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Abstract: As the main energy source for thermal power generation, coal generates a large amount of
NOx during its incineration in boilers, and excessive NOx emissions can cause serious pollution to
the air environment. Selective catalytic reduction denitrification (SCR) selects the optimal amount of
ammonia to be injected for denitrification based on the measurement of NOx concentration by the
automatic flue gas monitoring system. Since the automatic flue gas monitoring system has a large
delay in measurement, it cannot accurately reflect the real-time changes of NOx concentration at
the SCR inlet when the unit load fluctuates, leading to problems such as ammonia escape and NOx
emission exceeding the standard. In response to these problems, this paper proposes an SCR inlet NOx
concentration prediction algorithm based on BMIFS-LSTM. An improved mutual information feature
selection algorithm (BMIFS) is used to filter out the auxiliary variables with maximum correlation and
minimum redundancy with NOx concentration, and reduce the coupling and dimensionality among
the variables in the data set. The dominant and auxiliary variables are then fed together into a long
short-term memory neural network (LSTM) to build a prognostic model. Simulation experiments
are conducted using historical operation data of a 300 MW thermal power unit. The experimental
results show that the algorithm in this paper reduces the average relative error by 3.45% and the root
mean square error by 1.50 compared with the algorithm without auxiliary variable extraction, which
can accurately reflect the real-time changes of NOx concentration at the SCR inlet, solve the problem
of delay in NOx concentration measurement, and reduce the occurrence of atmospheric pollution
caused by excessive NOx emissions.

Keywords: NOx concentration; LSTM; mutual information feature selection; SCR; model prediction

1. Introduction

In China’s electricity market, coal-fired thermal power generation has been dominant,
and NOx from the combustion of coal-fired boilers in thermal power plants is one of the
main sources of air pollutants [1]. Coal, the main energy source for power generation in
thermal power plants, generates large amounts of nitrogen oxides (NOx) during combustion
in the boilers, which are commonly referred to as NOx. In nature, the formation and fall
of rain and snow absorbs NOx and other substances in the air, which in turn forms acid
rain causing building corrosion, crop death, and other bad results. At the same time,
NOx will also produce photochemical reactions with other pollutants under the action of
sunlight (ultraviolet), producing a secondary mixture of pollutants, namely photochemical
smog pollution. With the increasing awareness of environmental protection in China,
optimization of flue gas denitrification is on the agenda [2,3].

Selective catalyst reduction (SCR) is the current denitrification method used by most
thermal power units. SCR is based on the measurement of NOx concentration by the
automatic flue gas monitoring system and selects the optimal amount of ammonia to
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be injected for denitrification. However, the automatic flue gas monitoring system has
a large delay in measuring the NOx concentration, which does not accurately reflect
the real-time changes of the NOx concentration at the SCR inlet, resulting in ammonia
escape and NOx emission exceeding the standard. This research attempts to propose a
new NOx concentration prediction algorithm using an artificial intelligence method to
accurately predict the NOx concentration at the SCR inlet. It works to solve the problem
of delay in NOx measurement and accurately reflect the real-time changes of SCR inlet
NOx concentration, so as to effectively reduce the emission of excess NOx and prevent the
pollution of the air environment.

In recent years, long short-term memory neural networks (LSTM) [4] have achieved
remarkable results in processing big data. It can not only accomplish what traditional neu-
ral networks provide after learning and training, extracting features, and then constructing
high-level features by organizing the underlying features and finally obtaining the distribu-
tion characteristics under the data, but more importantly, LSTM incorporates state gates in
its neurons, which can filter and process massive data, effectively solving the problems of
gradient disappearance and gradient explosion and improving the processing capability of
big data, and these advantages were verified in the literature [5–9]. Because of the multiple
advantages of LSTM for data processing, the algorithm is not only applied in the electric
power industry [10,11], but also widely used in many fields such as aerospace [12,13],
shipping [14–16], finance [17,18], and water conservancy and hydropower [19,20].

Baomin Sun et al. [21] used artificial neural networks for NOx prediction based on the
study of material characteristics, and compared the prediction accuracy before and after
the environmental modification of the unit, and found that the algorithm has outstanding
prediction accuracy and generalization ability. Xiangjun Li et al. [22] proposed to train
the model with an LSTM network to address the problem of low prediction accuracy
due to many uncertainties in the wind power generation process, and finally significantly
reduced the error of prediction results in each index. Zhai Yi et al. [23] used LSTM to
extract the periodic characteristics in the load data and successfully achieved the electric
load prediction. Xuejiao Mao et al. [24] used LSTM combined with the Adam optimization
method to train the network model for the characteristics of strong uncertainty and time
correlation in saturation load prediction, and finally placed the model in saturation load
prediction under different scenarios and verified its effectiveness. Zhenhao Tang et al. [25]
initially used mutual information to filter the time series feature length, then extracted
the time domain information and the frequency domain information, and modeled on
this basis using the improved SWLSTM; the results proved that the method could achieve
accurate wind prediction with the prediction error controlled below 1.73%.

