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Abstract: Carbon dioxide (CO2) and methane (CH4) are the two major radiative forcing factors
of greenhouse gases. In this study, surface and column mole fractions of CO2 and CH4 were first
measured at a desert site in Dunhuang, west China. The average column mole fractions of CO2 (XCO2)
and CH4 (XCH4) were 413.00 ± 1.09 ppm and 1876 ± 6 ppb, respectively, which were 0.90 ppm and
72 ppb lower than their surface values. Diurnal XCO2 showed a sinusoidal mode, while XCH4

appeared as a unimodal distribution. Ground observed XCO2 and XCH4 were compared with
international satellites, such as GOSAT, GOSAT-2, OCO-2, OCO-3, and Sentinel-5P. The differences
between satellites and EM27/SUN observations were 0.26% for XCO2 and −0.38% for XCH4, suggesting
a good consistency between different satellites and ground observations in desert regions in China.
Hourly XCO2 was close to surface CO2 mole fractions, but XCH4 appeared to have a large gap with CH4,
probably because of the additional chemical removals of CH4 in the upper atmosphere. It is necessary to
carry out a long-term observation of column mole fractions of greenhouse gases in the future to obtain
their temporal distributions as well as the differences between satellites and ground observations.

Keywords: greenhouse gases; column mole fractions; satellite; Gobi Desert; temporal variation;
meteorological conditions

1. Introduction

Carbon dioxide (CO2) and methane (CH4) are two important greenhouse gases (GHGs)
in the atmosphere, contributing 65% (2.16 W m−2) and 16% (0.54 W m−2) of the total
effective radiative forcing (ERF) of well-mixed GHGs over the 1750–2019 period (3.32 W m−2)
according to the sixth assessment report (AR6) of the Intergovernmental Panel on Climate
Change [1]. CO2 mainly originates from fossil fuel emissions (86%) and land-use change
(14%) and is absorbed by land (31%) and ocean (23%) but still left 46% in the atmosphere
over the 2010–2019 period [2], inducing an increase of global average atmospheric CO2
mole fractions from 389.0 ppm in 2010 to 410.5 ppm in 2019 [3,4]. For the 2008–2017 decade,
global CH4 emissions were estimated as 576 Mt yr–1 by top-down inversions [5]. CH4
mainly originates from fossil fuel production and use (111 Mt, 19.3%), agriculture and
waste (217 Mt, 37.7%), biomass and biofuel burning (30 Mt, 5.2%), wetlands (181 Mt, 31.4%),
and other natural emissions (37 Mt, 6.4%) and is removed from chemical reactions in the
atmosphere (518 Mt, 89.9%) and absorption in soil (38 Mt, 6.6%) [5]. Finally, ~13 Mt (3.5%)
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is stored in the atmosphere causing global average methane mole fractions to increase from
1787.00 ppb in 2008 to 1849.67 ppb in 2017 [6].

