age, and race; (3) health insurance coverage, poverty percent,
and population density; and (4) season. An effect modifier was included in subsequent
analyses if the initial CLR OR had a probability value of p ≤ 0.09.

2.7.2. Final CLR Runs

Final CLR runs included the base model, effect modifiers for lag grids 0-4, and sum-
mary lag grids 01, 24, and 04. The three monitor grid conditions included grids without a
monitor (No), grids with at least one monitor (Yes), and grids with or without air monitors
(Both). The null hypothesis was rejected if p ≤ 0.05. The use of the Akaike information
criterion permitted the selection of CLR outcomes with lower values, thereby representing
a better parameter fit [75,76,78]. Follow-up analyses evaluated the contribution of monitor
(No, Yes) and season (Cold, Warm) interactions at lag grids 0-4, 01, 24, and 04.

2.8. House Heating Fuel

An additional analysis evaluated differences in the use of house heating fuel during
the study period. The purpose of this analysis was to determine if there were differences
in the type of house heating fuel used in urban grids with ambient air monitors versus
rural grids without ambient air monitors. The 2005–2007 American Community Survey
results were used [67,68]. House heating fuel estimates were available for jurisdictions
with a population of at least 20,000 persons. Data were available for all six jurisdictions
in urban grids with air monitors (Anne Arundel, Baltimore, Harford, Montgomery, and
Prince George’s counties, and Baltimore city, MD, USA) and five of the jurisdictions in
rural grids without air monitors. In rural grids without air monitors American Community
Survey data were available for Frederick, Carroll, Howard, Cecil, and Talbot, but not for
Kent counties.

2.9. Spatial Autocorrelations

The five fused surfaces (baseline PMB, PMC, PMCK, PMCQ, and PMCKQ) and ambient
temperature, measured as ◦F, were evaluated using Moran’s I coefficient. This spatial autocor-
relation analysis was accomplished using Proc Variogram in SAS/STAT software [78]. This
statistic assesses spatial continuity between two spatial dimensions (CMAQ rows and columns
in the Baltimore study area) by evaluating similarities between a selected outcome measure
in multiple adjacent and distant observation pairs. Computed Moran I values are evaluated
using the Z statistic. The Z statistic can be used to determine if the spatial autocorrelation
is positive, negative, or absent, and yields a probability value. When the probability value
indicates that there is a significant outcome, a positive Z value represents the presence of a
positive autocorrelation, while a negative Z value represents a negative autocorrelation. The
strength of the autocorrelation, positive or negative, is based on the size of the computed
probability value, with a lower value representing a stronger autocorrelation.

3. Results
3.1. Correlations between Baseline PMB and Experimental AOD-PM2.5 Fused Surfaces

Table 4 displays correlations between baseline PMB and the four AOD-PM2.5 fused
surfaces in all grids, and in grids with and without air monitors. Because there were
many observations in the exposure dataset (Both = 8316; per grid monitor condition, Yes
or No = 4158), all correlations were highly significant, all p ≤ 0.01. Nonetheless, there are
interesting outcomes that provide clues as to the differential effectiveness of each of the
AOD-PM2.5 fused surfaces over the baseline PMB fused surface in accurately estimating
ambient fine PM concentration levels in the entire Baltimore study area, and in the two
grid monitor conditions. First, correlations were highest between PMB and PMCQ in all
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grids, and in grids with and without air monitors. The percentage of shared variance,
evaluated as a percentage value of the square of the correlation coefficient (r2%), was 94.7%
for the Baltimore study area, 97.4% in grids with air monitors, and 94.3% in grids without
air monitors. The r2% (∆%) value of 3.1%, computed as the difference between grids with
and without air monitors, was smallest for the PMCQ fused surface. PMC and PMCK
AOD-PM2.5 fused surfaces had ∆% values of 32.4% and 35.7%, respectively. The PMCKQ
∆% value of 15.9% was between PMCQ’s lowest value and PMCK’s highest value.

Table 4. Correlations between baseline PMB and the four AOD-PM2.5 fused surfaces by ambient
PM2.5 air monitor status in the Baltimore study area.

Fused Surface
CMAQ Grid Ambient PM2.5 Air Monitor Status 1,2

Both (n = 8316) Yes (n = 1260) No (n = 7056) ∆%

PMC 0.676 (45.7) ‡ 0.858 (73.6) ‡ 0.642 (41.2) ‡ 32.4
PMCK 0.553 (30.6) ‡ 0.788 (62.1) ‡ 0.515 (26.4) ‡ 35.7
PMCQ 0.973 (94.7) ‡ 0.987 (97.4) ‡ 0.971 (94.3) ‡ 3.1

PMCKQ 0.852 (72.6) ‡ 0.928 (86.1) ‡ 0.838 (70.2) ‡ 15.9
1 Each cell contains correlation (r2%) values. 2 Significance identified with: ‡ = p ≤ 0.01.

3.1.1. Fused Surface Means by Air Monitor Grid Condition

The three-year concentration level means for baseline PMB and the four AOD–PM2.5
fused surfaces in the three CMAQ air monitor grid conditions are presented in Table 5.

Table 5. Three-year mean concentration levels for the four AOD-PM2.5 and baseline PMB fused
surfaces by air monitor grid status in the Baltimore study area.

Fused
Surface

CMAQ Grid Ambient PM2.5 Air Monitor Status 1,2

Both Yes No

PMB 14.19 (14.13–14.26) † 14.60 (14.44–14.76) 14.12 (14.05–14.19) †,‡

PMC 13.66 (13.60–13.72) † 13.90 (13.73–14.06) † 13.62 (13.55–13.68) †,‡

PMCK 14.38 (14.31–14.44) 14.27 (14.10–14.44) † 14.39 (14.32–14.47)
PMCQ 13.79 (13.74–13.85) † 14.28 (14.12–14.43) † 13.71 (13.64–13.77) †,‡

PMCKQ 13.91 (13.85–13.97) † 14.24 (14.09–14.40) † 13.85 (13.79–13.92) †,‡

1 Each cell contains mean (95% CI) values in µg/m3. 2 Significant differences between means are based on the
comparison mean exceeding the upper or lower 95% CI values of the control mean: † = p ≤ 0.05 (within each
column); ‡ = p ≤ 0.05 (between last two columns).

The first interesting observation concerns the fused surface with the highest mean
concentration level in grids with and without air monitors: PMB in grids with air monitors
(14.60 µg/m3), and PMCK in grids without air monitors (14.39 µg/m3). Second, the PMCK
no monitor grid mean was not significantly different from PMCK monitor grid mean. These
results suggest that the PMCK fused surface may provide a more stable concentration level
estimate in grids with and without ambient air monitors.

3.1.2. Fused Surface and Demographic Variable Categorical Analyses

Differences between experimental AOD-PM2.5 and baseline PMB fused surfaces and
demographic variables for the three grid conditions are listed in Table 6.