For denitrification of thermal power units, most thermal power plants are currently
using selective catalytic reduction (SCR) technology to reduce NOx emissions. For NOx
content in flue gas, plants generally use an automatic flue gas monitoring system to
measure its concentration in real time, and the selective catalytic reduction denitrification
(SCR) method selects the best amount of ammonia spray for denitrification based on the
measurement results of NOx concentration by the automatic flue gas monitoring system.
However, the automatic flue gas monitoring system has a large delay in measurement,
which cannot accurately reflect the real-time changes of NOx concentration at the SCR inlet,
and thus cannot guide the reactor operation in a timely manner, leading to problems such
as ammonia escape and excessive NOX emissions. Therefore, this paper focuses on the
NOx concentration at the inlet of SCR denitrification system as the research object, and
adopts the long short-term memory network (LSTM) to establish a prediction model to
accurately predict NOx concentration at the SCR inlet, so as to solve the problem of delay
in NOx concentration measurement and reduce the occurrence of air pollution caused by
excessive NOx emissions. The overall research process of this paper is shown in Figure 1.
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Figure 1. Overall research process flow chart.

2. Influencing Factors of NOx Production

With the increasing emphasis on environmental protection related to production of
thermal power in China, SCR denitrification systems are widely used in various coal-fired
thermal power plants. In this paper, the inlet NOx concentration of an SCR denitrification
system in a 300 MW thermal power plant is studied, and the nitrogen oxides produced by
the operation of coal-fired boilers is generally referred to as NOx.

The NOx produced by boiler combustion generally refers to NO and NO2, with NO
being the main component, accounting for 90% to 95%, and NO2 being obtained from the
oxidation reaction of NO with O2 at low temperatures. Boiler combustion is a complex
process in which many chemical reactions are interwoven, and the NOx content produced
is not only affected by the temperature during combustion, but also related to the air in the
boiler that provides conditions for combustion.

Thermal power plants generally adopt graded combustion technology to achieve
reasonable control of NOx generation. The principle is shown in Figure 2. The pulverized
coal burner feeds the pulverized coal into the furnace chamber, and along with the primary
and secondary air fed into the main combustion zone, the pulverized coal starts to burn
violently while generating NOx, CO, CO2, and other gases. The high temperature flue gas
forms an upward flow and comes to the reduction zone of the furnace chamber, where
NOx is reduced to N2 and other nitrogen-containing compounds. When the flue gas comes
to the combustion zone, the combustion wind will come in to assist the combustion, and a
small amount of NOx is again produced, but generally, the total amount of NOx finally
produced by the pulverized coal is greatly reduced after the furnace is graded.
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The baffle opening of the secondary air and the combustion air largely affect the
combustion of pulverized coal in the furnace chamber. By adjusting the baffle opening
of secondary air to control the combustion of pulverized coal in the furnace chamber,
the anoxic combustion in the main combustion zone pushes back the whole combustion
process, thus effectively reducing the generation of NOx. The combustion exhaust dampers
are then used to adjust the combustion, so that the pulverized coal can be fully combusted
while reducing the generation of NOx, thus reducing the generation of NOx from the boiler
combustion level. Therefore, it can be seen that opening the combustion dampers and the
baffle of the secondary dampers is an important factor influencing the amount of NOx
generation. The ratio between the amount of fuel in the boiler and the amount of air affects
the boiler load and also has an impact on NOx production. In fact, the difference in the
air–coal ratio makes a significant change in the total amount of NOx.

3. Data Collection and Preprocessing

Before data collection, it is necessary to confirm which data need to be collected,
including historical operating data of auxiliary variables and dominant variables, and then
data need to be collected under appropriate operating conditions to ensure that the range
of data values is reasonable.

With the continuous advancement of information technology, thermal power
plants have also incorporated many advanced information technology monitoring and
control systems, including: distributed control system (DCS), supervisory information
system (SIS), management information system (MIS), and other systems. Through
these reliable information monitoring and management systems, real-time recording
of historical operation data can be achieved, which provides a strongly supports later
data collection and analysis [26].

