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Abstract: Wind speed is an important meteorological parameter, whose simulation is influenced
by various physical process parameterizations. However, the impact of cumulus parameterization
schemes (CPSs) on wind speed simulation at the climate scale has not been sufficiently investigated
in previous studies. Using the Advanced Research version of the Weather Research and Forecasting
model (ARWv3) and hydrostatic wind speed change equation, we assessed the effects of four CPSs on
a 10 m wind speed simulation over mainland China in the summer of 2003. In general, different CPSs
can reproduce the wind speed distribution. Meanwhile, the sensitivity of wind speed simulation to
CPSs was found to be the highest in East and southern China, followed by the Tibetan Plateau, and
then Northwest China. We found that the main physical processes influencing wind speed (i.e., the
pressure gradient (PRE), diffusion (DFN), and convection (CON) terms) vary greatly with sub-regions.
CPSs mainly affect the secondary CON that regulates the balance between the dominant terms PRE
and DFN, and also has a significant effect on PRE. For example, for CON, the difference index (DIF)
between the Kain–Fritsch (KF) and previous KF (pKF) CPSs is larger than 20%, corresponding to a PRE
DIF of about 14%. The term of local wind speed change (Vt) is significantly more sensitive to the CPSs
than the other terms with a DIF of 283% over the Tibetan Plateau, suggesting high CPS sensitivity
of the simulated wind speed. In addition, we explained the causes of the CPS-induced sensitivities.
This work helps understand the Weather Research and Forecasting model (WRF) performance and
emphasizes the importance of the CPS choice in simulating/forecasting wind speed.

Keywords: 10 m wind speed; cumulus parameterization schemes; sensitivity of physical processes;
WRF; mainland China

1. Introduction

As one of the key variables of meteorological fields, the simulation and prediction of
wind has been a goal of intensive research in various academic and industrial fields [1]. On
the one hand, changes in wind direction are important, especially in coastal areas where
they affect hydrodynamic factors such as waves and storm surges [2]. On the other hand,
the change and distribution of wind speed have a significant influence on the change in
the thermal structure of the boundary layer [3], surface fluxes [4], heat transfer, and mass
transport [5], and even the estimation of pollutants [6]. Therefore, the studies of the pro-
cesses affecting wind speed change and the sensitivity of wind speed simulation to different
physical schemes are of importance for reference to further understand atmospheric motion.
Meanwhile, from the perspective of society and economics, global warming leads to the
frequent occurrence of extreme weather (e.g., storms and typhoons), so the forecast of wind
speed is also extremely important to reduce economic losses and personal injury [7].
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To explore the factors affecting wind speed simulation, it is necessary to understand
the effects of atmospheric and land processes on wind speed. Previous studies on wind
speed have been mainly based on the direct momentum balance method, i.e., the surface
wind vector is determined by pressure gradient force, Coriolis force, gravity, and friction.
For example, using this method in a weather case, Van den Broeke and Van Lipzig [8]
suggested that large-scale pressure gradient forces controlled the momentum budget on
the near-surface and contributed the most to wind speed, while the Coriolis force and
gravity wave drag also affected wind speed. Horvath et al. [9] showed through a case
study in winter that local and regional thermally driven circulation could influence the air
mass through pressure gradient force within the pressure system, which was an important
part of wind speed formation. In addition, the effects of land surface properties and their
changes on wind speed cannot be ignored. For example, Wen et al. [10] studied the heat
circulation of an oasis in the Gobi desert, and their results showed that the changes in land
use types and land surface parameters could also change the land surface processes and
affect the lower atmosphere and boundary layer with the change in atmospheric circulation
situation, humidity, and temperature. Carvalho et al. [1] found that due to the limitation of
topographic data for the area with complex terrain, a worse simulation could be produced
by the WRF model. Lin et al. [11] studied the wind speed on the Qinghai–Tibet Plateau and
pointed out that global warming and cooling caused by atmospheric thermal adaptation
would greatly change the surface wind speed at the regional scale, and the surface wind
speed on the Qinghai–Tibet Plateau changed more than other regions in mainland China.
In addition, Zhang et al. [12] indicated that the pressure gradient force decreased when
the wind speed dropped over the Qinghai–Tibet Plateau in summer, mainly due to the
adjustment of atmospheric circulation. Zeng et al. [13] derived an equation affecting wind
speed change, and the simulation results showed that the Coriolis force had no effect on
wind speed, while the main physical processes affecting wind speed change were pressure
gradient force, convection and turbulence, and these physical processes showed large
differences with regional land perturbations, i.e., the simulation of these processes could be
very sensitive to the choice of land surface schemes.

