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Abstract: Volatile organic compounds (VOCs) from the pharmaceutical and chemical industries have
been a matter of concern for some years in China. Achieving efficient degradation of chlorobenzene
(CB) in waste gas is difficult because of its high volatility and molecular stability. A DBD (dielectric
barrier discharge) biological method was proposed to treat chlorobenzene, aiming to control high
operating costs and prevent secondary pollution. In this investigation, a DBD biological method was
introduced to deal with chlorobenzene by optimization of process parameters. The results showed
that the degradation efficiency of chlorobenzene was close to 80% at a hydraulic retention time (HRT)
of 85 s when the inlet concentration was 700 mg·m−3 for the biological method. The degradation
efficiency of chlorobenzene reached 80% under a discharge voltage of 7 kV, an inlet concentration of
700 mg·m−3 and an HRT of 5.5 s. The degradation efficiency of an integrated system can be increased
by 15–20% compared with that of a single biological system. Therefore, this method can be used as a
new way to address chlorobenzene pollution in the pharmaceutical and chemical industries.

Keywords: biotrickling filter; dielectric barrier discharge; chlorobenzene; pharmaceutical and chemi-
cal industry

1. Introduction

The atmosphere can influence vital human metabolic processes. With the acceleration
of China’s economic and industrial development, the problem of atmospheric environmen-
tal pollution has become increasingly prominent over the past two decades [1]. From 2003
to 2017, emissions of sulfur dioxide (SO2), nitrogen oxide (NOx) and particulate matter
(PM) decreased by 14.93 MT (million tons), 5.61 MT and 4.08 MT, respectively. However,
emissions of volatile organic pollutants (VOCs), which are precursors to PM2.5 and cause
photochemical smog, rose from 0.15 MT to nearly 0.3 MT [2,3]. VOCs were produced
mainly by emissions from the painting, petrochemistry, pharmaceutical and chemical in-
dustries. The total production value of the Chinese pharmaceutical and chemical industry
in 2014 was less than 3% of China’s GDP, but its VOC emissions accounted for 6% of
China’s total VOC emissions [4,5]. In 1990, 21 of the hazardous air pollutants mentioned
in amendments to the Clean Air Act by the Environmental Protection Agency (EPA) were
organic pollutants. A large number of organic compounds are used for pharmaceutical
synthesis intermediates and as organic solvents [6]. Chlorobenzene and its derivatives are
amongst the commonly occurring materials listed in a blacklist of exhaust gases by the
European Union. Chlorobenzene has high volatility and molecular stability. Moreover, it is
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difficult to biodegrade and readily accumulates in organisms [7,8]. As shown in Table 1,
traditional VOC treatment technology (absorption, adsorption, etc.) has a poor treatment
effect, is hard to operate for a long time, produces secondary pollution and so on [9,10].

Table 1. Comparison of main technologies for VOCs treatment.

Treatment
Technology Advantages Disadvantages Application Field

Adsorption High removal efficiency
Low investment cost

Expensive of adsorbent
Regular replacement

Spraying, petroleum,
chemical, packaging printing,

oil and gas recovery, paint,
leather, etc.

Absorption Mature technology
Low investment cost

High cost of maintenance
Wastewater treatment problems

Petrochemical, surface coating,
packaging and printing,

Electronics, etc.

Catalytic
Combustion

High concentration of VOCs
treatment

Wide range of application

Expensive of catalyst
High investment cost

The formation of toxic by-products

Spraying, chemical, electronic,
pharmaceutical, etc.

Condensation
High concentration of VOCs
treatment; Recovery of single

component

High investment cost
Low exhaust gas flow requirement

Petrochemical; chemical
industry; oil and gas recovery;

Pharmaceutical, etc.

Membrane
Separation

Recyclable components
High efficiency

High cost
Membrane pollution

Low flux

Chemical, environmental
protection, food, medicine,

electronics, etc.

Biodegradation Low energy consumption
Low operation cost

Susceptible for activity of
microorganisms

High requirements for substrates

Sewage waste gas treatment,
Low concentration of waste

gas treatment occasions

Plasma
Discharge

Suitable for refractory pollutants
and high exhaust gas flow

Incomplete of mineralization of
pollutants

Biological fermentation,
chemical industry, textile
printing and dyeing, etc.