Through the above analysis of the mechanism affecting boiler NOx generation,
this paper finally reports on unit load, total coal volume, total primary air volume, total
secondary air volume, 14 levels of damper baffle opening (including: OFA2, OFA1, EF,
E, DE, D, CD2, CD1, C, BC, B, AB, A, AA), 3 levels of combustion air baffle opening, flue
gas temperature, and flue gas oxygen content, including a total of 23 factors influencing
the inlet NOx of the SCR denitrification reactor, and these variables were used as inputs
to the prediction model. In order to make the constructed model have the expected
prediction capability, the filtered data should be available for not only the steady-state
condition but also for the variable operating conditions. After analyzing the acquired
data, we finally screened the historical operating data of the unit load between 218 and
265 MW, with the overall time span of about four and a half hours and one point taken
every 10 s, totaling 1600 sets of data, which can describe in a comprehensive manner
the characteristics of the SCR inlet NOx under two operating conditions. The data were
obtained from the DCS system of a 300 MW thermal power unit, and the value ranges
of some variables are shown in Table 1.

Table 1. Part of the input and output variables of the model.

Variable Minimum Maximum

Load 218.0 265.4
Coal feed 123.2 168.1

Total air volume 368.4 479.2
Total secondary air volume 589.8 824.1
Oxygen content of flue gas 1.46 3.09

SOFA3 layer air door damper opening 47.5 57.8
OF2 layer damper opening 27.3 46.1
DE layer damper opening 12.5 17.1

SCR reactor inlet NOx concentration 128.5 289.1
Note: NOx concentration is the average value on both sides of A and B.
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Although the DCS were filtered before recording the data, due to some external
uncontrollable factors, there were some data showing obvious differences compared with
other data. As shown in Equation (1), by calculating the difference between each datum and
its arithmetic mean, when the difference is three times larger than its standard deviation,
the datum is considered to have a gross error, rejected, and then replaced by the nearest
normal point before and after the rejected datum.∣∣Xi − X

∣∣ > 3σ (1)

In this formula, X is the sample mean, X =
m
∑

i=1
Xi/m, and σ is the standard deviation,

σ =

√
m
∑

i=1
(Xi−X)

2

m−1 .

When modeling, variables with larger numerical values tend to cover smaller numeri-
cal variables, thus it is necessary to use Formula (2) to normalize the data and normalize
it to dimensionless values, unified within the interval [–1,1]. After the model is built,
Equation (3) is used to denormalize the data to restore the original engineering unit of the
data. In the formula, min(x) is the minimum value of the sample data and max(x) is the
maximum value of the sample data.

X = −1 + 2× xi −min(x) + 1
max(x)−min(x) + 1

(2)

xi = 0.5× (X + 1)× [max(x)−min(x) + 1] + min(x)− 1 (3)

4. NOx Concentration Prediction Model Based on BMIFS-LSTM
4.1. Improved Mutual Information Feature Selection Algorithm (BMIFS)

Reciprocal information is the amount of information used to evaluate the correlation
between random variables, the contribution of the independent variable to the dependent
variable, and is a way to evaluate the correlation between variables. I(X, Y) represents the
distance measure between two probability distributions, X and Y, indicating the amount
of information held jointly between two random variables. The relationship between the
variables can be linear or nonlinear, and its value is a number greater than or equal to zero.
If the value is zero, it means that there is no correlation between the two variables and they
are independent of each other. The formula for mutual information follows:

I(X, Y) = −
∫
y

∫
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (4)

In Equation (4), p(x) is the marginal probability distribution of x, p(y) is the
marginal probability distribution of y, and p(x, y) is the joint probability distribution
between x and y.

In 1994, Battiti pioneered the application of mutual information to feature selection
by proposing the MIFS (mutual information selection) algorithm based on the BIF (best
individual feature) algorithm, which is a forward-search algorithm in which the initial set
of variables is the empty set, based on the evaluation of Function (5); one variable is added
every cycle:

J( fi) = I( fi; c)− β ∑
Sj∈S

I( fi; Sj) (5)

In this equation, fi ∈ F is the candidate variable, c is the dominant variable, β is the
penalty factor, and Sj ∈ S is the selected variable.

The goal of MIFS is to maximize the correlation between the selected variables and the
dominant variables and minimize the redundancy among the selected variables. However,
this process shows that the evaluation function does not take into account the influence of
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the set of selected variables, which leads to an increase in the number of selected variables
as the search process progresses. The right side of the minus sign in Equation (5) continues
to increase in weight, and at the same time weakens the role of mutual information on the
left side of the minus sign. When the screening proceeds to a later stage, some variables
that are more related to the dominant variable are missed.