As can be seen from previous simulations of wind speed, there have been many
influencing factors involved, among which the relationship between cumulus development
and the wind field cannot be ignored. Previous studies of cumulus parameterization
schemes (CPSs) were basically related to the study of precipitation, e.g., how cumulus
development can affect heavy rainfalls [14], while the influence of CPSs on wind speed
simulation has been rarely investigated [13,15]. Srinivas et al. [16] employed a mesoscale
model of ARWv3.2, and found that compared to cloud microphysics and boundary layer
schemes, the selection of cumulus convection parameterization schemes was more sensitive
to tropical cyclone intensity and path. Therefore, different CPSs had influences on the
simulation of surface wind speed to varying degrees. In fact, in addition to calculating
cloud water content, CPSs are also intended to consider the effects of unresolved deep and
shallow convective clouds, in which one of the main purposes is to calculate vertical fluxes
caused by subgrid updrafts and downdrafts, as well as corresponding horizontal motions to
compensate the change in vertical velocity, i.e., CPSs directly affect grid-scale wind speeds
in the model. For example, Asai [17] found that vertical wind shear tended to inhibit the
development of convection in the vertical plane parallel to the wind. Sui and Yanai [18]
estimated the influence of cumulus clouds on the rotating part of the large-scale momentum
field by using the vorticity balance residual, and found that cumulus clouds could slow
down the mean airflow, and in the lower troposphere, such deceleration tended to reduce
the vertical wind shear of the environment. The relationship between cumulus clouds and
wind fields is more complicated in summer when convection is frequent. Das et al. [19]
used different CPSs to simulate the Indian summer monsoon, showing that the simulation
of typical characteristics of the Indian summer monsoon was quietly different with different
schemes, among which the velocity potential and divergent winds obtained by Kuo-type
CPS simulation were weak. Using the obliquely rotated principal component analysis,
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Rao et al. [20] found that the summer topographic convection in China was controlled
not only by topographic thermal conditions but also by the dynamic force of increasing
wind speed in the mountainous area of the northeast Pearl River Delta. However, these
studies have seldom focused on CPS-induced effects on simulated wind speed on the
climate scales.

Therefore, the objective of this work is to assess the impact of CPSs on simulated
wind speed over mainland China on a seasonal scale. The summer of 2003 was a very
special season, during which extreme high temperature and rainstorm events occurred
in southern/eastern China [21,22]. In this paper, the sensitivity of simulated summer
wind speed to CPSs over typical underlying surfaces of different subregions of China (i.e.,
Northwest China, NW; East China, EC; and the Tibetan Plateau, TP) was evaluated, with
the summer of 2003 taken as the study period. The following section describes the model,
designed experiments, data, and relevant methods used in the study. Section 3 presents
simulation results, and a summary and discussion are given in Section 4.

2. Methodology and Data
2.1. Model and Experimental Design

This work is a continuation of Zeng et al. [13], who assessed the sensitivity of 10 m
wind speed to land surface schemes and the processes affecting wind speed in China
during the summer of 2003 using the third version of the Advanced Research WRF (ARWv3)
mesoscale model. In the summer of 2003, extremely heavy precipitation [21] and continuous
high-temperature weather [22] occurred in eastern China, and there was an overall slightly
positive anomaly of 10 m wind speed in mainland China (Figure 1b,c). The model selected
in this study is the ARWv3 [23]. The physical schemes used in all experiments were the
rapid radiative transfer model (RRTM) for long-wave radiation scheme, Dudhia short-wave
radiation scheme, the WRF single moment 5-class microphysics scheme (WSM5), Monin-
Obukhov near-surface scheme, Yonsei University (YSU) planetary boundary scheme, and
Noah land surface scheme [13].