There are several networks in the world observing the mole fractions of GHGs and
their trends including the Global Atmosphere Watch (GAW) program of the World Meteo-
rological Organization (WMO) [4], satellite constellations [7–9], the Total Carbon Column
Observing Network (TCCON) [10], and the Collaborative Carbon Column Observing Net-
work (COCCON) [11,12]. Long-term observation of surface atmospheric CO2 was first
started at the Mauna Loa Observatory (MLO) in 1958 by David Keeling and provided
direct evidence of an increase in CO2 mole fractions [1,13,14]. After that, long-term obser-
vations are conducted around the world at other Atmospheric Baseline Observatories (e.g.,
South Pole, American Samoa, Barrow (Alaska, USA)) and other global and regional back-
ground observatories like Jungfraujoch in Europe and Mt. Waliguan in Asia. Along with
the improvement of observation technology, the observation of GHGs has been extended
from the surface to total column dry mole fractions. Satellites observe column-averaged
dry-air CO2 and CH4 mole fractions (XCO2 and XCH4) from space mainly using sunlight
in the sun-synchronous orbit (SSO) (e.g., GOSAT, GOSAT-2, OCO-2, TanSat, CO2M, etc.), or
in the international space station (ISS) (e.g., OCO-3) or geosynchronous (GEO) orbit (e.g.,
GeoCarb) [9], as well as using LIDAR technology on upcoming DQ-1 satellite [15]. TCCON
is conducting high-precision XCO2 and XCH4 observations with more than 20 global sites
using ground-based Fourier transform spectrometers (Bruker IFS125), providing an ideal
validation dataset for satellite- and model-retrieved column mole fractions [7,16–20]. How-
ever, the instrumentation used in TCCON is expensive and requires expert maintenance;
the portable Bruker EM27/SUN FTIR spectrometer provides a mobile, easy-to-deploy,
and low-cost complement to obtain more observations in different underlying surfaces,
such as urban areas, deserts, and oceans [7,11,12,18,21–24]. China has several background
observatories monitoring greenhouse gases continuously for more than 10 years, operated
by the China Meteorological Administration, including one global background observatory
(Waliguan) and six regional background observatories across China [25]. However, ground-
based observations of XCO2 and XCH4 are rare and mainly concentrated in the eastern
region in or near the cities of Beijing and Hefei [7,18,26]. Over a wide area of western China,
there have been few ground-based observations of column mole fractions of greenhouse
gases. Furthermore, there are many cities in eastern China, which make it difficult to
find an observatory on a uniform underlying surface for satellite validation. There are
many deserts, such as the Gobi Desert, and plateau with lower anthropogenic emissions in
western China. It is expected that ground-based observations in the barren Gobi Desert
with a uniform underlying surface can be good practice for satellite payload validation and
intercomparison due to the smaller spatial differences [15,27]. Therefore, ground-based
XCO2 and XCH4 were observed in the Gobi Desert in western China using a portable
EM27/SUN Fourier Transform Spectrometer under a payload validation campaign. The
purpose of this study is to (1) obtain the occurrence of surface and column CO2 and CH4
mole fractions in desert regions; (2) compare ground-based observations with satellite
retrievals; (3) compare surface and column observations at the same site.

2. Materials and Methods
2.1. Sampling Site

XCO2 and XCH4 were measured from June 26 to 19 July 2021, at the Chinese Ra-
diometric Calibration Site (CRCS) (40.08◦ N, 94.40◦ E, ~1230 m a.s.l. (above sea level)),
located in the Gobi Desert and approximately 20 km west of Dunhuang city in west China
(Figure 1). There is no obvious emission sources and respiration of CO2 through vegetation
nearby, as the CRCS is situated on a stable alluvial fan whose surface consists of cemented
gravels, some black or gray stones, and sands without any vegetation [28]. There are also
no obvious anthropogenic sources nearby except highway passes (~5 km east and ~7 km
south) and some solar photovoltaic power stations in the east (~5 km) and south directions
(~2 km) (Figure 1). Dunhuang is located at the westernmost end of the Hexi Corridor, an
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important transportation route of silk roads from Ancient China to the Western regions,
Central Asia, and Europe. There is Sanwei Mountain in the east, Mingsha Mountain in the
south, Kumtag Desert in the west connecting Lop Nur and Taklimakan Desert, and Gobi
Desert in the north connecting Tianshan Mountain (Figure 1). The climate in the Dunhuang
area is typical warm temperate arid zones with annual precipitation of 42.2 mm, annual
evaporation of 2505 mm, and an annual average temperature of 9.9 ◦C (–30.5 ◦C~41.7 ◦C).
The average temperature, relative humidity, pressure during the sampling period were
28.9 ± 2.0 ◦C, 23.1% ± 2.0%, 868.3 ± 2.1 hPa, respectively. There were approximately 15
h of sunshine during the observation period with sunrise, mid-noon, and sunset times of
approximately 6:20, 13:45, and 21:10 CST (Chinese standard time, UTC + 08:00), respectively. The
delay between solar noontime at Dunhuang and CST noontime is about 1 h and 45 min (1:45).
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Figure 1. Location of the CRCS observation site in the Gobi Desert in Dunhuang, western China.
The subfigure (B–D) are the enlarged area in the red box of subfigures (A–C) respectively. The
base map was obtained from Geoq, and the base figures were obtained from Google Earth, Image
Landsat/Copernicus, Image 2021 © CNES/Airbus; Image © 2021 Maxar Technologies.