Since MIFS cannot guarantee the relevance and redundancy of auxiliary variable
selection, this paper adopts an improved mutual information feature selection algorithm,
namely, the BMIFS algorithm. The improvement of this algorithm is that during the loop
selection of auxiliary variables, it takes into account the influence of the number of selected
variables |S| and uses 1/|S| as the weight; at the same time, the correlation between the
variable to be selected and the dominant variable is added to the correlation between the
variables to be selected, so as to solve the defects of the MIFS algorithm. The expression of
the algorithm is given in (6):

GMI = argmax

I( fi; c)− β

|S| ∑
Sj∈S

MR

 (6)

In this formula, |S| represents the number of selected feature variables and MR is
in the selected variable set S, fi is the relative minimum redundancy to Sj. Its formula
is given in (7):

MR =
I
(

fi; Sj
)

I( fi; c)
(7)

If I( fi; c) = 0, the characteristic variable fi is eliminated; if there is a large correlation
between fi and Sj with the dominant variable, but there is also a high degree of redundancy
between fi and Sj, then fi is also eliminated. Therefore, the thresholds TH = 0 and GMI are
preset here. Comparing, if GMI ≥ 0, then it is assumed that there is not much correlation
between the current variable fi and the dominant variable, so it is eliminated. If GMI ≥ 0,
then it places fi into the variable set to be selected.

4.2. LSTM Prediction Model Structure

By using the sample training set x ∈ Rb×s×i, where b is the number of batch samples
used for each training and t is the sample data dimension, then by adding the time di-
mension, the sample data can be converted into a three-dimensional matrix, i.e., x ∈ Rb×s×i,
where s is the data sample time dimension and i is the input neuron dimension at
each moment.

The number of samples of the input sample data does not change after passing through
the CNN network, but the length of the sequence is reduced to s/h after passing through
the pooling layer. Assuming that the LSTM network unit has n neurons and the hidden
layer output of the sample sequence at the last moment is labeled yl , then yl ∈ Rb×d. The
final output of the network is obtained after softmax. The network structure of CNN-LSTM
is shown in Figure 3.

To shorten the training time of the model and optimize the parameter variables, it is
necessary to standardize the input samples. This reduces the vector space of the data into
the normal distribution space according to a certain proportion and can eliminate the large
differences in data under different dimensions and improve the convergence speed. The
formula follows:

X∗ =
X− E(X)√

D(X)
(8)

Next, divide the data into a training set and a test set and perform standardized
processing. Then, follow the steps below to establish an LSTM-based SCR entry NOx
prediction model.
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(1) Input layer

Training sample data x ∈ Rb×t, where b is the number of samples used in each model
training, and t is the sample data dimension. The LSTM input layer requires the sample
data to be three-dimensional:

1©Sample: A sequence is a sample, and it can contain multiple samples.
2©Time step: A time step represents an observation point in the sample.
3©Feature: A feature is obtained in a time step.

The expression of the transformed three-dimensional matrix is x ∈ Rb×s×i, which
s represents the time dimension of the sample and i represents the feature. In Keras, we can
use the reshape() function in the Numpy array to perform three-dimensional reconstruction.
By mapping x ∈ Rb×s×i in the input layer, we can obtain the input after changing the sample
dimension, as shown in Equation (9):

y(i) = x ·W(i) + b(i) (9)

In this formula, W(i) ∈ Ri×i1, b(i) ∈ Ri1, y(i) ∈ Rb×s×i1.
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(2) LSTM network layer

The input of LSTM is y(i) ∈ Rb×s×i1, assuming that the network has n neurons; the
output of the hidden layer at the last moment of each sample is regarded as the output of
LSTM y(h). Then, y(h) ∈ Rb×d. The input and output process structure is shown in Figure 4:
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(3) Output layer

This network uses the softmax layer for output; the output formula follows:

y′ = softmax
(

yh ·W(o)
)

(10)

In this formula, W(o) ∈ Rd×n, n is the number of classifications, and y′ is the network
output, y′ ∈ Rb×n.