It should be noted that as a continuation of the work on the impact of land surface
schemes (LSSs) on simulated wind speed by Zeng et al. (2018), the present study em-
ploys the same model and almost the same suite of model configurations, except for the
CPSs, and intends to compare the impact induced by LSSs with that by CPSs. Because
Zeng et al. (2018) had used four LSSs, correspondingly, for the sake of comparability, this
study uses the four widely-used CPSs as follows: (1) The Kain–Fritsch (new Eta) scheme
(KF hereafter; [24]) is an adjustment of the old Kain–Fritsch scheme in the Eta model. Its
closure hypothesis is consistent with that of the old KF scheme, and the simple cloud
model with water vapor rising and sinking is used to consider the role of entrainments and
detrainments with relatively rough microphysical processes. In addition, the scheme in-
hibits large-scale convections in both marginal unstable and dry environments [25]. (2) The
Betts–Miller–Janjic scheme (BMJ hereafter; [26]) is an adjusted and improved Betts–Miller
scheme; the thermodynamic profile is relaxed at a given time, and the convective mass flux
can consume a certain amount of effective buoyancy. Furthermore, the scheme considers
the role of both deep and shallow convection processes. (3) The Grell–Devenyi ensem-
ble scheme (Grell hereafter; [27]) is characterized by a parameterization framework of a
simple scheme based on a previous convective parameterization, and this simple scheme
was expanded to allow for a series of different assumptions that are commonly used in
convective parameterizations with large sensitivity in model simulations, in which values
for the assumed parameters are perturbed to obtain the ensemble scheme. (4) The previ-
ous Kain–Fritsch (pKF hereafter; [25]) is a one-dimensional entraining/detraining plume
model for cumulus clouds, which is characterized by its representation of environmental
entrainment and updraft detrainment rates, e.g., the mass exchange between clouds and
their environment is regulated at model levels by a buoyancy sorting mechanism.
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As in Zeng et al. [13], the simulation domain of in this study is centered at (37◦ N,
103◦ E) for mainland China. The total number of grids in the study area is 144 × 116 with
horizontal and vertical resolutions of 40 km and 28 levels, and the top pressure of the model
is 50 hPa. This area includes three sub-regions (Figure 1a) with typical and contrastive land
surface features: NW (arid and semi-arid areas with a large topographic variability), EC
(subtropical humid and temperate monsoon climate with high vegetation coverage and flat
terrain), and TP (cold climate with high altitudes). The simulation period of all experiments
was from 1 May 2003 to 1 September 2003, and the integral time step was 180 s. In order
to make the simulation results more robust, here we conducted 12-ensemble experiments,
with a small disturbance (i.e., at a 6-h interval) of the starting time of each experiment, i.e.,
0000 UTC on 1 May 2003 to 1800 UTC on 3 May 2003 as the initial time of each ensemble. In
the consecutive four-month tests, we took the first month as the model spin-up time, and
used the simulation results of the ensemble simulation tests in June, July and August to
conduct seasonal scale analysis. It should be noted here that we will use the names of CPSs
(i.e., KF, BMJ, Grell, and pKF) to represent the ensemble averages of the simulations of the
corresponding CPSs. Due to all experiments adopting the same physical parameterization
schemes and the same simulation area and time period (i.e., June–August), the differences
in simulation results were caused by the differences among the CPSs.

2.2. The Data

The ARW modeling system includes a number of datasets for default options or
for users’ selection, e.g., the present study employs a background albedo dataset and a
dataset for vegetation indices based on the Moderate Resolution Imaging Spectroradiometer
(MODIS) data, and a United States Geological Survey 10 min resolution topography dataset.
Following Zeng et al. [13], the FINAL (FNL) 1◦ × 1◦ analysis data with a 6 hourly interval
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provided by the National Centers for Environmental Prediction (NCEP) were used for the
initial fields, boundary conditions and validation data for simulation results. The NCEP
Climate Forecast System Reanalysis (CFSR) monthly average data with a resolution of 0.5◦

× 0.5◦ were used in the anomaly distribution of summer wind speed in 2003 relative to the
summer average over the last 30 years (Figure 1b,c).

2.3. Wind Speed Change Equation

Zeng et al. [13] derived the equation for full wind speed (other than wind components),
which can be expressed as

Vt = ADV + PRE + CON + DFN, (1)

where the 4 terms ADV, PRE, CON and DFN indicate the influences on local full wind
speed change Vt, by advection, pressure gradient force, convection, and turbulent diffusion,
respectively, where

ADV = −
∫
t

(u
∂V
∂x

+ v
∂V
∂y

)dt, (2)

PRE = −
∫
t

1
V
(αu

∂p
∂x

+ αv
∂p
∂y

+ u
∂Φ
∂x

+ v
∂Φ
∂y

)
dt, (3)

CON = −
∫
·
σ

∂V
∂σ

dt, (4)

DFN =
∫
t

V · F
V

dt, (5)

where u and v are zonal and meridional wind speed components, respectively. V and V are
the wind vector and full wind speed (V =

√
u2 + v2), respectively, p is pressure,

·
σ is the

vertical velocity of the coordinate system, α is the specific volume, Φ is the geopotential, and
F is the friction. For the above formulas, Vt, ADV, PRE, and CON can be calculated directly
through the model outputs, then DFN can be calculated using Equation (1), and therefore
the relative contribution of each factor/term to the wind speed change can be investigated.

Compared with the traditional momentum balance equation, the advantage of Equa-
tion (1) is that it is a variant of the prognostic equation for full wind speed, and can give
exact quantitative results of the physical processes that affect the full wind speed, in which
the influence of the Coriolis force on full wind speed is reasonably excluded although it
must be considered for wind speed components [13].