2.2. Instrument

A cavity ring-down spectrometer (CRDS; Model G2301, Picarro, Inc., Santa Clara,
CA, USA) was used to measure atmospheric CO2 and CH4 mole fractions continuously.
The air was collected from the inlet on the roof of the building at CRCS (~5 m above the
ground) into the Picarro G2301 spectrometer which was placed in the room at 25 ◦C. Both
CO2 and CH4 mole fractions were reported as atmospheric dry air fractions. The Picarro
G2301 spectrometer was calibrated by the standard gas (traced to WMO CO2 X2007 and
CH4 X2004A scale) obtained from China Meteorological Administration before and after
the campaign. Furthermore, another working standard was used to check the drift at
CRCS. Meanwhile, a WS500 Weather station (Lufft GmbH, Fellbach, Germany) was used to
measure temperature, relative humidity, pressure, wind speed, and direction close to the
sampling inlet on the roof of the building at CRCS.

A portable Fourier transform spectrometer (EM27/SUN, SN134, Bruker Optical GmbH,
Ettlingen, Germany) was used to measure solar spectra at a resolution of 0.5 cm−1. CO2,
CH4, O2, and H2O spectra were measured by an InGaAs (Indium Gallium Arsenide)
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detector between 5000 and 12,000 cm−1, while CO spectra were measured by an extended
InGaAs detector below 5000 cm−1 [12]. The EM27/SUN was placed on an outdoor desk
(~1 m above the ground) at the CRCS. The EM27/SUN was installed manually in the
morning of the sunny days and moved back to the building in the later afternoon.

CO2 and CH4 mole fractions were continuously monitored by Picarro G2301 spec-
trometer from 15:00 on 26 June 2021 to 8:00 on 20 July 2021, as well as the meteorological
parameters by the weather station. Because EM27/SUN requires manual operation and can
only be observed on sunny days, there are 12 days (26 and 28 June, 7, 8, 11, 12, 14–19 July)
observations of XCO2, XCH4, and XCO at CRCS.

2.3. Data Processing Methods

XCO2, XCH4, and XCO were retrieved by PROFFAST software from the EM27/SUN
raw spectral data following previous studies [11,21,22,29]. The prior (.map) files (including
temperature, pressure, density, gravity, CO2, CH4, H2O, CO prior values from the height
of 0 to 70 km of the atmosphere with an interval of 1 km) and the intraday pressure
change used for PROFFAST were acquired from the TCCON server and local measurement
of Weather Station, respectively. The modulation efficiencies (ME, 0.9902), phase errors
(PE, 0.0049), and calibration factors (1.00014517 for XCO2 and 0.99982628 for XCH4) of
EM27/SUN were obtained from the Karlsruhe Institute of Technology (KIT) and applied in
the retrieval process. ME and PE values for the EM27/SUN used in this study were higher
than the ensemble mean of the EM27/SUN tested in KIT (ME = 0.98417 and 0.98430 and
PE = −0.00061 and −0.00068) [11,30]. Calibration factors were close to the ideal value (1.0)
and agreed well with other EM27/SUN Spectrometers [30]. Raw CO2 and CH4 data from
the Picarro G2301 spectrometer and meteorological data from Weather Station were first
averaged to hourly data and then calculated to daily average values following the method
in Wei, et al. [31].

Bias-corrected level 2 XCO2 from OCO-2 (OCO2_L2_Lite_FP 10r) and OCO-3 satellites
(OCO3_L2_Lite_FP 10r) were obtained from Goddard Earth Sciences Data and Information
Services Center (disc.gsfc.nasa.gov) (accessed on 8 November 2021). Bias-corrected level 2
XCO2 (V02.98) and XCH4 (V02.96) from the GOSAT satellite were obtained from GOSAT
Data Archive Service (GDAS, data2.gosat.nies.go.jp) (accessed on 10 September 2021).
Level 2 XCO2, XCH4, and XCO from GOSAT-2 were obtained from GOSAT-2 Data Archive
Service (https://prdct.gosat-2.nies.go.jp, accessed on 1 March 2022). Meanwhile, offline
level 2 XCH4 from Sentinel-5P (S5-P) were acquired from the Sentinel-5P Pre-Operations
Data Hub (s5phub.copernicus.eu/dhus) (accessed on 10 September 2021). XCO2 and XCH4
from OCO-2, OCO-3, and GOSAT were selected for comparison with ground observations
using a box centered at the CRCS site that spanned 5◦ latitude and 10◦ longitude on the
same day, while ground-based EM27/SUN observations were selected within 1 h of the
transit time of each satellite [17]. A similar method was also applied to XCH4 from S5-P
except the select box narrowed from 5◦ × 10◦ to 2◦ × 2◦ due to its large swath (2600 km)
and high spatial resolution (7 × 7 km) [32,33].