The three-year mean (95% CI) for each fused surface for all 99 grids in the Baltimore
study area were used to create three 95% CI categories. The Below category included all
grid means (second column) that were below each fused surface 95% lower level value.
The Within category included all grid means (second column) with values that were higher
than the CI 95% lower level value and lower than the CI 95% upper level value. The
Above category included all means (second column) that were higher than the CI 95%
upper level value. As can be seen in Table 6, second column, all Chi-Square analyses
for the three groups were significant (all p’s ≤ 0.01). These results confirm that the three
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levels in each category group did not overlap and were thus unique. The remaining two
columns in Table 6 show the results for each fused surface category group in grids with
air monitors (third column) and in grids without air monitors (fourth column). In grids
with air monitors, significant Chi-Square results only occurred for PMB and PMCQ fused
surfaces (both p’s ≤ 0.01). For PMB and PMCQ fused surfaces, the category group totals
and percentages were higher for the Above category than the Within or Below categories. In
grids without air monitors, Chi-Square analyses were significant for all five fused surfaces
(all p’s ≤ 0.01). Interestingly, for the five fused surfaces, the Above categories in grids
without air monitors were significantly different from the Above categories in grids with
air monitors (all p’s ≤ 0.01). For all five fused surfaces, the Above category totals in grids
without air monitors were always larger than the Above category totals in grids with air
monitors. Only the PMCK fused surface had both higher totals and percentages for the
Above category in grids without air monitors than in grids with air monitors.

Table 6. Categorical analyses of fused surfaces, poverty percent, and population density by monitor
status in the Baltimore study area.

Fused Surfaces and
Demographic
Categories 1

CMAQ Grid Ambient PM2.5 Air Monitor Status 2−4

Both Yes No

PMB—Below 38 (38.38) ‡ 4 (26.67) † 34 (40.48) ‡

Within 6 (6.06) 1 (6.67) 5 (5.95)
Above 55 (55.56) 10 (66.67/18.18) 45 (53.57/81.82) ‡

PMC—Below 52 (52.53) ‡ 7 (46.67) 45 (53.57) ‡

Within 17 (17.17) 1 (6.67) 16 (19.05)
Above 30 (30.30) 7 (46.67/23.33) 23 (27.38/76.77) ‡

PMCK—Below 36 (36.36) ‡ 8 (53.33) 28 (33.33) ‡

Within 18 (18.18) 2 (13.33) 16 (19.05)
Above 45 (45.45) 5 (33.33/11.11) 40 (47.62/88.89) ‡

PMCQ—Below 39 (39.39) ‡ 3 (20.0) † 36 (42.86) ‡

Within 7 (7.07) 2 (13.13) 5 (5.95)
Above 53 (53.54) 10 (66.67/18.87) 43 (51.19/81.13) ‡

PMCKQ—Below 38 (38.38) ‡ 4 (26.67) 34 (40.48) ‡

Within 9 (9.09) 2 (13.33) 7 (8.33)
Above 52 (52.53) 9 (60.00/17.31) 43 (51.19/82.69) ‡

Poverty—Below 51 (75.00) ‡ 7 (50.00) 44 (81.48) ‡

Within 2 (2.94) 0 (0.00) 2 (3.70)
Above 15 (22.06) 7 (50.00/46.67) 8 (14.81/53.33)

Population—Below 36 (52.94) ‡ 3 (21.43) † 33 (61.11) ‡

Within 2 (2.94) 0 (0.00) 2 (3.70)
Above 30 (44.12) 11 (78.57/36.67) 19 (35.19/63.33)

1 The Below, Within, and Above categories represent cutoffs for the 95% CI lower and upper limits for each fused
surface concentration level and each demographic variable three-year mean values. Fused surface three-year
means (95% CI) in Table 5 were used to determine cutoff values for the three-level categories. 2 These are the
means (95% CIs) for the two demographic variables: poverty percent, 8.27 (95% CI, 7.84–8.69); population density
(Log 10), 2.77 (95% CI, 2.75–2.78). 3 Statistical analyses were completed for the three-level categories (Below,
Within, Above) in the three grid monitor conditions (columns 2–4), and for grids with and without air monitors in
the Above category (rows; columns 3–4). 4 Significance is based on the chi-square test: † = p ≤ 0.05; ‡ = p ≤ 0.01.

As can be seen at the bottom of Table 6, the same data analysis strategy as described
above for the fused surfaces was implemented to analyze the two demographic variables,
poverty percent and population density. There were minor but important differences in
the results: Only the poverty percent category analysis in grids without air monitors was
significant (p ≤ 0.05). For population density, the category analyses were significant in grids
with air monitors (third column) and also in grids without air monitors (fourth column;
both p’s ≤ 0.05). The poverty percent and population density Above categories analyses in
grids without air monitors were not significantly different from grids with air monitors
(both p’s > 0.05).
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3.1.3. Patient Characteristics

Table 7 shows totals and percentages for the four respiratory-cardiovascular ED visit
and IP hospitalization groups stratified on case and control status and patients’ race. As
seen in the Both column, second from left, ED asthma had the most observations (cases and
controls combined, 47,256), and IP asthma had the fewest (13,515), with intermediate totals
for MI (19,201) and HF (27,518). Totals and percentages for each of the four health outcome
groups were higher in the 57 grids with no monitors than in the 15 grids with monitors.
For each of the four health outcome groups, approximately 25% of observations were cases
and about 75% were controls. The ratio of one case to three controls was also evident in
grids with and without air monitors for ED asthma, IP asthma, MI, and HF (all p’s > 0.05).
The ED asthma total (%) for Black patients (22,696, 48%) was higher than the totals (%) for
White patients (21,294, 45%) and Other patients (3060, 6%). For the three IP groups, the
totals (%) were highest for White patients, intermediate for Black patients, and lowest for
Other patients. The race by CMAQ grid condition analyses were significant for all four
health outcomes (all p’s ≤ 0.01). While there were more Black patients with ED asthma and
IP asthma in grids with air monitors than in grids without air monitors, this relationship
was reversed for Other patients and White patients. Black patients, Other patients, and
White patients with IP MI or HF had higher totals (%) in grids without air monitors than in
grids with air monitors.

Table 7. Demographic attributes for respiratory–cardiovascular chronic disease cases and controls
and patients’ race by monitor status in the Baltimore study area.

Variables
CMAQ Grid Ambient PM2.5 Air Monitor Status 1,2

Both Yes No

ED Asthma 47,256 (100.00) 20,815 (44.05) 26,441 (55.95)
Cases 11,723 (24.81) 5152 (10.90) 6571 (13.91)

Controls 35,533 (75.19) 15,663 (33.14) 19,870 (42.05)
Black ‡ 22,696 (48.24) 11,844 (25.17) 10,852 (23.06)
Other 3060 (6.50) 785 (1.67) 2275 (4.84)
White 21,294 (45.26) 8082 (17.18) 13,212 (28.08)

IP Asthma 13,515 (100.00) 5672 (41.97) 7843 (58.03)
Cases 3376 (24.98) 1417 (10.48) 1959 (14.50)

Controls 10,139 (75.02) 4255 (31.48) 5884 (43.54)
Black ‡ 4510 (33.43) 2358 (17.48) 2152 (15.95)
Other 669 (4.96) 179 (1.33) 490 (3.63)
White 8312 (61.61) 3119 (23.12) 5193 (38.49)
IP MI 19,021 (100.00) 7185 (37.42) 12,016 (62.58)
Cases 4790 (24.95) 1784 (9.29) 3006 (15.66)

Controls 14,411 (75.05) 5401 (28.13) 9010 (46.92)
Black ‡ 2456 (13.28) 1183 (6.17) 1363 (7.11)
Other 848 (4.42) 180 (0.94) 668 (3.48)
White 15,780 (82.30) 5811 (30.31) 9969 (51.99)
IP HF 27,518 (100.0) 11,834 (43.00) 15,684 (57.00)
Cases 6826 (24.81) 2928 (10.64) 3898 (14.17)