By selecting different CPSs, the terms in Equations (1)–(5) can be affected in the follow-
ing two ways. First, the CPSs can affect the thermodynamic structure of the atmosphere.
The CPS-related processes of clouds and precipitation can directly heat the air mass, which
changes the air density and also leads to modifications of geostrophic winds and hydro-
static stability in the horizontal and vertical directions, respectively, i.e., the terms of ADV,
PRE, and CON, which are, respectively, associated with the wind, temperature (or air den-
sity), and stability, can be altered. Furthermore, when precipitation is received at the land
surface, the surface energy balance is affected, which also results in a change in hydrostatic
stability at the land surface. All of the stability changes would lead to changes in convective
activities. Second, the CPSs can affect the dynamic structure of the atmosphere. Affected
by cumulus entraining/detraining processes at the subgrid scale, the environmental wind
field would be changed for compensation, which further causes the grid-cell averaged
change of wind at different heights and can further result in wind shear-related turbulence,
i.e., DFN can be altered.

2.4. Measures for Assessment

In order to quantitatively compare the consistency between simulation results and NCEP
analysis data and investigate the differences among the CPSs, following Zeng et al. [13],
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several measures were used for the assessment, i.e., the seasonal mean bias of simulations
and reference data (BIAS), the standard deviation (STD; STDM and STDO are for simulations
and reference data, respectively), the spatial correlation coefficient (CRMO), and the difference
index (DIF) of simulated processes affecting the wind speed in different CPSs, which are
computed as follows:

BIAS = M−O, (6)

STDM =

√√√√ 1
N

N

∑
i=1

(
Mi −M

)2

, (7)

STDO =

√√√√ 1
N

N

∑
i=1

(
Oi −O

)2

, (8)

CRMO =

N
∑

i=1
(Mi −M)(Oi −O)√

N
∑

i=1
(Mi −M)

2
√

N
∑

i=1
(Oi −O)

2
, (9)

DIF =
Tk1 − Tk2

1
km

km
∑

k=1

∣∣Tk
∣∣ × 100%, k1 6= k2, k1 < km, k2 < km, (10)

where N is the number of grid points involved in the assessment within a region, M and O
represent the simulated and observed values of a quantity, respectively, km is the number of
the CPSs (4 in this case) for the difference index DIF, Tk is the regional mean value of a term
for a certain physical process in Equation (1) from the CPS as labeled by k. DIF indicates
the relative differences in the simulations between the different schemes.

3. Simulated Results

Because the same initial and boundary conditions and almost the same physical
options were used in this study, in this section we focus on the CPS-induced differences
of the 10 m full wind speed simulations in terms of the 12-member ensemble summer
mean results.

3.1. The 10 m Wind Speed
3.1.1. Spatial Distributions

Figure 2 presents the spatial distributions of the seasonal average 10 m surface wind
speed simulated by different CPSs. It can be found that except for southeastern mainland
China, the CPSs generally well produced the wind speed distributions over almost the
entire study domain as compared with the reference FNL data (e.g., Figure 1d vs. Figure 2a).
Specifically, with a quite high simulation–reference correlation over the land portion of
the study domain (Table 1), the general characteristics of wind speed were successfully
simulated by the WRF model, e.g., the low values over the area north of 50◦ N and over
the Indochina peninsula, and high values over North China, Northwest China, the Tibetan
Plateau, and the surrounding oceans, showing a larger part of the study domain with
simulated wind consistent with the reference data. Relatively, the area with values quite
different from/higher than the reference data is small (i.e., over southern China and part of
North China).
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Table 1. Ensemble seasonal mean correlation coefficients (CRMO) for Northwest China (NW), East
China (EC), the Tibetan Plateau (TP), and the land portion of the model domain (ALL).

Scheme NW EC TP ALL

BMJ 0.31 0.80 0.31 0.69
KF 0.31 0.75 0.28 0.71

Grell 0.24 0.74 0.42 0.72
pKF 0.33 0.77 0.39 0.76

The wind field distributions by the CPSs appear to be close to each other due to
the same initial and boundary conditions, and almost the same physical options as well.
Overall, the CPSs tend to moderate the wind speed, i.e., the simulated wind speed is shown
to be higher in the reference low wind speed zone and lower in the reference high wind
speed zone (Figure 1d, Figure 2a–d). For the three subregions, the simulated wind speeds
of the four CPSs decrease from west to east in TP, are larger in the north of NW than in the
south, and decrease from southwest to northeast in EC.