Deng [11] et al. studied the catalytic combustion effect of mixed cobalt-based oxide
on chlorobenzene degradation at low temperature. The results showed that the addition
of Cr or Fe promoted the apparent activity of the original Co3O4 at low temperature and
inhibited the formation of polychlorinated by-products. The chlorobenzene conversion
rate was greater than 90% at 300 ◦C for 50 h operation. Jin [12] et al. studied the removal
of chlorobenzene by dielectric barrier discharge (DBD) combined with CuO/γ -Al2O3
catalyst. The presence of a catalyst can significantly enhance the degradation and oxi-
dation capacity of chlorobenzene in a DBD reactor [13]. However, DBD technology can
not completely mineralize targeted pollutants, and some by-products can appear along
with high energy consumption [14,15]. Biotechnology has good degradation capacity for
low carbon organic matter with relatively good water solubility. In addition, it has the
advantages of convenient operation, low secondary pollution and low energy consumption;
however, high substrate concentrations inhibit the activity of microorganisms, which leads
to low removal efficiency [16,17]. Therefore, it is feasible to use DBD as a pretreatment to a
biological method to degrade chlorobenzene and other macromolecular VOCs, improving
the water solubility and degradability of VOCs. This method would not only promote
the removal of pollutants but would also reduce the generation of secondary pollutants.
At present, the integrated method of the two processing technologies is being paid more
and more attention to address the disadvantages of a single technology. There are few
studies on VOC treatment by DBD-integrated biofilter [18,19]. Jiang [20] et al. found that
a plasma biotrickling filter (BTF) integrated system was superior to a BTF system for the
degradation of 1, 2-dichloroethane and n-hexane, and that the microbial community had
higher biodiversity. As a pretreatment of BTF, a plasma-catalytic system can effectively
remove pollutants which are hard to biodegrade. The combined system showed better
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adaptability with fluctuation in the inlet concentration of pollutants and HRT (hydraulic
retention time).

At present, domestic research on the treatment technology for typical chlorine-containing
VOCs is still in its infancy [21], and the research on the combined treatment of VOCs by
DBD and biological method is insufficient, with only a few engineering application cases;
therefore, research into the combined treatment of VOCs by these two methods is of much
significance [22].

This study investigated the optimal process parameters for the separate treatment
of chlorobenzene by BTF and DBD [23]. It also explored the degradation effect of a DBD
biologically integrated system on chlorobenzene derived from the pharmaceutical and
chemical industries [24]. This technology is predicted to result in improved economic and
social benefits and to become more widely used and applied.

2. Materials and Methods
2.1. Materials

The basic composition of the medium (per liter) was as follows: 0.1 g FeSO4·7H2O,
0.04 g ZnSO4·7H2O, 0.004 g CuSO4·5H2O, 50.0 g (NH4)2SO4, 0.02 g CaCl2·2H2O, 2.0 g
MgCl2·6H2O, 0.008 g CoCl2·6H2O, 0.002 g MnCl2·4H2O, 0.004 g Na2MoM4·2H2O, 32.0 g
K2HPO4, 16.0 g NaH2PO4·2H2O. These reagents were obtained from Zhengzhou Yidore
Reagent Co. (Zhengzhou, China) and China National Chemical Co., Ltd. (Beijing, China).

All standard gases (O2 (99.999%), N2 (99.999%) and CO2 (dry ice)) were provided by
Henan Yuancheng Science and Technology Development Co., Ltd. (Zhengzhou, China).
Xylene and chlorobenzene were both analytically pure (obtained from Zhengzhou PAINI
Chemical Reagent of Chemistry Co., Zhengzhou, China). The experimental water was
oxygen-free distilled water.

2.2. Apparatus

Figure 1 shows the integrated DBD and BTF device. The gases were generated and
controlled by gas cylinders, a mixing tank and a mass flowmeter. The DBD was constructed
from a quartz tube (total diameter/height: 0.03 m/0.65 m). A stainless steel discharge
electrode was installed inside the quartz tube and connected to the high voltage power. A
cylindrical BTF was of a polymethylmethacrylate (PMMA) column (total volume/height:
4 L/0.8 m). Some Raschig-ring fillers were regularly filled up to half of the reactor volume.
A tank for liquid storage was set up at the bottom of the BTF. The inlet and outlet of the
liquid flow were connected by a circulating pump. The gas (1) and (2) passed through
the gas flowmeter (3) and then entered the VOC generator (4). The VOCs entered the
DBD reactor (5), and the treated exhaust gas was introduced into the BTF reactor (8) from
the outlet (7). The exhaust gas was further treated by BTF and finally discharged. The
black arrows in Figure 1 show the flow direction of the system. Gas analysis was mainly
carried out by gas chromatography. Chlorobenzene is a typical simulated waste gas of
chlorine-containing VOCs in the pharmaceutical and chemical industry.