3. Results and Discussion
3.1. Temporal Variation of CO2 and CH4 Mole Fractions

The average mole fractions of CO2 and CH4 at CRCS between 27 June and 19 July 2021
were 412.62 ± 2.06 ppm (average ± standard deviation) and 1959 ± 19 ppb, respectively
(Table 1). Observations on 26 June and 20 July were excluded to calculate daily average
values because the observation time was less than 18 h on the two days. These values are
5.93 ppm and 9 ppb higher than the monthly CO2 and CH4 mole fractions observed in July
2020 (406.69 ppm for CO2 and 1950 ppb for CH4, data accessed from the World Data Centre
for Greenhouse gases (WDCGG)) at the Global background Waliguan Observatory, about
700 km southeast of CRCS. The CO2 mole fraction at CRCS was about 4.34 and 0.87 ppm
lower than that observed at Mauna Loa Observatory and the global monthly average value
in July 2021. Meanwhile, the CH4 mole fraction was 73 ppb higher than the global mean

disc.gsfc.nasa.gov
data2.gosat.nies.go.jp
https://prdct.gosat-2.nies.go.jp
s5phub.copernicus.eu/dhus
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average value in July 2021 (monthly averaged CO2 and CH4 mole fractions were obtained
from https://gml.noaa.gov/ccgg/trends/data.html, accessed on 27 March 2022).

Table 1. Summary of surface and column mole fractions of greenhouse gases observed from 26 June
to 19 July 2021, at a desert site in Dunhuang, west China.

Unit Mean Min Max

Surface GHGs mole fraction a

CO2 ppm 412.62 ± 2.06 408.30 416.44
CH4 ppb 1959 ± 13 1945 1998

CO2/CH4 / 211 ± 2 207 213

Column GHGs and the corresponding surface GHGs mole fraction a

XCO2 ppm 413.00 ± 1.09 410.55 416.51
XCH4 ppb 1876 ± 6 1861 1886
XCO ppb 84 ± 3 78 91

XH2O ppm 3426 ± 749 1999 5175
XCO2/XCH4 / 220 ± 1 218 223
XCO2/XCO ×10−3 4.9 ± 0.2 4.6 5.3
XCH4/XCO / 22.5 ± 0.9 20.8 24.3

CO2
b ppm 413.90 ± 1.80 409.99 419.97

CH4
b ppm 1947 ± 11 1937 2015

CO2/CH4
b / 213 ± 1 208 215

a, Surface mole fractions were calculated from daily average mole fractions from 27 June to 19 July 2021, while
column mole fractions were calculated from hourly average values observed in the daytime. b, surface CO2, CH4
mole fraction, and their ratio were calculated from the hours with XCO2 values in this study.

In-situ observations provide a clear diel variation of GHGs because they can measure
GHGs continuously in both daytime and nighttime. Diurnal CO2 and CH4 patterns at
CRCS appeared in different modes (Figure 2). The diurnal CO2 mole fraction showed an
M-mode curve (Figure 2B), which was different from the unimodal curve observed at
Megacity Shanghai [31] and the nearby global background observatory Waliguan [34]. The
CO2 mole fraction generally increased to the daily maximum value at 8:00 CST (Figure 2B)
due to the accumulation of CO2 and the decrease in the PBL height. The CO2 mole fraction
decreased to a trough at noon along with the increase in PBL height and photosynthesis
effect after sunrise. However, the CO2 mole fraction stopped falling and rebounded
to ~412.80 ppm until 19:00 and then decreased again to the daily lowest value at 23:00
(Figure 2B). One probable reason is that the vegetation in nearby desert oases (e.g., Dunhuang
city in the east of CRCS) (Figure 1B,C) reduces their respiration and photosynthesis rate to
adapt to high temperatures (>30 ◦C) [35] after 12:00 (Figure S1). Another possible reason
is the influence of valley winds caused by the difference in the diurnal variation in the
temperature between the basin and the mountain (Figure 1) [36]. The airmass with higher
CO2 mole fractions from Dunhuang city passed by CRCS, and therefore, a constant CO2
mole fraction was monitored in the afternoon at a wind speed of ~1.5 m s−1 (Figures 2
and S1). However, the CO2 mole fraction decreased in the evening (19:00–23:00) due to the
changed wind direction from the city (~50◦ direction) to the mountains (~200◦ direction)
(Figures 2 and S1). The diurnal CH4 pattern (Figure 2D) was different from CO2 but
similar to the summer pattern observed at the nearby Waliguan observatory except for
morning time [37]. CH4 mole fraction peaked at 2:00 with a value of 1988 ppb, probably
due to some anthropogenic emissions nearby. The original data were checked, and some
rapidly rising and falling CH4 peaks occurred in the morning (Figure S2). The CH4 mole
fraction at 21:00 on 5 July was also high (2150 ppb) and introduced a high hourly average
mole fraction (Figure 2D). At the same time, the wind speed and direction were 1.8 m s–1