However, a closer comparison would lead to clearer and larger differences among the
CPSs. It can be seen more clearly from the CPS-induced different fields (Figure 2e–j) that
the differences in simulated wind speed between different CPSs are relatively smaller in
northern China and larger in southern China. For example, large KF–BMJ differences with
absolute values of more than 0.3 m s−1 (Figure 2e) mainly exist in South China, and also
a similar amplitude of the BMJ-pKF differences can be observed in the TP, South China,
and the EC area around the Shandong Peninsula. This is mainly due to the fact that in
the summer, the area of South/East China is a wind convergence region of the East Asian
monsoon zone, where prevailing northwesterly wind from Siberia is relatively cold and
dry in contrast with the warm and moist southwesterly wind from the Indian Ocean [28].
These two types of contrastive winds converge with approximately the same strength, and
therefore fronts are formed which lead to the updrafts in the front zones and favor the
release of the convective available potential energy; as a result, a large number of convective
activities occur in South/East China. For the TP, the summer climate is controlled by the
thermal low, which further brings the biggest portion of convective activities and hence
precipitation of the year. All of these suggest that the above areas can be most affected by the
CPSs. In addition, the CPS differences can enlarge the differences in simulated wind speed.
For example, the pKF scheme is a mass flux parameterization using the Lagrangian parcel
method to estimate whether instability exists, whether existing instability can become
available for cloud growth, and what the properties of convective clouds could be. In
contrast, the KF CPS considers a set of parameterizations including the convective trigger
function, the mass flux formulation, and the closure assumptions [24], which makes it
very different from pKF in simulating wind speed, e.g., KF presents significantly different
wind speed compared with pKF in EC and the TP, with differences as large as about
0.3 m s−1 (Figure 2i). In addition, the Grell CPS makes use of a large variety of assumptions
previously introduced in earlier formulations, with the assumptions generating a large
spread in the solution for the ensemble scheme [27], which makes the CPS very unique as
compared to a single scheme such as the other CPSs in the present study. As a result, the
Grell–BMJ difference is apparently large in southern China (Figure 2f).

Correspondingly, the Student’s t-test results at the 0.10 significance level [29] show
that there is a quite large total area with significant differences, mostly in the southeast of
mainland China. This further confirms that wind speed simulation is sensitive to the CPSs
in areas with high convective precipitation. At the same time, there are some differences in
the results of these CPS-produced simulations, e.g., the BMJ-pKF, KF-pKF and Grell-pKF
differences are mainly distributed in the southeast of mainland China, while the total area
with significant differences between KF and Grell is small, which is consistent with the
above-mentioned results.
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3.1.2. Assessment Results

Figure 3a shows the BIAS of the average seasonal wind speed simulated by different
CPSs in the total area and each subregion. It can be seen that the wind speed values of
the total area and subregions simulated by the four CPSs are similar to those of different
land surface schemes [13]. For example, for simulated wind speeds of the total area, NW
and EC are higher than the reference, while the TP value is lower. This result is closely
associated with the distributions of simulated surface air temperatures. Generally, the
model produced higher surface air temperatures over different parts of mainland China
except for the TP (not shown). This means that the CPSs produced low-level stratifications
that were more stable than they should have been over the TP, which does not favor the
downward momentum transport and results in a lower wind speed in the TP. Similarly,
simulated wind speed for subregions other than the TP is higher.
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Figure 3. Ensemble seasonal mean wind speed results of BIAS (a) and STDM minus the STDo (b) for
each sub-region, where the regional means of wind speed from reference FNL data for NW, EC, TP,
and ALL (land portion of the model domain) are 3.83, 2.42, 4.61, 3.58 m s−1, respectively [13]. The
FNL data are available at: https://rda.ucar.edu/datasets/ds083.2 (accessed on 24 February 2022).

In terms of BIAS, the CPSs present an overall higher wind speed for the total area (with
the BIASs less than 0.50 m s−1) while sub-regions might show different results, e.g., the
BIAS of East China is much larger, and there exists a negative BIAS in the TP. In addition,
wind speed in NW (EC) is the best (worst) simulated among the sub-regions, which is
consistent with the above-mentioned results of wind speed distributions, e.g., there are
much higher wind speed values in EC compared with the reference data (Figure 2 vs.
Figure 1d).

The sensitivities of simulated wind speed to CPSs vary in different sub-regions. For
example, although CPS-induced BIAS differences are relatively small for EC, while for NW,
TP, and the total area, the differences can be much larger between the least and the largest,
e.g., compared with the Grell BIAS of about −0.40 m s−1, the amplitude of the pKF BIAS is
approximately 50% larger for the TP, and for the total area, the BIAS differences also show
the largest amplitude change of 70% as compared to the pKF BIAS of 0.30 m s−1 with the
BMJ BIAS of 0.50 m s−1.

Figure 3b shows the CPS-induced difference between STDM and STDO for the seasonal
wind speed in the total area and sub-regions. Obviously, among the study sub-regions,
the difference amplitude of the four schemes in EC is the smallest (less than 0.05 m s−1),
while the difference amplitude in NW is the largest (around −0.4 m s−1), showing that
although for different sub-regions simulated spatial variability is quite different with small
CPS-induced changes, the CPS-induced changes for the total area are very large, e.g., the
STDM -STDO difference amplitude by BMJ is 60% larger than that by KF.