Controls 20,692 (75.19) 8906 (32.36) 11,786 (42.83)
Black ‡ 7029 (25.57) 3463 (12.60) 3566 (12.97)
Other 793 (2.88) 285 (1.04) 508 (1.85)
White 19,672 (71.55) 8078 (29.38) 11,594 (42.17)

1 Total grids with health data = 72: 15 with monitors, and 57 without monitors. 2 Number (%); Chi-Square, ‡ = p ≤ 0.01.

3.2. CLR Analyses

CLR results showed significant differences between AOD-PM2.5 and baseline PMB
fused surfaces, health outcome groups, lag grids, monitor conditions, and warm and cold
season differences. For all CLR runs, ORs were significant at lag grids 0, 1, 01, and 04
(all p’s ≤ 0.05). Effect modifiers were significant only for ED asthma in all grids (PMCQ:
population density, lag grid 0, protective OR, p ≤ 0.05), and in grids with monitors (PMB,
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PMC, PMCK, PMCQ, PMCKQ: season, lag grids 2–4, 04, all p’s ≤ 0.05). By using the mean
(95% CI), it was possible to evaluate OR magnitude differences for the four health outcomes,
four AOD-PM2.5 and baseline PMB fused surfaces at lag grids 0, 1, 01, and 04.

3.2.1. Emergency Department (ED) Asthma

Figure 2 shows ED asthma ORs (95% CIs) for the four AOD-PM2.5 and PMB fused
surfaces. There are separate panels in Figure 2, one for each of the four lag grid values of 0,
1, 01, and 04. In the Both monitor grid condition, for lag grids 0, 1, and 01, ORs for each of
the four AOD-PM2.5 fused surfaces were significantly higher than the baseline PMB ORs
(all p’s ≤ 0.05). In the Both monitor grid condition, for lag grid 04, the PMC, PMCK, and
PMCKQ ORs were significantly higher than the PMB ORs (all p’s ≤ 0.05). In lag grids 0, 1,
and 01, the no monitor PMC and PMCK ORs were significantly higher than monitor PMC
and PMCK ORs (all p’s ≤ 0.05).
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Figure 2. ED asthma ORs (95% CIs) for the four AOD-PM2.5 and baseline PMB fused surfaces, in all
grids (Both), and in grids with (Yes) and without (No) air monitors, and in separate panels for lag
grids 0 (a), 1 (b), 01 (c), and 04 (d).

3.2.2. Inpatient (IP) Asthma

Figure 3 shows IP asthma ORs (95% CIs) for the four AOD–PM2.5 and baseline PMB
fused surfaces, and in separate panels for lag grids 0, 1, 01, and 04. In the Both monitor grid
condition, for lag grids 0, 1, and 01, the PMC, PMCK, and PMCKQ ORs were significantly
higher than the PMB ORs (all p’s ≤ 0.05). Considering lag grids 0, and 01, only the no monitor
PMCK ORs were significantly higher than the monitor PMCK ORs (both p’s ≤ 0.05).

3.2.3. Inpatient Myocardial Infarction (IP MI)

IP MI ORs for the four AOD–PM2.5 and baseline PMB fused surfaces, for lag grids
0, 1, 01, and 04, are displayed in Figure 4. In the Both monitor grid condition, for lag
grids 0, 1, and 01, the PMC, PMCK, and PMCKQ ORs were significantly higher than PMB
ORs (all p’s ≤ 0.05). For lag grids 0, 1, and 01, the no monitor PMC and PMCK ORs were
significantly higher than the monitor PMC and PMCK ORs (all p’s ≤ 0.05).
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3.2.4. Inpatient Heart Failure (IP HF)

IP HF ORs for the five fused surfaces, three monitor grid conditions, and four lag grid
values are displayed in Figure 5. In the Both monitor grid condition, for lag grids 0, 1, and
01, the PMC, PMCK, and PMCKQ ORs were significantly higher than the baseline PMB
ORs (all p’s ≤ 0.05). For the Both monitor grid condition, for lag grid 04, only the PMCK
OR was significantly higher than the PMB OR (p ≤ 0.05). In lag grids 0, 1, and 01, the no
monitor PMC and PMCK ORs were significantly higher than monitor PMC and PMCK
ORs (all p’s ≤ 0.05).
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3.3. No Monitor–Monitor OR Percent

The no monitor-monitor OR percent (∆OR%) values for the four AOD-PM2.5 and
baseline PMB fused surfaces and four lag grids 0, 1, 01, and 04, are displayed in Figure 6 in
four separate panels, one for each of the four health outcomes. For the four health outcomes,
∆OR% values were larger for PMC and PMCK than the other three fused surfaces. These
differences occurred for each of the four lag grid values. For the four health outcomes,
PMC, PMCK, and PMCKQ fused surface ∆OR% values at lag 04 were smaller than the
∆OR% values at lag grids 0, 1, and 01. For the four health outcomes, PMB ∆OR% values
were negative at lag grids 0, 1, 01, and 04. Results were mixed for PMCQ and PMCKQ.
IP asthma PMCQ had negative ∆OR% values, as did IP asthma PMB. PMCKQ ∆OR% at
lag grids 0, 1, and 01 were positive, resembling PMC and PMCK. One difference, however,
was that the PMCKQ ∆OR% values were lower than the PMC and PMCK ∆OR% values at
lag grid 04. PMCQ ∆OR% values were negative for ED asthma and IP asthma, resembling
baseline PMB ED asthma and IP asthma ∆OR% values.
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Figure 6. The no monitor–monitor OR percent (∆OR%) values for the four AOD-PM2.5 and baseline
PMB fused surfaces for lag grids 0, 1, 01, and 04, and in separate panels for ED asthma (a), IP asthma
(b), IP MI (c), and IP HF (d).

3.4. Size of Homogeneous Spatial Area

The largest size of the homogeneous spatial area (HOSA) was identified by the pres-
ence of a significantly higher AOD-PM2.5 fused surface OR than the baseline PMB OR for
each chronic disease group (ED asthma, IP Asthma, MI, and HF) at lag grids 0, 1, 01, and 04.
Table 8 summarizes the HOSA findings. For both monitor grid conditions combined (Both,
top of Table 8), analyses of ED asthma and IP HF with the PMCK fused surface produced
ORs that were significantly higher than the PMB ORs at lag grid values of 0, 1, 01, and
04 (all p’s ≤ 0.05). ORs for ED asthma with the PMC and PMCKQ fused surfaces were
significantly higher than the PMB ORs at lag grids 0, 1, 01, and 04 (all p’s ≤ 0.05). Based on
these significant outcomes at lag grid 04 for these three AOD-PM2.5 fused surfaces, it was
concluded that the largest HOSA for PMC, PMCK, and PMCKQ fused surfaces was five
grids (one 12 km-grid-wide × 5 grids) or 60 km. In grids with air monitors, only the ED
asthma PMCK ORs were significantly higher than the PMB ORs at lag grids 0, 1, and 01
(all’s p ≤ 0.05). The width of the largest HOSA for PMCK was two grids wide, or 24 km.
In grids without air monitors the analyses of ED asthma, IP MI, and HF with the PMC
and PMCK fused surfaces produced ORs that were significantly higher than PMB ORs at
lag grids 0, 1, 01, and 04 (all p’s ≤0.05). The analyses of ED asthma with PMCKQ resulted
in ORs that were significantly higher than the PMB ORs at lag grids 0, 1, 01, and 04 (all
p’s ≤ 0.05). The maximum size of the HOSA for PMC, PMCK, and PMCKQ was five grids
wide, or 60 km.
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Table 8. Lag grid analyses identified the size of homogeneous spatial areas (HOSAs), in multiples
of one 12-km-wide Community Multiscale Air Quality (CMAQ) grid, when the AOD-PM2.5 fused
surface ORs are greater than the baseline PMB ORs (Top), and the AOD–PM2.5 and baseline PMB fused
surface ORs in grids without air monitors are compared to ORs in grids with air monitors (Bottom).