(4) Loss function

By comparing the output of the training model with the actual data output, the
difference between the two can be obtained, which is called loss. The smaller the loss value,
the better the training effect of the model. If the predicted value is consistent with the actual
value, there is no loss. The function used to calculate the size of the loss is called the Loss
function, and the Loss function can be used to give an objective measure of the prediction
effect. The formula is shown in (11):

H(y) = −∑
b

y′ log(y) (11)

After repeated tests, it was finally determined that the LSTM network model has
two LSTM layers, each with 100 nodes, the optimization algorithm is Adam, the batch
size is set to 20, and the time is set to 2000. The algorithm flow of the model is shown
in Figure 5.
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5. Discussion
5.1. NOx Auxiliary Variable Screening Results

The research object of this paper is to estimate the NOx concentration at the entrance
of the SCR denitrification system. Through the above analysis of the NOx generation
mechanism, after collecting reliable on-site historical operating data from a 300 MW thermal
power unit, they were preprocessed and combined with the improved BMIFS selection
assistance variable dimensionality reduction, where β was set to 0.7.

The original input variables include: boiler load, total coal, total primary air, total
secondary air, 17 levels of damper baffle opening (including: SOFA3, SOFA2, SOFA1, OFA2,
OFA1, EF, E, DE, D, CD2, CD1, C, BC, B, AB, A, AA), flue gas temperature, flue gas oxygen
content, and NOx concentration at the inlet of the denitrification reactor. Since OF1 and
CD2 baffle openings are always zero, they are eliminated during preprocessing.

After calculating by the BMIFS algorithm, the variable with the largest correlation
with the dominant variable can be obtained; that is, the variable with the largest mutual
information value is the total secondary air volume. Based on this, the remaining six
auxiliary variables that make the evaluation function GM > 0 are further obtained, as
shown in Table 2.

Table 2. Auxiliary variable evaluation function value.

Variable GMI

primary air volume 0.015
total coal 0.4461

load 0.1834
AB layer secondary air door baffle 0.3455

oxygen 0.098
flue gas temperature 0.2056

After screening, this investigation finally determined seven auxiliary variables, which
are load, total coal amount, total primary air, total secondary air, secondary air damper
opening of AB layer, oxygen content of flue gas, and flue gas temperature.
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5.2. Forecast Result

When using the Keras framework for LSTM network building, it is necessary to set the
necessary parameters, and the final characteristics presented by the model differ depending
on the parameter settings. Parameter optimization is the process of selecting an optimal
set of parameters for the learning algorithm. In the Keras framework, the parameters that
need to be adjusted include the number of neural network layers, the number of neurons in
the hidden layer, the total number of training sessions, the batch sample size, the learning
rate, among others. In this paper, for the LSTM prediction model, the two parameters of
total number of training and learning rate are mainly tuned.

It is found that the accuracy gradually converges when the training reaches about
1000 times, and the accuracy decreases significantly after the number reaches about
9000 times, which is mainly due to the gradient explosion caused by too much train-
ing. Therefore, by setting the number of training sessions to 2000, the network model can
be trained in less time while avoiding the gradient explosion. With learning rates of 0.001,
0.003, and 0.006, the accuracy of the model is consistent up to 5000 training sessions, but the
curve with a learning rate of 0.001 decreases more significantly after 5000 training sessions,
and the curve with a learning rate of 0.006 also decreases significantly after 6800 training
sessions. To a certain extent, the size of the learning rate determines the speed of updating
the parameters to the optimal value. From the analysis of the experimental results, we
know that when the learning rate is too large, the gradient step of the model is too large for
each training, and the optimal solution is easily missed.

After several experiments to adjust the parameters, the learning rate of Adam’s algo-
rithm is set as 0.003. The number of batch samples is 50. The number of LSTM network
layers is 2. The number of neurons in the hidden layer is 100, and the number of training
times is set as 2000. The preprocessed 1600 sets of data, 80% of which were used as the
training data for the model and 20% as the test data of the model, were used to build the
LSTM network model without auxiliary variables extraction and the LSTM network model
with auxiliary variables screening. The final model-training-data fitting effect is shown in
Figure 6, and the relative errors are shown in Figure 7a,b.

According to Figure 6, it can be seen that the two types of models can fit the training
data better, but from the relative errors shown in Figure 7a,b, it can be seen that the left
model has a smaller error than the right model, so it can be concluded that the samples
selected in advance by the BMIFS auxiliary variables can better train the model, so as to
achieve a better fitting effect.

Next, the trained model is used to estimate the test data, and obtain the final estimated
results and errors of the two types of models, as shown in Figures 8 and 9a,b.
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According to Figure 8, it can be analyzed and found that the prediction accuracy of
the prediction model without auxiliary variable extraction is not as high as that of the
prediction model with auxiliary variable extraction. Combined with the results shown
in Figure 9a,b, it can be further found that the prediction based on BMIFS-LSTM gives a
relative error of the model that is smaller in comparison, which further shows that the
prediction accuracy of the model is higher.