It is noteworthy that in Figure 3b, the fluctuations of wind speeds are all smaller
than the reference data. Possible reasons for this result are as follows. (1) Some influences
of land surface heterogeneity are probably missing from the simulation. The subgrid

https://rda.ucar.edu/datasets/ds083.2
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heterogeneity could induce modifications of grid-scale changes in surface variables such
as wind speed. For example, microscopic topography could dynamically change the
atmospheric flow [30], subgrid variations in the surface moisture could thermally induce
mesoscale circulations [31], and all of these could lead to grid-scale changes [32]. (2) The
model has some deficiencies in simulating the wind speed, e.g., the simulated temperature
fields were not well simulated, which would affect vertical momentum transport and then
wind speed (as stated above). (3) Models are generally difficult to reproduce extremes of
observations, suggesting that they tend to give moderate results compared to observations.

In addition, Table 1 lists the correlation (CRMO) values by the CPSs for the sub-regions.
Overall, the CPSs present wind speed patterns quite consistent with the reference (i.e.,
the CRMO values are approximately 0.7). However, the values differ from sub-regions
greatly, and moreover, large CPS-induced CRMO difference can be seen, e.g., the KF–Grell
difference amounts to up to 0.14 for the TP.

In general, the assessment measures show that the simulated wind speed is sensitive
to the CPSs with different sub-regional characteristics, suggesting that the CPS choice or
improvement is important for seasonal wind speed simulations or forecasts. Meanwhile, it
is worth noting that the CPS-induced sensitivity is less than that induced by land surface
schemes [13].

3.2. Processes Affecting Wind Speed Change

According to the summer mean integral results of Vt, ADV, PRE, CON, and DFN
(Table 2), the main processes affecting the wind speed changes are PRE, DFN, and CON,
and the effects of PRE and DFN are much larger than that of CON, having a positive and a
negative contribution to wind speed, respectively, which is consistent with Zeng et al. [13].
Meanwhile, due to the influence of climate characteristics, there are certain differences
in the factors affecting wind speed variation in different subregions. For subregion NW,
PRE and DFN of KF have the greatest impacts among those of the CPSs, with both mean
integral values of five and four times as large as that of CON, respectively, while PRE and
DFN of the other schemes are also 3–5 times higher than CON. For EC, the absolute values
of the mean integral PRE and DFN are the largest by BMJ, which are about three and four
times larger than that of CON, respectively, but the signs of PRE and DFN are opposite
(i.e., they have opposite effects on wind speed change). For the TP, a striking feature of
CON appears: the CON contribution to the wind speed change is negative (i.e., the weak
updraft formed by the thermal low pressure in summer restrained downward momentum
transfer), which is the opposite of the facts observed for EC and NW. In addition, the
integral means of PRE and DFN by Grell are the largest for the TP, reaching 12 and 11 times
that of CON, respectively.

Table 2. Different CPS-ensemble area-averaged summer mean integral results of the five terms in
Equation (1) (units: m s−1).