Grid Monitors 1 Respiratory-Cardiovascular Chronic Disease Groups

ED Asthma IP Asthma IP MI IP HF

Both
PMC 4 (0, 1, 01, 04) 3 (0, 1, 01) 3 (0, 1, 01) 3 (0, 1, 01)

PMCK 4 (0, 1, 01, 04) 3 (0, 1, 01) 3 (0, 1, 01) 4 (0, 1, 01, 04)
PMCQ 0 0 0 0

PMCKQ 4 (0, 1, 01, 04) 3 (0, 1, 01) 3, (0, 1, 01) 3 0, 1, 01)
Yes

PMC 0 0 0 0
PMCK 2 (0, 1, 01) 0 0 0
PMCQ 0 0 0 0

PMCKQ 0 0 0 0
No

PMC 4 (0, 1, 01, 04) 3 (0, 1, 01) 4 (0, 1, 01, 04) 4 (0, 1, 01, 04)
PMCK 4 (0, 1, 01, 04) 3 (0, 1, 01) 4 (0, 1, 01, 04) 4 (0, 1, 01, 04)
PMCQ 3 (0, 1, 01) 0 0 0

PMCKQ 4 (0, 1, 01, 04) 3 (0, 1, 01) 3 (0, 1, 01) 3 (0, 1, 01)
Monitor–No Monitor 2

PMB = = = =
PMC < (0, 1, 01) < (1, 01) < (0, 1, 01) < (0,1, 01)

PMCK < (0, 1, 01) < (0, 01) < (0, 1, 01) < (0, 1, 01)
PMCQ = = = =

PMCKQ = = = =
1 Each AOD-PM2.5 fused surface OR is compared to the baseline PMB fused surface OR (95% CI). Only significant
differences are shown, p ≤ 0.05. 2 AOD-PM2.5 and baseline PMB fused surface ORs in grids without air monitors
are compared to ORs (95% CIs) in grids with air monitors. Significant outcome at p ≤ 0.05 is displayed with the
symbol “<”. A non-significant outcome for p > 0.05 is shown with “=”.

Monitor–No Monitor Differences

The purpose of these analyses was to determine if the AOD-PM2.5 and baseline PMB
fused surfaces had ORs that differed between grids without and with air monitors. Results are
presented at the bottom of Table 8. The ED asthma, IP asthma, MI, and HF health outcomes
evaluated with PMC and PMCK fused surfaces had ORs that were significantly higher in
rural grids without air monitors than in urban grids with air monitors (all p’s ≤ 0.05).

3.5. Warm–Cold Season Differences

There were warm and cold season differences for the four the AOD-PM2.5 fused surfaces
and the four health outcomes (online resource includes electronic Supplementary Material
consisting of Figure S1 (ED asthma: a-d, lag grids 0, 1, 01, 04, respectively) though Figure
S4 (IP HF: a-d, lag grids 0, 1, 01, 04, respectively) for ED asthma, IP asthma, MI, and HF,
respectively). These outcomes were expressed as larger ORs during the warm season and
smaller ORs during the cold season. Specifics for each health outcome are presented below.

ED asthma (Figure S1), IP asthma (Figure S2), and MI (Figure S3) PMB, PMC, PMCK,
PMCQ, and PMCKQ warm season ORs were significantly higher than cold season ORs at
lag grids 0, 1, and 01 (all’s p ≤ 0.05). ED asthma, IP asthma, and MI PMCK warm season
ORs were significantly higher than cold season ORs at lag grid 04 (all p’s ≤ 0.05). IP HF
PMB, PMC, PMCK, PMCQ, and PMCKQ warm season ORs were significantly higher than
cold season ORs at lag grids 0, 1, 01, and 04 (all p’s ≤ 0.05).

Figure 7 shows the three-year mean (95% CI) PM2.5 concentration levels for the four
AOD–PM2.5 and baseline PMB fused surfaces and shared variance percent (r2%) between
each fused surface and the three-year mean ambient temperature values in degrees ◦F by
season (Warm, Cold) in grids with and without air monitors.
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68.68, 95% CI = 68.46-68.89) were significantly higher than during the cold season (Moni-
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Figure 7. Warm–cold season differences for PM2.5 concentration (µg/m3; top: (a,b)) and shared
variance percent between PM2.5 and temperature (r2%; bottom: (c,d)), in grids with (left: (a,c)) and
without (right: (b,d)) ambient air monitors.

Fine PM concentration levels for the five PM2.5 fused surfaces were significantly higher
during the warm season than the cold season, in grids with (top left panel, 6a) and without
(top right panel, 6b) air monitors (all p’s ≤ 0.05). As expected, ambient temperatures
during the warm season (Monitors, Yes: 70.61, 95% CI = 70.11–71.11; Monitor, No: 68.68,
95% CI = 68.46–68.89) were significantly higher than during the cold season (Monitor, Yes:
44.02, 95% CI = 43.54–44.51; Monitor, No: 42.53, 95% CI = 42.31–42.75) for the two monitor
grid conditions (all p’s ≤ 0.05).

The measure of association shown is r2%, the square of the correlation (r) expressed
as a percent. The r2% value quantifies the percentage of the variance that is shared by
each fused surface PM2.5 concentration level and ambient temperature value (◦F). The r2%

values for the five fused surfaces were larger during the warm season than the cold season,
especially in grids with air monitors (bottom left panel, 6c). The r2% measures for PMC and
PMCK were similar in grids with and without air monitors. For PMB, PMCQ, and PMCKQ,
the magnitude of the warm season shared variance measure was lower in grids without air
monitors than in grids with air monitors. For the five fused surfaces, the cold season r2%

values were higher in grids without air monitors than in grids with air monitors.

3.5.1. Warm-Cold Season OR Percent

Figure 8 displays the warm–cold season odds ratio difference (∆OR%) values.
The ∆OR% measures were positive for each of the four AOD- PM2.5 and baseline PMB

fused surfaces, ED asthma (panel a), IP asthma (b), MI (c), and HF (d), at lag grids 0, 1,
01, and 04. All four panels in Figure 8 demonstrate that PMC and PMCK had consistently
higher ∆OR% values than the other two AOD-PM2.5 (PMCQ, PMCKQ) and baseline PMB
fused surfaces at lag grids of 0, 1, and 01. ED asthma ∆OR% values were smaller than
the ∆OR% values for IP asthma, MI, and HF. For all four health outcomes and the four
AOD-PM2.5 and PMB fused surfaces, ∆OR% values were smaller at lag grid 04 than at the
other three lag grid values of 0, 1, and 01.
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3.5.2. House Heating Fuel

As shown in Table 9, grids with (urban) and without (rural) ambient air monitors
differed in the type of house heating fuel used between 2005 and 2007.