2.3. Experimental Methods

It has been found that some process parameters are particularly important for the
treatment of chlorobenzene by BTF and DBD, such as the hydraulic retention time (HRT
for short), discharge voltage, gas flow, and the inlet concentration of chlorobenzene [25,26].
Therefore, this study mainly focused on the influence of these process parameters on the
removal efficiency of chlorobenzene. The influence of the parameters on chlorobenzene
removal efficiency by a single biological process was analyzed at ambient temperature. The
optimal concentration range of chlorobenzene was found to be 400–700 mg·m−3. In general,
the emission concentration of VOCs from the pharmaceutical and chemical industries
is no more than 400 mg·m−3. However, the wider range of VOC concentrations was
chosen to better understand the treatment capacity of the system and the feasibility of
scale up in this study [27,28]. The effects of different HRT on the degradation efficiency
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of chlorobenzene and the oxygen concentration of BTF were investigated. Erythrococcus
pyridine LR (GDMCC No. 60677), which was cultured in our laboratory, were inoculated
into the biotrickling filter. Further, the effects of HRT, input voltage and inlet concentration
on degradation efficiency were investigated in a single DBD device [29,30]. Under the
conditions of an oxygen concentration of 10% and an inlet chlorobenzene concentration
of 300–1000 mg·m−3, the degradation efficiency for different HRT (5.5–11 s) and input
voltages (1–9 kV) was studied. The degradation efficiency for different inlet chlorobenzene
concentrations (100–1100 mg·m−3) was also studied. After the stable operation of the DBD-
BTF integrated system was achieved, the concentration of inlet chlorobenzene gradually
increased from 50 mg·m−3 to 1500 mg·m−3 under the conditions of a solution spray density
of 10 L (m−3·s−1), an oxygen concentration of 10%, and an input voltage of 7 kV [31,32].
The effect of chlorobenzene degradation was evaluated, and the treatment effect of the
integrated system was compared with that of BTF.
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10. Liquid flowmeter; 11. Pump; 12. Liquid replacement; 13. Control panel on plasma reactor;
14. Power supply for plasma reactor.

2.4. Analysis Method

The concentrations of chlorobenzene and xylene were both determined by gas chro-
matography (Agilent HP-Innowax, column temperature 160 ◦C, FID detector, Santa Clara,
CA, USA). The growth of microorganisms on the filler was observed by scanning electron
microscopy (JEOL JSM-6490LV, Tokyo, Japan) [33]. A pH meter (Yimai IS128CP, Shanghai,
China) was used for all pH measurements in this experiment.

3. Results and Discussion
3.1. Reactor Start-Up Stage

The experimental strains were all from the activated sludge at a sewage treatment
plant. During the membrane-hanging period, the BTF was operated for 8 h, the density
of circulating liquid was 5.17 m3·(m2·h)−1, and the HRT was 96 s. The membrane was
matured after 600 h. Scanning electron microscope images (Figure 2) of the filler showed
that the biofilm was attached to the surface of the filler after membrane hanging [34].
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3.2. Optimization of the Operating Parameters of the BTF
3.2.1. Influence of Inlet Concentration of Chlorobenzene on BTF

The inlet concentration is crucial for the degradation of organic waste gas. Padhi [35] et al.
found that the higher the inlet concentration of VOCs, the lower the degradation efficiency
of BTF. As is shown in Figure 3, with increasing concentration of chlorobenzene from
50 mg·m−3 to 1500 mg·m−3, the degradation efficiency of BTF gradually decreased. When
the inlet concentration of chlorobenzene was lower than 700 mg·m−3, the degradation
efficiency of BTF was close to 80% and remained stable. A suitable concentration of
chlorobenzene provided the carbon source for normal growth of microorganisms. However,
the treatment efficiency decreased significantly to below 70% at higher concentrations
(≥1300 mg·m−3), and the absolute degradation amounts of chlorobenzene increased with
increase in the inlet concentration, which was consistent with Padhi’s study. It was inferred
that the excessively high concentration of chlorobenzene had a toxic effect on the activity
of the microorganisms.