V t ADV PRE CON DFN

NW EC TP NW EC TP NW EC TP NW EC TP NW EC TP

KF −0.99 −0.13 −0.26 57.37 31.52 17.91
4.27
×

103

2.77
×

103

1.72
×

104

1.01
×

103

8.47
×

102

−1.43
×

103

−5.34
×

103

−3.65
×

103

−1.58
×

104

BMJ −1.52 −0.09 −0.53 64.27 24.17 8.07
4.30
×

103

2.62
×

103

1.88
×

104

1.04
×

103

8.83
×

102

−2.45
×

103

−5.40
×

103

−3.53
×

103

−1.64
×

104

Grell −1.33 0.18 −0.21 56.96 30.91 13.46
4.19
×

103

2.54
×

103

1.89
×

104

1.06
×

103

8.94
×

102

−1.26
×

103

−5.31
×

103

−3.46
×

103

−1.77
×

104

pKF −1.51 −0.35 −0.65 53.69 36.94 11.05
3.72
×

103

2.43
×

103

1.68
×

104

1.27
×

103

9.22
×

102

−9.91
×

102

−5.04
×

103

−3.39
×

103

−1.59
×

104
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As can be seen from the difference index DIF of the terms in Equation (1) simulated
by different CPSs (Table 3), the least term Vt is much more sensitive to CPSs than the
other terms. Among them, the Vt DIF values in NW are less than 40%, while the DIF
by pKF and Grell in EC and TP can reach 283% and 106%, respectively. Except Vt, the
sensitivities of the other terms to CPSs are complicated. For example, CON is most sensitive
to CPSs in NW, with a maximum DIF of 24%, while DFN is the least sensitive. For EC, the
sensitivity of each term to CPSs is the lowest among the three sub-regions, with absolute
DIF values within 13%. For the TP, CON has the largest effect (corresponding to a maximum
DIF amplitude of −95%), followed by ADV, while the DIF maxima of PRE and DFN are
lower than 12%. Compared with the sub-regions of EC and NW that show moderate
CPS-induced sensitivities in the three major terms (i.e., PRE, DFN, and CON), the TP
displays an apparently higher sensitivity, e.g., the DIF between KF and pKF can reach 95%
for CON, suggesting that the influence of CPSs on wind speed processes varies greatly
with sub-regions. For the overall wind speed change, it suggests that the CPS-induced
influence on Vt is great in EC, probably due to frequent convective activities in the summer
monsoon; for an even higher CPS-induced influence on Vt in the TP, the high topographic
elevations that lead to a thin troposphere in this area could be a main cause.

Table 3. The difference index (DIF) in different CPS-ensemble area-averaged summer mean integral
results of the five terms in Equation (1) for the sub-regions, corresponding to the value of the vertical
CPS minus the one of the horizontal CPS (unit: %).

V t ADV PRE CON DFN

BMJ Grell pKF BMJ Grell pKF BMJ Grell pKF BMJ Grell pKF BMJ Grell pKF

NW
KF 40 25 39 −12 1 6 −1 2 14 −3 −5 −24 1 −1 −6

BMJ - −14 −1 - 13 18 - 3 14 - −2 −21 - −2 −7
Grell - - 14 - - 6 - - 12 - - −19 - - −5

EC
KF −25 −168 115 6 0 −4 6 9 13 −4 −5 −8 −3 −5 −8

BMJ - −143 140 - −5 −10 - 3 8 - −1 −4 - −2 −4
Grell - - 283 - - −5 - - 4 - - −3 - - −2

TP
KF 66 −11 95 78 35 54 −9 −10 2 67 −11 −28 3 12 0

BMJ - −77 29 - −43 −24 - −1 11 - −77 −95 - 8 −3
Grell - - 106 - - 19 - - 12 - - −18 - - −11

3.3. Associated Boundary-Layer Parameters
3.3.1. Near-Surface Fluxes

The change in convective activities can affect the change in surface energy fluxes, while
the change in surface sensible and latent heat fluxes will affect the convective processes
and wind speed through energy transfer and release in the vertical direction with land
surface disturbances. Figure 4 shows the average sensible and latent heat fluxes simulated
by different CPSs. It can be seen that although CPS-induced sensible and latent heat flux
differences are relatively small over most of mainland China, the largest differences still
exist in EC (e.g., with an amplitude of over 20 w m−2; Figure 4c,g), which is consistent with
the above-mentioned result that over this area, simulated convective activities are affected
by the CPSs to quite an extent.
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Figure 4. Ensemble seasonal mean distributions of sensible heat flux (SHF), latent heat flux (LHF),
and their differences (units: W m−2).

By comparing the difference field of wind speed with that of sensible/latent heat
flux, there appears no clear correlation. This suggests that the CPS-induced sensitivities
are complicated. Although the land surface plays an important role in modifying 10 m
wind speed [13], the changes in surface fluxes are probably less important in CPS-induced
changes in wind speed compared with the changes in the interior atmosphere.

3.3.2. Atmospheric Boundary Layer Stability

On the weather scale, different CPSs can influence simulated momentum exchange by
influencing the stability of the simulated atmospheric boundary layer, i.e., the stability of the
atmospheric boundary layer can be affected by the energy release in the convective process,
which will lead to a difference in the momentum exchange between the upper and lower
levels and thus affect the wind speed [1]. Figure 5 shows the CPS-produced seasonally
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average Richardson number (Ri), which can be used as a measure for atmospheric boundary
layer stability. On the whole, similar to the simulation by different land surface schemes that
presented the vertical distributions of atmospheric stability in the three sub-regions [13], it
can be also concluded that the CPS-produced instability layer over the TP is the thickest,
followed by NW and EC (e.g., Figure 5d). Consistent with the above-mentioned results for
the sub-regions, the Ri for NW is not sensitive to the CPSs, while the TP shows the highest
sensitivity, e.g., there is a quite large Ri difference between Grell and pKF (Figure 5c),
corresponding to the highest sensitivity of CON to the CPSs, as addressed in Section 3.2. In
addition, Grell produces a more unstable boundary layer than pKF does, which favors the
downward momentum transfer, further strengthens the 10 m wind speed, and results in a
higher Grell wind speed compared to pKF (Figure 2j). Note that the simulated wind speed
sensitivity for the TP is not the highest of the CPSs., i.e., the DIF of Vt for the TP is not
the largest among the sub-regions (Table 3). The reason for this complexity is that vertical
momentum transfer is a result of convection (i.e., CON), while there are other important
processes responsible for wind speed change (e.g., PRE).
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Figure 5. Ensemble seasonal mean Richardson number (Ri) in the selected atmospheric boundary
layer in the three sub-regions, where Layers 1–8 are approximately 10, 30, 100, 200, 320, 470, 600, and
900 m above ground level, respectively, with Ri =

g∆θ∆z
θ[(∆U)