Table 9. House heating fuel used in Baltimore study area in Community Multiscale Air Quality Grids
with or without ambient air monitors 1.

Variables
Grids with Ambient Air Monitors 3

Yes No Both

Utility/Bottled Gas 56.4 35.2 52.9
Electricity 32.8 44.1 34.7

Fuel Oil/Kerosine 9.8 17.9 11.1
Other 2 0.7 2.5 1.0
No Fuel 0.3 0.3 0.3

Temperature ◦F 4 57.32
(55.50–58.13)

55.60
(55.26–55.94)

55.86
(55.55–56.18)

1 Results from the 2005–2007 American Community Survey three-year estimates. 2 Other fuel: coal/coke, wood,
solar. 3 Heating source cell values are percentages. 4 Three-year mean temperature values are for 2004–2006.

In urban grids (Yes), 56.4% of the houses surveyed used natural gas for heating—the
most frequently used source of house heating fuel. In rural grids (No), 44.1% of the houses
reported using electricity—the most used method to heat houses. Fuel oil (and kerosine)
use was higher in grids without air monitors (17.9%) than in grids with air monitors (9.8%).
The last row in Table 9 shows that between 2004 and 2006, the three-year mean ambient
temperature (◦F) was significantly higher in urban grids with air monitors (55.32) than in
rural grids without air monitors (55.60) (p ≤ 0.05).

3.5.3. Spatial Autocorrelations in the Baltimore Study Area

Moran’s I statistic was used as a spatial summary measure to evaluate the presence of
similar values in adjacent grids versus distant grids for the five fused surfaces and ambient
temperature. These spatial autocorrelation analyses are in Table 10.
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Table 10. Spatial autocorrelations based on Moran’s I for the five fused surfaces and ambient
temperature by season in the Baltimore study area.

Surfaces

Seasons 1,2

Warm Cold Both

I Z I Z I Z

PMB 0.0538 35.00 ‡ 0.1690 109.40 ‡ 0.0995 129.10 ‡

PMC 0.0370 24.10 ‡ 0.0027 1.91 0.9902 12.14 ‡

PMCK 0.0268 17.49 ‡ −0.0014 −0.75 0.0045 6.01 ‡

PMCQ 0.0456 29.70 ‡ 0.1040 67.50 ‡ 0.0700 91.00 ‡

PMCKQ 0.0414 26.90 ‡ 0.0389 25.40 ‡ 0.0353 45.90 ‡

Temp ◦F 0.0167 10.96 ‡ 0.0363 23.70 ‡ 0.0232 30.20 ‡

1 Positive Z value for Moran’s I represents positive autocorrelation, while negative Z value indicates negative
autocorrelation, when p ≤ 0.05. 2 Z p value: ‡ = p ≤ 0.01.

During the warm season, all Z values were positive and significant, thereby confirming
the presence of positive autocorrelations between grid values and row-column grid distances
(all p’s ≤ 0.01). During the cold season, only baseline PMB, PMCQ, and PMCKQ fused
surfaces had significant and positive autocorrelation values (all’s p ≤ 0.01). Unexpectedly,
during the cold season, the Moran I statistic was not significant for PMC and PMCK fused
surfaces (both p’s > 0.05). When the same autocorrelation analyses were completed for all
grids, however, all five fused surfaces, including PMC and PMCK, and ambient temperature
again had significant and positive autocorrelation values (all p’s ≤ 0.01).

3.6. Lag Grids versus Lag Days

There were similarities and differences between the spatial lag grid and temporal lag
day monitor (Table S1, Supplementary Material) and season (Table S2, Supplementary
Material) results. The no monitor-monitor odds ratio difference percent (∆OR%) values
in Table S1 were the same for the five fused surfaces (PMB, PMC, PMCK, PMCQ, and
PMCKQ) and the four health outcomes (ED asthma, IP asthma, MI, and HF) at lag grid 0,
and lag day 0. The analysis of the four health outcomes with PMC and PMCK resulted in
higher ∆OR% values at lag day 1 than at lag grid 1. Lag day 01 ∆OR% values were also
higher than lag grid 01 ∆OR% values for PMC, PMCK, and PMCKQ with the four health
outcomes. The combination of PMCQ with IP asthma and HF at lag value of 1, and PMCQ
with IP asthma and MI at lag value of 01 resulted in lower ∆OR% lag day than lag grid
∆OR% values. Baseline PMB, in combination with the four health outcomes resulted in
lower ∆OR% values at lag day 1 and 01 than at lag grid 1 and 01. Lower lag day than lag
grid values also occurred for PMCKQ with ED asthma at lag day 1. There were significant
lag grid values that included 0, 1, 01, and 04. Lag day values were significant for 0, 1, and
01, but not 04 (all p’s ≤ 0.05). These outcomes occurred in grids with or without ambient
air monitors in the spatial lag grid and temporal lag day analyses.

The ∆OR% measure was also used to evaluate warm-cold season differences obtained
with the spatial lag grid analyses and the temporal lag day analyses. The ∆OR% lag grid
and lag day values were the same for the five fused surfaces and four health outcomes at
lag value of 0. For the five fused surfaces and four health outcomes at lags of 1 and 01, all
∆OR% values were higher for lag days than lag grids. Only the warm season ORs were
significant for some of the lag grid and lag day analyses. PMCK identified more significant
warm season ORs in the lag grid and lag day analyses than the other three AOD-PM2.5
fused surfaces (all p’s ≤ 0.05). There were non-significant warm season ORs for baseline
PMB in combination with the four health outcomes (all p’s > 0.05). The other difference was
due the length of the lag grid values versus the lag day values, with the former having
significant ORs for all four lag grids (0, 1, 01, and 04), while the latter only had significant
ORs for three of the four lag days (0, 1, 01).
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4. Discussion

This study implemented, for the first time, a spatial lag grid analysis of Hierarchi-
cal Bayesian Model (HBM) assembled experimental AOD-PM2.5 and baseline PMB fused
surfaces and respiratory-cardiovascular ED visits and IP hospitalizations with patient
residences uniquely assigned to 12 km2 CMAQ grids. Because the spatial lag grid anal-
yses were completed using the same concatenated exposure-health outcome data files
that were previously used to evaluate temporal lag days [3], it was possible to identify
unique differences and similarities associated with these two case-crossover data analysis
procedures. Unique findings include a description and interpretation of differences among
the size of homogeneous spatial areas (HOSAs), greater risk of manifesting a respiratory-
cardiovascular chronic disease as a result of exposure to higher AOD-PM2.5 concentration
levels in rural areas, and warm-cold season differences that showed associations between
ambient temperature and AOD-PM2.5 concentration levels, and increases in respiratory-
cardiovascular chronic disease ED visits for asthma and IP hospitalizations for asthma,
MI, and HF. Each of these four topics are detailed below after reviewing correlations and
descriptive statistical analyses for baseline PMB and the four experimental AOD-PM2.5
fused surfaces.