3.2.2. Influence of Hydraulic Retention Time on BTF

HRT has a significant influence on the degradation performance of BTF. Wang and
Chen [36] found that HRT could improve the degradation efficiency of organic contaminants,
since the mass transfer from gas to biomass was the main factor that limited the degradation
of dichloromethane. As shown in Figure 4, the degradation efficiency and removal load of
chlorobenzene increased with increasing HRT. At the initial HRT of 45 s, the degradation
efficiency was 74 ± 2%. When the HRT was 85 s, the degradation efficiency increased
rapidly, but, after that, the growth rate decreased and gradually became stable. The
maximum degradation rate reached 95 ± 2% when the HRT was increased to 165 s and the
removal loading also increased from 30 g·m−3·h−1 to 41 g·m−3·h−1. However, the rate of
removal loading slowed down and remained at about 40 g·m−3·h−1 with an HRT of 85 s.
This was because the activity of the microorganisms was inhibited and the gas-liquid mass
transfer decreased, which led to a reduction in the ability to degrade the chlorobenzene [37].

3.3. Optimization of the Operating Parameters of the DBD
3.3.1. Influence of HRT on Degradation Efficiency of DBD

Under the conditions of an oxygen concentration of 10% and a chlorobenzene inlet
concentration of 300–1000 mg·m−3, the degradation efficiency for different HRT is shown
in Figure 5; the degradation effect of chlorobenzene was enhanced with increase in HRT.
When the HRT was 5.5 s, the degradation efficiency reached 70%.
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3.3.2. Influence of Input Voltage on Degradation Efficiency of DBD

The degradation efficiency of different input voltages (1–9 kV) was studied under
conditions of HRT of 5.5 s, oxygen concentration of 10%, and inlet concentrations of
chlorobenzene of 300 mg·m−3, 600 mg·m−3 and 1000 mg·m−3. As shown in Figure 6, with
increasing voltage, the degradation efficiency of chlorobenzene by plasma increased. When
the inlet concentration was 300 mg·m−3 and the voltage was 1 kV, the degradation efficiency
was only 15 ± 2%, and when the discharge voltage reached 9 kV, the degradation efficiency
increased to 86 ± 2%. When the inlet concentration was 600 mg·m−3 and 1000 mg·m−3,
the degradation efficiency increased for both concentrations by 72%. When the voltage
exceeded 7 kV, the degradation efficiency of chlorobenzene increased slowly under the
three different inlet concentrations. An increasing number of high energy electrons with
increase in the discharge voltage of DBD would have increased the probability of collision
between CB molecular and high-energy electrons. Moreover, O·, OH· and other active free
radicals would be generated by the increasing discharge voltage of DBD, which is also
crucial to the degradation of CB.
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3.3.3. Influence of Inlet Concentration on Degradation Efficiency by DBD

The degradation efficiency of chlorobenzene inlet concentrations was studied under
conditions of an HRT of 5.5 s, an oxygen concentration of 10%, a discharge voltage of
7 kV, and inlet concentrations of chlorobenzene of 100 mg·m−3, 300 mg·m−3, 500 mg·m−3,
700 mg·m−3, 900 mg·m−3 and 1100 mg·m−3. As shown in Figure 7, the degradation
efficiency for chlorobenzene by DBD decreased with increase in the inlet concentration.
When the inlet concentration of chlorobenzene was 100 mg·m−3, the degradation efficiency
reached 82 ± 1%. When the inlet concentration was 1100 mg·m−3, the degradation effi-
ciency was only 41 ± 2%. When the inlet concentration was higher than 700 mg·m−3, the
degradation efficiency began to decrease rapidly. Since chlorobenzene has poor biodegrad-
ability, Jiang et al. [38] studied the influence of DBD on chlorobenzene degradation by
adjusting the technical parameters. The results showed that the chlorobenzene degradation
was 40% when the inlet concentration was 500 mg·m−3 with a voltage of 8 kV. However,
when the voltage was more than 12 kV, the HRT had little effect on chlorobenzene degra-
dation. Moreover, with increase in the discharge voltage, the by-products became more
biodegradable. The degradation of chlorobenzene was apparently positive at a voltage
of more than 20 kV. It was found that the degradation efficiency of chlorobenzene in this
system was 76% with an inlet concentration of 500 mg·m−3, and of 41% with an inlet
concentration of 1100 mg·m−3, compared to 40% for an inlet concentration of 500 mg·m−3

observed by Jiang et al. Our study achieved higher degradation efficiency under the same
conditions of concentration and voltage. It is clear that DBD and biological treatment
have their own advantages and disadvantages for VOC treatment. The combination of the
two technologies utilizes the advantages of both to improve the efficiency of VOC treat-
ment. DBD technology can decompose macromolecular organic compounds, and it can
reduce the toxicity of macromolecular organic matter to microorganisms as a pre-treatment
method, thus improving the efficiency of subsequent biological treatment. In addition, the
subsequent biological process can also remove the by-products of DBD treatment.
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3.4. Analysis of Chlorobenzene Degradation by DBD-Biological Process