2
+(∆V)

2
]
, where ∆θ represents the potential

temperature difference between the top and bottom of the atmospheric layer, ∆z the thickness of the
layer, θ the mean potential temperature, and ∆U (∆V) the zonal (meridional) wind speed difference
between the top and bottom of the atmospheric layer [33]. (a) The four CPS ensembles for NW;
(b) same as (a) but for EC; (c) same as (a) but for the TP; (d) the BMJ ensemble for the three sub-regions.

4. Summary and Discussion

In order to investigate the sensitivity of simulated wind speed and its influencing
processes to the CPS choice, we selected four CPSs (KF, BMJ, Grell, and pKF) as employed
in the mesoscale model WRFv3 to separately conduct ensemble simulations for the summer
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of 2003 in mainland China. Using the wind speed change equation under the hydrostatic
condition, we calculated the four physical terms responsible for the wind speed change
(Vt), i.e., the terms induced by advection (ADV), pressure gradient force (PRE), convection
(CON), and turbulent diffusion (DFN), and quantified the relative importance of influencing
processes and analyzed their sensitivities to the CPSs. The main results and conclusions
are as follows:

(1) By and large, different CPSs can reproduce 10 m wind speed over mainland China,
which is also indicated by the simulation–reference correlation efficiency of approx-
imately 0.70. Previous studies of CPSs were basically associated with precipita-
tion [14], while this result indicates an overall performance of simulating wind speed
by the CPSs.

(2) In comparison to the CPS ensembles, the largest simulated difference is generally
found between Grell and pKF. Although the CPS choice does not greatly modify the
simulated wind speed, sub-regions of mainland China show quite a large CPS-induced
impact on wind speed. It can be seen that northern China is relatively unaffected
by the CPSs, but southern China, East China, and the Tibetan Plateau are affected to
quite large extents, as is confirmed by Student’s t-tests. These high sensitivities are
associated with the frequent convective activities in the summer monsoon (e.g., over
East China) and a relatively thin troposphere (i.e., over the Tibetan Plateau). Because
the influence of CPSs on wind speed simulation has been rarely investigated on a
climate scale [13,15], these results clearly indicate where the simulated wind speed is
greatly affected in mainland China on the summer scale, and the mechanisms have
been revealed.

(3) Among the terms of influencing processes, CON is most affected by the CPSs, followed
by PRE and DFN, corresponding to CPS-induced DIF values of 95%, 14%, and 12%
for the sub-regions, respectively. ADV is a secondary term for contribution to Vt, with
the latter having a large DIF value of 283% for East China. Previous works seldom
showed the CPS-induced impacts on complete influencing processes [14]; this study
presents the impacts of the turbulence effect (DFN) and revealed that they cannot be
conventionally quantified.

(4) The results of the related boundary layer parameters can demonstrate the CPS-induced
impact on simulated wind speed, in which surface fluxes do not show clear corre-
lations with wind change while the Richardson number does. This suggests that
compared with the CPS-induced changes in wind speed in the interior atmosphere,
the CPS-induced changes of surface fluxes are less important. This work makes an in-
cremental advance in wind speed study based on the LSS-induced impact [13], empha-
sizing the importance of the atmospheric process rather than land surface processes.

Because CPSs are closely associated with precipitation simulations, it is expected
that there is a correlation between simulated precipitation and wind speed as induced
by the CPSs. We found that simulated precipitation is sensitive to the CPSs over the
selected subregions, especially over EC (not shown). However, the precipitation–wind
speed correlation is complicated. On the one hand, higher precipitation generally means
more frequent convective activities that would strengthen surface wind speed by stronger
downward momentum transport. On the other hand, precipitation-related surface cooling
would strengthen the low-level stable stratification and then restrain downward momentum
transport. All of these are likely to lead to opposite results (not shown), i.e., that no definite
correlation between CPS-induced precipitation and wind speed can be validated.

It is noteworthy that this work is a case study focusing on the quantitative assessment
of physical processes affecting summer wind speeds and their sensitivities to CPSs with a
regional climate model. Due to the complexity of the CPSs, the differences in the physical
parametrizations of the specific CPSs have not been discussed here. As addressed in
previous studies [1,13], the coupled-model simulation reflects not only the performance of a
single scheme that is coupled to the model, but also the overall performance of the modeling
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system, which suggests that this CPS evaluation is of significance to our understanding of
the CPS performance and improving the model to simulate the summer wind speed.
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