Correlations and three-year fine PM concentration level means suggest that PMCK
may be more representative of ambient PM2.5 concentration levels in urban grids with air
monitors and in rural grids without air monitors than baseline PMB, or the other three
AOD-PM2.5 fused surfaces. The percentage decrease in shared variance between PMB-PMC
and PMB-PMCK in grids with and without air monitors was 32.4% and 35.7%, respectively.
In grids without air monitors, the baseline PMB concentration levels reflect less emphasis
on air monitor readings and greater importance on CMAQ PM2.5 model estimates. In grids
without air monitors, PMC uses AOD-PM2.5 readings (with missing values) while PMCK
utilizes Kriged AODK-PM2.5 readings (without missing values) to estimate ambient fine PM
concentrations. One interpretation could be that in grids without air monitors, AOD-PM2.5
concentration levels are more representative of ambient monitor PM2.5 measurements than
the Community Multiscale Air Quality (CMAQ) PM2.5 model estimates.

The first aim was to determine the size of homogeneous spatial areas, HOSAs. HOSA
sizes in km for width and height or km2 for area differed as a function of AOD-PM2.5
fused surface, respiratory-cardiovascular ED visits or IP hospitalizations, and monitor grid
condition. The largest HOSAs included 5 interconnected grids (720 km2), and the smallest
HOSAs were two grids wide (288 km2). In grids with monitors, there was only one HOSA
two grids wide for PMCK and ED asthma. In grids without air monitors, there were seven
HOSAs five grids wide: three each for PMC or PMCK paired with ED asthma, IP MI, or HF,
and one for PMCKQ with ED asthma. The grid sizes of HOSAs in grids without monitors
were identical to the grid sizes of HOSAs in the Baltimore study area for PMCKQ, and
similar for PMC and PMCK. In the Both grid monitor condition, three HOSAs five grids
wide occurred for PMC with ED asthma, and PMCK with ED asthma or IP HF. These
maximum grid size HOSA results suggest that the benefit of utilizing the experimental
AOD-PM2.5 fused surfaces may be only evident when the analyses are completed in rural
grids without air monitors. The other implication is that the same association between an
experimental AOD-PM2.5 fused surface and a specific respiratory-cardiovascular ED visit
or IP hospitalization outcome can occur up to 60 km from lag grid 0. It is possible that
residents in these five interconnected rural grids without air monitors were at equal risk of
exposure to higher fine PM concentration levels and in need of medical care for ED asthma
or an overnight stay in the hospital for MI or HF. Residents in two interconnected rural grids
without air monitors were also at risk of exposure to higher fine PM concentration levels
and in need of medical care as an IP because of the onset of uncontrolled asthma attacks.

The second objective concerned the presence of differences in AOD-PM2.5 concentra-
tion levels between urban grids with air monitors and rural grids without air monitors.
The contribution of PMC or PMCK concentration levels to ED asthma, IP asthma, MI, and
HF produced significantly higher ORs in grids without air monitors than in grids with
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air monitors at lag grids 0, 1, and 01. Interestingly, the no monitor–monitor odds ratio
difference percent (∆OR%) values were positive and larger for PMC and PMCK than for
PMCKQ fused surfaces. The ∆OR% values were larger at lag grids 0, 1, and 01 than at lag
grid 04. It is possible that the PMC and PMCK concentration levels were more accurate
approximations of ambient fine PM values in urban grids with air monitors and in rural
grids without air monitors than the PMCKQ concentration levels. Because the number and
percentage of true positive cases and true negative controls were similar in urban grids with
air monitors and in rural grids without air monitors, we concluded that the concentration–
response function between AOD-PM2.5 concentration levels and respiratory-cardiovascular
ED visits and IP hospitalizations could be similar in the entire Baltimore study area, and in
urban grids with air monitors and in rural grids without air monitors [80]. One limitation,
however, is that this statement is based on a temporal lag day analysis and does not utilize
the spatial lag grid case-crossover design analysis.

Categorical analyses of the Baltimore study area identified, for the first time, a subset
of homogeneous spatial grids in rural areas without ambient air monitors that resembled
urban grids with ambient air monitors by showing higher poverty percent and increased
population density. In rural areas without air monitors, there were eight grids with poverty
percent values in the Above category, and seven grids in urban areas with air monitors
that had poverty percent values in the Above category. There were 19 rural grids with
population density in the Above category and 11 urban grids in the Above category. In
addition, there were higher totals and percentages of IP MI (12,016, 62.6%) and IP HF (15,684,
57.0%) in rural areas than in urban areas (7185, 37.4% and 11,834, 43.0%, respectively). The
totals and the percentages of Black ED asthma patients (11,844, 25.2%) and IP asthma
patients (2358, 17.5%) were higher in urban areas than in rural areas (10,852, 23.1% and
2152, 16.0%, respectively). These results support the conclusion that persons living in
rural grids are also at risk of developing respiratory-cardiovascular chronic diseases after
exposure to higher fine PM concentration levels, as are persons who reside in urban grids.

Hirshon and associates [81] evaluated PM2.5 zinc concentration levels and children’s
asthma ED visits and IP hospitalizations. These authors reported that PM2.5 zinc concentra-
tions contributed to increases in asthma hospital events. This publication did not identify
the zinc source, however. One explanation could be that the ambient PM2.5 zinc levels
recorded at the Baltimore PM2.5 Supersite [82] may have come, in part, from a nearby
Toxic Release Inventory site [83]. The Baltimore PM2.5 Supersite location can be remapped
onto one of the 99 CMAQ grids utilized in the Baltimore study area. As a result of this
remapping, we discovered that the location of the Baltimore PM2.5 Supersite is in CMAQ
grid R6, C6. This same grid also had three federal reference method PM2.5 air monitors and
one U.S. Environmental Protection Agency-identified Toxic Release Inventory facility that
emitted ambient zinc fumes and dust. An adjacent Baltimore study area grid, R6, C7, had
one ambient PM2.5 air monitor and one Toxic Release Inventory facility that released zinc
fumes and dust in the air.

As a follow-up to the Hirshon et al. study [81], we also looked at the number of
Toxic Release Inventory facilities that released zinc fumes or dust in the Baltimore study
area between 2004 and 2006. There were five different businesses operating during this
three-year timeframe. One company had facilities in two distinct locations, contributing
a total of 11 zinc point sources: seven zinc fumes or dust point sources in grids with air
monitors (urban grids) and four in grids without air monitors (rural grids). This analysis
suggests that the ambient PM2.5 zinc measured at the Baltimore PM2.5 Supersite in 2002
could have originated from a nearby Toxic Release Inventory facility that emitted zinc
fumes and/or dust. Although the federal reference method PM2.5 air monitors data we
utilized did not include PM2.5 zinc measurements, it is possible that ambient zinc from
Toxic Release Inventory zinc-emitting facilities in selected at-risk grids (with or without
air monitors) in the Baltimore study area could have indirectly contributed to children’s
asthma ED visits and IP hospitalizations.
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Although this study did not evaluate environmental hazards associated with liv-
ing close to brownfields [84,85] or U.S. Environmental Protection Agency Toxic Release
Inventory facilities [83], several published studies have described the environmental con-
tamination from manufacturing efforts in Maryland that have included U.S. Environmental
Protection Agency Toxic Release Inventory facilities in the state [86–89] and brownfields in
south Baltimore [84,85]. Perlin, Sexton, and Wong [87] found that there were 122 Toxic Re-
lease Inventory sites in Maryland. About half of the Toxic Release Inventory facilities were
in Baltimore city, Howard, Anne Arundel, and Baltimore counties. Maryland residents near
a Toxic Release Inventory site were medically underserved [89]. South Baltimore brown-
fields have higher respiratory and heart disease mortality rates among White working-class
residents than the rest of Baltimore city and state [84]. Litt, Tran, and Burke [85] described
a variety of environmental hazards in southeast Baltimore that included heavy metals,
solvents, and insecticides. Living in these environmentally compromised areas for long
durations could increase residents’ adverse responsiveness to lower ambient PM2.5 concen-
tration levels and their enhanced contribution to respiratory-cardiovascular ED visits or IP
hospitalizations [84,85,90,91].