and 309◦ suggesting the probable emissions from the northwest direction. Furthermore,
solar thermal power plants with molten salt in the south (~2 km) (Figure 1) likely release
emissions such as CO2 and CH4 during their operation and maintenance. Although the
technical details of the solar power plants nearby were not known, it was well documented

https://gml.noaa.gov/ccgg/trends/data.html
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that the solar power plants (e.g., the technology of power tower, parabolic trough, and
linear Fresnel lens) use some natural gas or diesel for their operation and maintenance or
back-up [38–42]. The CH4 mole fraction peaked at 9:00 in the daytime and then decreased
to a valley at 17:00 because of the increase in PBL height and chemical removal of CH4 with
OH radical [31,43]. The CH4 mole fraction increased again in the late afternoon (after 18:00
CST) due to a decrease in the PBL height and photochemical reaction rate (Figure 2D).
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Dust storms have different effects on the mole fraction of GHGs in the Gobi Desert.
A dust storm occurred in the late afternoon on July 18 and lasted for several days. The
ambient CO2 mole fraction suddenly decreased by 1.2 ppm from 413.7 ppm to 412.5 ppm
when the dust storm arrived, while the CH4 mole fraction increased by 5 ppb from 1947
to 1952 ppb (Figure S3). After the dust storm occurred, the hourly CO2 mole fraction
decreased continuously until 6:00 CST the next day. However, the CH4 mole fraction
decreased slightly and remained at 1950 ppb over the next 24 h (Figure S3B).

3.2. Temporal Variation of XCO2 and XCH4

XCO2, XCH4, and XCO were averaged at 413.00 ± 1.09 ppm, 1876 ± 6 ppb, and
84 ± 3 ppb, respectively (Table 1). XCO2, XCH4, and XCO varied on different days and
showed different diurnal patterns (Figure 3). The daily averaged XCO2 was highest on
26 June (414.63 ± 0.11 ppm) and decreased to 412.02 ppm on 28 June. XCO2 started to
increase from the lowest value on 7 July (411.06 ± 0.30 ppm) to the second peak on 12 July
(413.97 ± 0.40 ppm) and generally decreased thereafter (Figure 2, Table S1). Although
XCO2 fluctuated on these days, the gap between the maximum and minimum daily average
values was less than 1% (3.57 ppm). The PROFFAST software had already done airmass
and independent airmass correction during the spectral processing process. The retrieved
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results may be affected by the potential airmass-dependent effects, because the XCO2
and XCH4 mole fractions were highest at noon and decreased along with an increase
in solar zenith angle (SZA) (Figure S4) [10,44]. The daily averaged XCH4 remained at
approximately 1880 ppb on the first four observed days but decreased to 1870 ppb on
11 July. XCH4 rebounded to a value >1880 ppb again on 15 July but decreased continuously
thereafter to the lowest value on 19 July (1868 ± 1 ppb) (Figure 2, Table S1). Similar to
XCO2, the concentration gap of maximum and minimum XCH4 values was also less than
1% (14 ppb). XCO was also high on 26 and 28 June, started to increase from 7 July to 15 July,
and remained constant at around 85 ppb thereafter (Table S1). XCO2 was significantly
correlated with CO2 (r = 0.51, p < 0.001), but XCH4 was not correlated with CH4 (r = 0.057,
p = 0.645), suggesting the different behaviors of surface and column mole fractions of
greenhouse gases, especially CH4. XCO was also significantly correlated with CO2 (r = 0.53,
p < 0.001), and the correlation coefficient was higher than the coefficients between XCO
and XCO2 (r = 0.33, p < 0.001) and XCH4 (r = 0.29, p < 0.001).