The error descriptions of the two types of prediction models are shown in Table 3.



Atmosphere 2022, 13, 686 12 of 14

Table 3. Comparison table of simulation results.

Model MRE (%) RMSE

BMIFS-LSTM training model 0.0246 1.3715
LSTM training model 0.0458 2.2024

BMIFS-LSTM test model 0.0297 1.5237
LSTM test model 0.0643 3.0251

The addition of CNN for automatic feature extraction in addition to the original LSTM
model can greatly improve model accuracy and training speed. The total training time of
LSTM model is 340 s, while the total training time of BMIFS-CNN-LSTM is only 86 s, and
its final prediction is shown in Figure 10 with the relative error given in Figure 11.

Atmosphere 2022, 13, x FOR PEER REVIEW 12 of 15 
 

 

  

(a) (b) 

Figure 9. (a) Estimated error of test data. (b) Estimated error of test data. 

According to Figure 8, it can be analyzed and found that the prediction accuracy of 

the prediction model without auxiliary variable extraction is not as high as that of the 

prediction model with auxiliary variable extraction. Combined with the results shown in 

Figure 9a,b, it can be further found that the prediction based on BMIFS-LSTM gives a 

relative error of the model that is smaller in comparison, which further shows that the 

prediction accuracy of the model is higher. 

The error descriptions of the two types of prediction models are shown in Table 3. 

Table 3. Comparison table of simulation results. 

Model MRE (%) RMSE 

BMIFS-LSTM training model 0.0246 1.3715 

LSTM training model 0.0458 2.2024 

BMIFS-LSTM test model 0.0297 1.5237 

LSTM test model 0.0643 3.0251 

The addition of CNN for automatic feature extraction in addition to the original 

LSTM model can greatly improve model accuracy and training speed. The total training 

time of LSTM model is 340 s, while the total training time of BMIFS-CNN-LSTM is only 

86 s, and its final prediction is shown in Figure 10 with the relative error given in Figure 

11. 

 

Figure 10. BMIFS-CNN-LSTM images of predicted and actual values. 
Figure 10. BMIFS-CNN-LSTM images of predicted and actual values.

Atmosphere 2022, 13, x FOR PEER REVIEW 13 of 15 
 

 

 

Figure 11. Error curve chart. 

The BMIFS-CNN-LSTM model is compared with the model without CNN feature 

extraction in the following experimental analysis. Statistically, the errors of the two types 

of models are shown in Table 4. 

Table 4. Comparison of model error statistics. 

Models Average Relative Error (%) Root Mean Square Error 

BMIFS-LSTM Prediction Model 0.0297 1.5237 

BMIFS-CNN-LSTM Prediction Model 0.0126 1.0113 

In summary, compared with the BMIFS-LSTM model, the BMIFS-CNN-LSTM model 

has a lower average relative error and root mean square error, and the model training 

time is shorter. The rationality of introducing CNN automatic feature extraction is demon-

strated. Meanwhile, compared with the traditional long short-term memory neural net-

work (LSTM), the LSTM algorithm with the introduction of the improved mutual infor-

mation feature selection algorithm (BMIFS) has a lower average relative error of 3.45% 

and a lower root mean square error of 1.50, which indicates a better prediction of NOX 

concentration at the SCR inlet and effectively solves the problem of delay in NOx concen-

tration measurement. 

6. Conclusions 

At present, most thermal power plants use selective catalytic reduction (SCR) tech-

nology to reduce NOx emissions, using automatic flue gas monitoring systems to measure 

NOx concentration in real time and combine the measurement results to select the optimal 

amount of ammonia injection for denitrification treatment. However, the system has a 

large delay in making measurements and cannot accurately reflect the real-time changes 

in the NOx concentration at the SCR inlet when the unit load fluctuates frequently, thus 

failing to guide the reactor action in a timely manner. In response, this paper establishes 

an SCR inlet NOx concentration prediction algorithm based on BMIFS-LSTM. A modified 

mutual information feature selection algorithm (BMIFS) is used to screen seven auxiliary 

variables such as unit load and total secondary air, and the dominant variables are input 

into a long short-term memory neural network (LSTM) together with the auxiliary varia-

bles to establish a BMIFS-LSTM prediction model. To verify, the historical operation data 

of a 300 MW thermal power unit are used for simulation experiments. The experimental 

results show that the model reduces the average relative error by 3.45% and the root mean 

square error by 1.50, compared with the LSTM model without auxiliary variable screen-

ing. The prediction results have less deviation and higher accuracy, and have better pre-

diction effect on the NOX concentration at the SCR inlet. The problem of delay in NOx 

concentration measurement is solved, which effectively reduces the occurrence of envi-

ronmental pollution problems such as ammonia escape and NOX emission overload. 