The third aim was to spatially evaluate warm–cold season differences. For the Bal-
timore study area, there were significant correlations between ambient temperature and
fused surface concentration levels. The percentage of shared variance was highest between
ambient temperature and PMCK in all three grid conditions. After controlling for experi-
enced apparent temperature in the CLRs, only the PMCK AOD-PM2.5 fused surface had
the highest number of significant ORs, thereby representing a greater risk of warm season
effects on the occurrence of respiratory-cardiovascular ED visits and IP hospitalizations
at lag grids 0 (all four health outcomes), 1 (ED asthma, IP MI, and HF), 01 (all four health
outcomes), and 04 (IP asthma, MI, and HF). The PMCK warm-cold season odds ratio
difference percent (∆OR%) values were smallest at lag grid 04 compared to lag grids 0,
1, and 01. Unlike these spatial lag grid warm-cold season results, the temporal lag day
outcomes had (1) no significant lag day 04 and (2) higher ∆OR% values for the five fused
surfaces and four health outcomes at lag days 1, and 01. These new findings suggest that
the warm-cold season differences depend on what AOD-PM2.5 fused surface is used and
the implementation of the spatial lag grid analysis or temporal lag day analysis.

Additional results dealing with season differences appear to increase our understand-
ing of the complex relationship between ambient pollution sources and their synergistic
interaction with house heating fuel type, urban-rural environments, ambient temperature,
and AOD-PM2.5 fused surface characteristics. During the cold season, all correlations
between ambient temperature and PMB AOD-PM2.5 concentration levels were significant
and negative. This inverse correlation suggests that higher fine PM levels were associated
with lower ambient temperatures. For the five fused surfaces, the percent of shared vari-
ance (r2%) measures were higher in rural grids without air monitors than in urban grids
without air monitors. Three-year ambient temperature means were significantly higher in
urban grids with air monitors than in rural grids without air monitors during the warm
and cold seasons. The use of oil, kerosine, or similar carbon-based products as a home
heating fuel was higher in rural grids without air monitors than in urban grids with air
monitors. The use of oil as a house heating fuel could be another unique contributor to the
documented elevated AOD-PM2.5 concentration levels in rural grids without air monitors.
Finally, spatial autocorrelation analyses showed the absence of a positive relationship only
for PMC and PMCK fused surfaces during the cold season.

The last aim was to compile this study’s findings regarding differences between the
spatial lag grid case-crossover method used in this report and the temporal lag day case-
crossover method previously implemented in an earlier publication [3]. There were more
differences than similarities between lag grids and lag days. First, the longest lag day was
two (lag day 01), while the longest lag grid was five (lag grid 04). Second, the longer lag
grid (0, 1, 01, 04) and shorter lag day (0, 1, 01) values were also found for the monitor and
season analyses. Third, the no monitor-monitor odds ratio difference percent (∆OR%) lag
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grid values were either the same, higher for lag days, or higher for lag grids based on what
fused surface was used to analyze a specific respiratory-cardiovascular chronic disease.
Fourth, the warm-cold season ∆OR% lag grid values were either the same (lag value 0)
or higher for lag days than lag grids (lag values 1, or 01). Fifth, the lag grid and lag day
analyses showed that PMCK identified more significant warm season ORs than either PMC
or PMCKQ.

Work on the adverse effects of ultrafine PM on a variety of physiologic measures and
health outcomes has continued for three decades, but it is now becoming more relevant
given the unequivocal evidence of the detrimental effects of ambient and modeled fine
PM on many health outcomes [28]. Mechanistically, ultrafine PM’s adverse effects should
be even more severe than fine PM’s adverse effects on the occurrence of respiratory-
cardiovascular chronic diseases [21,22,24,25,27–29,92]. It is possible that technical issues
related to the use of the selected data analytic methods could explain why there have not
been more epidemiologic studies reporting on the significant association between ultrafine
PM and respiratory-cardiovascular outcomes [93–95]. Other possibilities could include the
ambient ultrafine PM air monitor location and its distance from the residential addresses
of study participants [19,26,93,94]; the type of study participant selected with pre-morbid
conditions that would enhance the adverse effects of ultrafine PM on the occurrence of a
respiratory-cardiovascular chronic disease [20,26,27,29]; and that ultrafine PM’s adverse
physiologic effects could compromise other organs besides the lungs and heart, e.g., liver,
kidney, brain, and this type of system-wide structural damage and physiologic modification
could facilitate the development of respiratory-cardiovascular chronic diseases at a later
date [22,23,26,28].

The suggestion introduced here is that the accuracy of AOD-PM2.5 concentration levels
in estimating ambient monitor PM2.5 measurements is related to spatial scale [38,96–99].
Remote sensing studies that have used AOD to estimate ambient PM2.5 measurements
have concluded that smaller grids provide greater accuracy than larger grids. We utilized
the National Aeronautics and Space Administration 10 km2 grid when we accessed the
AOD unitless readings for the Baltimore and New York City study areas. Since our initial
objective was to evaluate the accuracy of the four experimental AOD–PM2.5 concentration
level fused surfaces relative to the performance of the previously developed baseline PMB,
we decided to map the concentration level values to CMAQ’s 12 km2 native grid system
before the Baltimore and New York City epidemiologic studies were undertaken. For
the Baltimore and New York City study areas, we controlled for scale effects by using
the CMAQ 12 km2 grid system as the smallest spatial area of analysis. In the Baltimore
study analyses, all data files with different spatial polygons, Zone Improvement Plan (ZIP)
codes for ED visits and IP hospitalizations, and ZIP Code Tabulation Areas (ZCTAs) for
population density and poverty measures were mapped to CMAQ grids. In subsequent
analyses, the CMAQ grids were categorized into one group including air monitors (urban
grids), and another group without air monitors (rural grids). The larger groups, consisting
of urban grids with air monitors or rural grids without air monitors, should not be less
accurate than the individual 12 km2 grids since the larger areas represent the inclusion
of 12 km2 grids into larger spatial grid areas. Likewise, the accuracy of the identified
homogeneous spatial areas (HOSAs) and heterogenous spatial areas should have the same
accuracy as each of the individual Community Multiscale Air Quality (CMAQ) grids.

There are strengths in the analytical methods utilized in this spatial lag grid case-
crossover study. To our knowledge, this is the first time the temporal lag day case-crossover
design has been modified to evaluate lag grids. The selection of controls that preceded or
followed the cases makes the lag grid case-crossover design spatially bidirectional [66]. The
spatial lag grid analytic method permits the identification and assessment of homogeneous
spatial areas (HOSAs) and heterogeneous spatial areas. The study results demonstrate, also
for the first time, the presence of rural grids without air monitors that resembled urban
grids with air monitors in exposing rural residents to increased fine PM concentration levels
and seeking medical care for respiratory-cardiovascular chronic disease hospital events. A
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final contribution was confirmation that PMCK could become a replacement for baseline
PMB and its use in epidemiologic studies to evaluate the contribution of AOD–PM2.5
concentration levels on the future occurrence of respiratory-cardiovascular ED visits and
IP hospitalizations in urban grids with ambient air monitors and in rural grids without
ambient air monitors.