Both XCO2 and XCH4 showed diurnal variations. Diurnal variations of XCO2, XCH4,
XCO, and their ratios on different days (observation time ≥5 h) are plotted together using
the hourly average values (Figure 3). The observation time was not consistent on each
day due to the differences in arrival and departure times at CRCS to set up EM27/SUN,
as well as the weather conditions (e.g., enough sunshine). Diurnal XCO2 seemed to show
sinusoidal mode curves (Figure 3A), similar to the observations (especially on 26 and 28
March 2008) at the Jet Propulsion Laboratory (JPL) in the South Coast Air Basin (SCB) of
California, USA [45]. XCO2 decreased slightly from 8:00 to 10:00 (e.g., 11, 18, and 16 July)
or 9:00 (17 July) in the morning, inversed after that to a noon peak at 13:00 or 14:00 (Solar
noontime is ~13:45 at Dunhuang), and decreased again to the late afternoon continuously
(26 June, 11, 26 July) or to an afternoon valley at 17:00 and reverse after that (12, 14 July).
Sunshine and temperature could be the two factors that affected diurnal XCO2 variation in
addition to anthropogenic emissions. After sunrise, plants in the surrounding oasis conduct
photosynthesis and reduce the ambient XCO2 accumulated throughout the whole night.
However, along with the rise of ambient temperature (which could exceed 30 ◦C at 11:00)
(Figure S1), plants from nearby oases (Dunhuang city and nearby, Figure 1B,C) could close
their stomata to reduce water evaporation and decrease their photosynthetic efficiency [35],
resulting in an increase of XCO2 in the atmosphere. After noontime, XCO2 decreased
again along with the decrease in anthropogenic activities (due to high temperature) and
recovery of plant photosynthesis in the nearby oasis. The XCO2 increases again in the
late afternoon due to the recovery of anthropogenic activities and the decrease in plant
photosynthesis. The hourly XCH4 showed unimodal distributions in the daytime (e.g., 16,
12, 14, and 11 July), which were different from those of XCO2 (Figure 3B). XCH4 increased
continuously in the morning due to biological and anthropogenic emissions from the
surrounding area, especially from nearby Dunhuang city (20 km east). It is expected that
the diurnal OH radical variation in Dunhuang is similar to that in other regions with the
highest values around local noontime, such as in Beijing, Shanghai, and Pearl River Delta
regions [46–49]. Thus, the XCH4 could increase in the morning due to the absence or lack
of OH radicals. Along with the production of OH radicals under sunshine in the daytime,
the increase in XCH4 slowed down and reversed at local noon (Figure 3B). Unlike XCO2
and XCH4, XCO did not show a significant diurnal variation, although its mole fraction
decreased slightly in the afternoon (Figure 3C). The decreasing trend in the afternoon,
especially on 12, 14, 16, and 18 July, is probably due to the removal of the reaction with
OH radical [50]. XCO varied among 78–90 ppb (Figure 3C), which was about 30 ppb lower
than that observed at Hefei city in eastern China [51]. Furthermore, the differences in
the diurnal variations on most days were narrower than the differences among different
days suggesting the emissions and the sinks of CO were relatively balanced at CRCS sites.
XCO2/XCH4 were close to 221 on most days with lower ratios in the noontime but higher
ratios in the morning and later afternoon (Figure 3D). Average XCO2/XCH4 (220 ± 1) was
higher than the corresponding ratios of surface mole fractions of CO2 and CH4 (220 ± 1) (Table 1).
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XCO2/XCO and XCH4/XCO were averaged at 4.9 ± 0.2 (×103) and 22.5 ± 0.9 with small
amplitude (Figure 3, Table 1). In general, hourly XCO2, XCH4, XCO, and their ratios show
discrepancies on different days (Figure 3), mainly due to the changes in anthropogenic
emissions and synoptic weather conditions [52].
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3.3. Comparison between EM27/SUN and Satellite-Retrieved XCO2 and XCH4