Figure 11. Error curve chart.

The BMIFS-CNN-LSTM model is compared with the model without CNN feature
extraction in the following experimental analysis. Statistically, the errors of the two types
of models are shown in Table 4.
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Table 4. Comparison of model error statistics.

Models Average Relative Error (%) Root Mean Square Error

BMIFS-LSTM Prediction Model 0.0297 1.5237
BMIFS-CNN-LSTM Prediction Model 0.0126 1.0113

In summary, compared with the BMIFS-LSTM model, the BMIFS-CNN-LSTM model
has a lower average relative error and root mean square error, and the model training time
is shorter. The rationality of introducing CNN automatic feature extraction is demonstrated.
Meanwhile, compared with the traditional long short-term memory neural network (LSTM),
the LSTM algorithm with the introduction of the improved mutual information feature
selection algorithm (BMIFS) has a lower average relative error of 3.45% and a lower root
mean square error of 1.50, which indicates a better prediction of NOX concentration at the
SCR inlet and effectively solves the problem of delay in NOx concentration measurement.

6. Conclusions

At present, most thermal power plants use selective catalytic reduction (SCR) technol-
ogy to reduce NOx emissions, using automatic flue gas monitoring systems to measure
NOx concentration in real time and combine the measurement results to select the optimal
amount of ammonia injection for denitrification treatment. However, the system has a
large delay in making measurements and cannot accurately reflect the real-time changes
in the NOx concentration at the SCR inlet when the unit load fluctuates frequently, thus
failing to guide the reactor action in a timely manner. In response, this paper establishes
an SCR inlet NOx concentration prediction algorithm based on BMIFS-LSTM. A modified
mutual information feature selection algorithm (BMIFS) is used to screen seven auxiliary
variables such as unit load and total secondary air, and the dominant variables are input
into a long short-term memory neural network (LSTM) together with the auxiliary variables
to establish a BMIFS-LSTM prediction model. To verify, the historical operation data of
a 300 MW thermal power unit are used for simulation experiments. The experimental
results show that the model reduces the average relative error by 3.45% and the root mean
square error by 1.50, compared with the LSTM model without auxiliary variable screening.
The prediction results have less deviation and higher accuracy, and have better prediction
effect on the NOX concentration at the SCR inlet. The problem of delay in NOx concen-
tration measurement is solved, which effectively reduces the occurrence of environmental
pollution problems such as ammonia escape and NOX emission overload.

Author Contributions: Methodology, M.S.; resources, J.X.; supervision, S.G.; writing—original draft,
G.C.; writing—review and editing, J.C., H.L. and Z.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhong, J. The Economics of Low-NOx Technology and the Exploration of New Low-NOx Control Technology; Zhejiang University:

Hangzhou, China, 2006.
2. Li, Y.; Huang, W.; Xi, J. Power plant NO_x emission prediction based on Stacking algorithm integration model. Therm. Energy

Power Eng. 2021, 36, 73–81. [CrossRef]
3. Liu, K.; Wei, B.; Chen, L.; Wang, J.; Li, J.; Liu, J. Influence of low-load flue gas recirculation on combustion and NOx emissions of

pulverized coal boilers. Chin. J. Power Eng. 2021, 41, 345–349, 379.
4. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

http://doi.org/10.16146/j.cnki.rndlgc.2021.05.012
http://doi.org/10.1162/neco.1997.9.8.1735


Atmosphere 2022, 13, 686 14 of 14

5. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
6. Verma, S.; Singh, S.; Majumdar, A. Multi-label LSTM autoencoder for non-intrusive appliance load monitoring. Electr. Power Syst.

Res. 2021, 199, 107414. [CrossRef]
7. Wu, P.; Luo, L. Prediction of ship motion trajectory based on RNN-LSTM. Shipbuild. Technol. 2021, 49, 11–16.
8. Xiang, Z. Confidence Interval Prediction of Smart Grid Link Quality Based on LSTM. Electrical Measurement and Instrumentation.

pp. 1–10. Available online: http://kns.cnki.net/kcms/detail/23.1202.TH.20210623.0948.004.html (accessed on 4 July 2021).
9. Zhao, Y. Power data analysis method combining GA and LSTM network. Electron. Des. Eng. 2021, 29, 161–165.
10. Song, S.; Li, B. Research on short-term prediction method of photovoltaic power generation based on LSTM network. Renew.