There are unresolved methodological issues that limit the generalizability of these
study results. The 99 CMAQ grids that defined the Baltimore study area included 15 urban
grids with air monitors and 84 rural grids without air monitors. All 15 urban grids with
monitors had associated respiratory–cardiovascular hospital event data. Only 57 of the
84 rural grids without air monitors had respiratory-cardiovascular hospital event data.
Grids without air monitors that lacked health data could have included some of those grids
over the Chesapeake Bay. The Chesapeake Bay CMAQ grids, located in the south-east
corner of the Baltimore study area, included more water than land mass. Residents live
on part of Maryland’s irregular coastline and islands. Underestimates for total patients
with respiratory-cardiovascular ED visits and IP hospitalizations could have occurred
because some Maryland residents can and do obtain medical treatment out of state, e.g.,
in Washington, DC; Virginia; or Pennsylvania. To be consistent with the way the linear
boundaries for the New York City study area and the Baltimore study area were established
for the purpose of developing the AOD–PM2.5 and PMB fused surfaces, it was necessary
to include all 99 CMAQ grids in the Baltimore study area. There were boundary grids
that crossed the Maryland state line into neighboring states. It was not possible to identify
which grids were included in homogeneous spatial areas (HOSAs). Based on the way the
spatial lag grid analytical method was implemented, only HOSA size could be determined.
There was no independent confirmation of actual ambient PM2.5 concentration levels in
rural grids without air monitors. There was also (relative) spatial heterogeneity in the
15 urban grids with air monitors because there were only 17 ambient air monitors for an
area of (12 km x 12 km x 15 grids) 2160 km2. If the 17 fine PM ambient air monitors were
equally distributed among the 15 CMAQ grids, each monitor grid would occupy 127 km2.
Monitor accuracy for the fine PM measurements is highest at the monitor’s location. Fine
PM measurement accuracy decreases as the distance from the monitor increases [8,33].
It is possible that ambient PM2.5 concentration levels in the most distant grid with a lag
grid value of 4 was the same at the ambient PM2.5 concentration level in lag grid 0. It
is not clear to what extent health care access impacted the results. Available evidence
indicates that this may not have been a bias since, for some respiratory-cardiovascular
chronic diseases included in the Baltimore study area, there were more patients with the
four respiratory-cardiovascular chronic diseases in rural grids without air monitors than in
urban grids with air monitors.

Future research efforts should involve the identification of criteria that will lead to the
replacement of the currently used baseline PMB with another AOD-PM2.5 fused surface,
e.g., PMCK. Relevant attributes that could facilitate the selection of an updated AOD-PM2.5
baseline could include grid resolution below 10 km2, absence of missing AOD unitless
readings, and improved accuracy of PM2.5 concentration levels in estimating ambient fine
PM concentration levels in grids without ambient air monitors. In addition, to increase the
reliability and validity of AOD-PM2.5 fused surface concentration levels in grids without
air monitors, it will be necessary to have available, independent, on-the-ground ambient
PM2.5 measurements in grids without ambient air monitors. This more ambitious goal
could be reached by using portable and accurate PM2.5 monitors to supplement fine PM
readings available from the U.S. Environmental Protection Agency Air Quality System
national network of ambient air monitors [50]. In addition, ultrafine PM monitoring should
be included along with fine PM monitoring within selected communities in urban and
rural areas. The overall goal of these proposed improvements is to protect the respiratory-
cardiovascular health of residents from the adverse consequences of breathing ambient air
with elevated fine PM and ultrafine PM concentration levels wherever they live, in urban
or rural areas of Maryland or other states in the U.S.



Atmosphere 2022, 13, 719 28 of 33

5. Conclusions

The spatial lag grid case-crossover results provide support for the use of this new
analytical method to identify homogeneous spatial areas (HOSAs), areas that demonstrated
a similar relationship between elevated AOD-PM2.5 fused surface concentration levels
and increased respiratory-cardiovascular hospital ED visits and IP hospitalizations in the
entire Baltimore study area, in urban grids with air monitors, and in rural grids without
air monitors. With the PMC and PMCK fused surfaces, the largest homogeneous spatial
area (HOSA) was 720 km2 for the Baltimore study area and in rural grids without air
monitors. Some rural grids without air monitors resembled urban grids with air monitors
in the contribution of increased AOD-PM2.5 fused surface concentration levels to the
occurrence of health outcomes evaluated. Results from categorical data analyses identified
a subset of rural grids without air monitors that also demonstrated higher poverty percent,
increased population density, and elevated AOD-PM2.5 concentration levels, as was found
for urban grids with air monitors. Warm-cold season analyses showed that elevated AOD-
PM2.5 concentration levels during the warm season contributed to increases in respiratory-
cardiovascular ED visits and IP hospitalizations, especially when the PMCK fused surface
was used. New information confirmed the association between elevated AOD-PM2.5
concentration levels and ambient temperature. PMC and PMCK fused surfaces consistently
demonstrated greater differences between warm and cold seasons than the other two AOD-
PM2.5 fused surfaces that included Community Multiscale Air Quality (CMAQ) PM2.5
estimates (PMCQ and PMCKQ), or the currently used baseline, PMB. Obtained differences
or similarities between spatial lag grid and temporal lag day analyses varied based on
the type of AOD-PM2.5 fused surface selected, the specific respiratory-cardiovascular
chronic disease utilized, and what lag value was evaluated. Future research efforts should
continue to evaluate the contribution of increased ambient fine PM (as well as ultrafine PM)
levels and area-specific demographic and environmental hazards and their contribution
to increased susceptibility among persons developing respiratory–cardiovascular chronic
diseases and residing in Maryland’s rural areas, or in rural areas in other locations.
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∆% Percent difference
∆OR% No monitor–monitor OR percent
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AOD Aerosol optical depth
CI 95% confidence interval
CLR Conditional logistic regression
CMAQ Community Multiscale Air Quality
ED Emergency department
HBM Hierarchical Bayesian Model
HF Heart failure
HOSA Homogeneous spatial area
ICD-9-CM International Classification of Diseases, Ninth Revision, Clinical Modification
IP Inpatient hospitalization
MI Myocardial infarction
OR Odds ratio
PHREG Proportional hazards regression
PM0.1 Ultrafine particulate matter
PM2.5 Fine particulate matter
PMB PM2.5 baseline model (monitor PM2.5 and CMAQ PM2.5)
PMC AOD PM2.5 model (monitor PM2.5 and AOD PM2.5)
PMCK AOD PM2.5 Kriged model (monitor PM2.5 and AOD PM2.5 Kriged)
PMCKQ AOD PM2.5 Kriged and CMAQ PM2.5 model (monitor PM2.5 and AOD PM2.5 Kriged

and CMAQ PM2.5)
PMCQ AOD PM2.5 and CMAQ PM2.5 model (monitor PM2.5 and AOD PM2.5 and CMAQ PM2.5)
SAS Statistical analysis system
ZCTA ZIP code tabulation area
ZIP Code Zone improvement plan
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