When the operation of the integrated system was stable, the concentration of chloroben-
zene inlet was gradually increased from 50 mg·m−3 to 1500 mg·m−3 under the conditions
of a cycling solution density of 10.36 L (m−3·s−1), an oxygen concentration of 10% and an
input voltage of 7 kV. The HRTs for BTF and DBD were 85 s and 5.5 s, respectively. The effect
of the inlet concentration on chlorobenzene degradation is shown in Figures 8 and 9. When
the inlet concentration increased from 50 mg·m−3 to 1500 mg·m−3, the degradation effi-
ciency of BTF decreased from 85% to 61%, and that of the integrated system decreased from
100% to 72%. However, the degradation efficiency and the removal load of the integrated
system was generally higher than that of BTF. When DBD was used as a pretreatment
method, a large number of high-energy active substances were produced by the plasma,
degrading part of the chlorobenzene and decomposing part of the chlorobenzene into
other organic matter that could be more easily degraded, thus improving the degradation
efficiency of the overall integrated system. Nie et al. [39] applied DBD with catalysis as
a pretreatment technology for BTF. The results obtained by Nie et al. indicated that the
removal efficiency of BTF was equivalent to that of the integrated system for treating a
low inlet concentration of chlorobenzene at an HRT of 90 s. They found that the removal
rate of chlorobenzene gradually decreased with gradual increase in inlet chlorobenzene
concentration for an HRT of 90 s. In addition, the removal rate of chlorobenzene was
maintained at about 87%, when the inlet concentration of chlorobenzene was 1200 mg·m−3.
When the inlet concentration was more than 1200 mg·m−3, the removal efficiency of our
integrated system achieved 82% at an HRT of only 90.5 s, while there was no catalysis
reaction in our system.
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Taken together, the degradation efficiency of chlorobenzene and the removal load of
the integrated system was evidently affected by the concentration of chlorobenzene. The
higher the concentration of chlorobenzene, the greater the percentage of chlorobenzene per
unit volume needed to be converted. However, higher concentrations of chlorobenzene
produce an excess number of by-products in BTF, which is toxic to microorganisms. As
a result, an excess number of by-products accumulated in BTF. The growth environment
space for microorganisms deteriorated, which led to further restriction of microbial growth,
thus reducing the degradation efficiency of chlorobenzene. Furthermore, the decrease in
HRT resulted in an increasing number of chlorobenzene molecules passing through the
reactor at the same time. The contact time and probability of collision between CB molecules
and high-energy electrons were both reducing. Therefore, this study indicates that DBD, as
a pretreatment method of BTF, can decompose chlorobenzene into by-products with smaller
molecular weight (MW), thus benefiting the further process of microbial degradation and
alleviating the effect of by-products with high MW on the activity of microorganism, even
with reduction in HRT.

4. Conclusions

During the stable operation, the degradation efficiency of chlorobenzene reached
78 ± 2%; the optimal operating conditions of the BTF, of those studied, were as follows:
an inlet chlorobenzene concentration range of 400–700 mg·m−3, an oxygen concentration
of about 10%, and an HRT of 85 s. The degradation efficiency of chlorobenzene by DBD
reached 80 ± 5%. The optimal operating conditions of DBD, of those studied, were as
follows: an HRT of 5.5 s, an input voltage of 7 kV and an inlet chlorobenzene concentration
of 700 mg·m−3. The degradation efficiency of chlorobenzene reached 98 ± 2% under the
conditions of a spray density of 10.36 L·(m−3·s−1), an oxygen concentration of 10% and an
input voltage of 7 kV.

Taking into account the fluctuation in inlet concentration in practical applications, the
highest inlet chlorobenzene concentration in this study reached 700 mg·m−3, while VOC
concentrations in the exhaust gas from pharmaceutical and chemical industry are commonly
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no more than 400 mg·m−3. Thus, the DBD-BTF system in this study demonstrated good
technical and practical feasibility for dealing with low concentration, high flows of a toxic
exhaust gas. The degradation efficiency and removal load of the integrated system was
superior to similar systems that have been reported. However, when any technology
is applied in practice, the economic feasibility (such as the cost of discharging modes),
the operational stability (such as the activities of microorganisms), and the safety of the
device (such as being explosion-proof and anti-high pressure) are also key factors; we
are currently studying these issues. It is believed that the DBD-BTF system has broad
application prospects in sewage waste treatment, spraying, pharmaceutical and chemical
applications, textile printing and dyeing, etc. once these problems are solved.
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