Energy 2021, 39, 594–602.
11. Chen, C.; Wang, X.; Liang, J.; Ma, W. LSTM photovoltaic power generation prediction method based on a new attention

mechanism. Mod. Comput. 2021, 11, 28–32+38.
12. Zhang, Z. Research on Spacecraft Time Series Prediction Method Based on LSTM; Beijing Jiaotong University: Beijing, China, 2020.
13. Zheng, T. Near-Space Hypersonic Target Track Estimation and Prediction Based on Recurrent Neural Network; Harbin Institute of

Technology: Harbin, China, 2020.
14. Hu, D.; Meng, X.; Lu, S.; Xing, L. The application of a parallel LSTM-FCN model in ship trajectory prediction. Control Decis. 2021,

4, 1–7. [CrossRef]
15. Yang, B. Research and Application of Ship Trajectory Analysis Based on AIS; University of Electronic Science and Technology of China:

Chengdu, China, 2018.
16. Lu, J.; Song, S.; Jing, Y.; Zhang, Y.; Gu, L.; Lu, F.; Hu, Z.; Li, S. Fundamental Frequency Detection of Underwater Moving Target

Noise Based on DEMON Spectrum and LSTM Network. Applied Acoustics. pp. 1–11. Available online: http://kns.cnki.net/
kcms/detail/11.2121.o4.20210621.1436.006.html (accessed on 4 July 2021).

17. Ding, C. Planning of RMB Exchange Rate Prediction Scheme Based on Multi-Time Scale CNN-LSTM Neural Network; Shanghai Normal
University: Shanghai, China, 2021.

18. Tian, Y. Research on Stock Price Trend Prediction Based on Investor Sentiment and LSTM; Shanghai Normal University: Shanghai,
China, 2021.

19. Wei, Q.; Chen, S.; Tan, Z.; Huang, W.; Ma, G. Based on SA-LSTM, the dynamic lag relationship between hydropower stations.
Hydropower Energy Sci. 2021, 39, 16–19.

20. Zhang, D. Research on Optimization Technology of Large-Scale Reservoir Water Temperature Regulation Based on Artificial Intelligence
Algorithm; China Institute of Water Resources and Hydropower Research: Beijing, China, 2020.

21. Sun, B.M.; Wang, D.H.; Yang, B.; Zhang, S.H.; Kong, L.Y. Prediction Model for the Boiler NOx Emission with Material Properties
Based on the Artificial Neural Network. Adv. Mater. Res. 2013, 676, 40–45. [CrossRef]

22. Li, X.; Xu, G. Wind power generation power prediction method based on long short-term memory neural network. Power Gener.
Technol. 2019, 40, 426–433.

23. Zhai, Y.; Xu, L.; Ji, X.; Ji, H.; Wang, J.; Sha, Y. Short-term load forecasting based on long and short-term memory neural network.
Inf. Technol. 2019, 10, 27–31.

24. Mao, X.; Tan, J.; Yao, Y.; Li, B.; Wu, C. Saturated load forecasting method and application based on long and short-term memory
neural network. Hydropower Energy Sci. 2019, 37, 192–195+168.

25. Tang, Z.; Zhao, G.; Cao, S.; Zhao, B. Ultra-short-term wind direction prediction based on SWLSTM algorithm. Chin. J. Electr. Eng.
2019, 39, 4459–4468.

26. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef] [PubMed]

http://doi.org/10.1016/j.epsr.2021.107414
http://kns.cnki.net/kcms/detail/23.1202.TH.20210623.0948.004.html
http://doi.org/10.13195/j.kzyjc.2020.1795
http://kns.cnki.net/kcms/detail/11.2121.o4.20210621.1436.006.html
http://kns.cnki.net/kcms/detail/11.2121.o4.20210621.1436.006.html
http://doi.org/10.4028/www.scientific.net/AMR.676.40
http://doi.org/10.1109/TPAMI.2005.159
http://www.ncbi.nlm.nih.gov/pubmed/16119262

	Introduction 
	Influencing Factors of NOx Production 
	Data Collection and Preprocessing 
	NOx Concentration Prediction Model Based on BMIFS-LSTM 
	Improved Mutual Information Feature Selection Algorithm (BMIFS) 
	LSTM Prediction Model Structure 

	Discussion 
	NOx Auxiliary Variable Screening Results 
	Forecast Result 

	Conclusions 
	References