EM27/SUN observed XCO2 and XCH4 were compared with available satellite re-
trieves (Figure 4). Satellite retrieved XCO2 were obtained from GOSAT, GOSAT-2, OCO-2,
and OCO-3, while XCH4 were acquired from GOSAT, GOSAT-2, and Sentinel-5 Precursor
(S5-P). XCO2 from GOSAT was approximately 0.34 ppm (0.30–0.35 ppm) lower than those
observed from EM27/SUN. XCO2 from GOSAT-2 were about 1.5 ppm (1.27–1.68 ppm)
higher than the ground observations on 12, 16, and 17 July 2021, while on 11 July was
−0.84 ppm lower than the ground observation (Table S3). XCO2 from OCO-3 were higher
(1.59 ppm, 26 June) than or close to surface observations (0.001 ppm, 28 June). XCO2
from OCO-2 were all higher (1.77 ppm, 0.96–2.97 ppm) than ground-based observations
(Figure 4A). XCH4 from GOSAT on July 16 (five observations) was 2.62 ppb lower than
that from EM27/SUN, while XCH4 on 7 July (only 1 observation, 1850 ppb) was 33 ppb
lower than the ground averaged value (Figure 4B). XCH4 from GOSAT-2 were mostly
lower (−0.2~−18 ppb) than EM27/SUN observed values except on 11 July (4.5 ppb). Most
XCH4 observations from S5-P and EM27/SUN fluctuated around the 1:1 line within 10 ppb,
except 14 and 15 July with differences of 43 and 39 ppb, respectively (Figure 4B). The
huge differences on 14 and 15 July were attributed to some footprints having very low
XCH4 values (~300 ppb lower than the average values (~1900 ppb)) (Figure S5). In this
case, the averaged XCH4 from S5-P was lower than the ground observed values (−0.32%,
(satellite—EM27)/EM27), close to the systematic difference between S5-P bias-corrected
XCH4 and TCCON data (−0.26%) [33]. XCO from GOSAT-2 was about 23 ppb (20–28 ppb)
higher than the ground observations. The big differences in XCO observations might be
originated from many factors and the most important of which is to confirm that the ground
monitoring results are accurate in future work. The differences between different satellites
and ground observations mainly originated from the differences in satellites payloads’
technologies (grating and Fourier transform spectrometers) and their field of views (FOVs)
(continuous and discrete footprints at different sizes in the across-track direction), as well
as the differences retrieved methods (full physics algorithm from different institutes) [9,53–55].
There are many studies validating satellite observations with ground observations at different
locations, but the results were not the same. For example, Velazco, et al. [20] found GOSAT
and OCO-2 XCO2 showed good consistency and the differences were 0.86 and 0.83 ppm
after comparing with the TCCON Philippines site, while Mustafa, et al. [56] showed that
GOSAT XCO2 was underestimated by 1.70 ppm while OCO-2 overestimated by 1.33 ppm
after comparing with in-situ aircraft measurements in China. Liang, et al. [57] showed
the standard deviation of GOSAT observations was larger than that of OCO-2 at TCCON
sites. Velazco et al. [12] compared EM27/SUN observations of GOSAT M- and H-gain
retrievals and the results reflected that H-gain retrievals were close to EM27 observations in
desert Australia.

Most of the space- and ground-based observations are close to the 1:1 line with small
differences (<0.1% for XCO2 and <0.6% for XCH4), indicating a good consistency of ground
and satellite observations in the Gobi Desert region. Furthermore, the temporal differences
of the ground-based observations within 2 h of the satellite’s transit were smaller than the
spatial differences of satellite retrievals (Figure 4, Table S3), suggesting that spatially derived
source-sink differences had a greater impact on the observed XCO2 and XCH4. The standard
deviations (SD) for ground observed XCO2 within 1 h before and after the satellite transit
time were ranged from 0.07 to 0.30 ppm, which was lower than those of satellite observations
(0.87–4.46 ppm) within the coincidence criteria of 10◦ (longitude) × 5◦ (latitude) surrounding
CRCS. The SDs of XCO2 from GOSAT-2 (2.18–4.46 ppm) were also higher than OCO-2,
OCO-3, and GOSAT (0.87–1.38 ppm) (Table S3). The SDs for XCH4 from EM27/SUN
observations (0.49–2.21 ppb) were also lower than satellites retrievals (2.30 ppb–58.88 ppb).
Meanwhile, the average relative standard deviation (RSD) of EM27 observations was 0.03%
(0.02%–0.07%) for XCO2 and 0.05% (0.03%–0.12%) for XCH4 (Table S3), suggesting the
variations of XCO2 and XCH4 were very small, even less than the error of the equipment.
The average RSD for satellite observations were 0.43% (0.21%–1.08%) for XCO2 and 0.95%
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(0.12%–3.19%) for XCH4 (Table S3). The differences between satellites and EM27/SUN
observations ((satellite—EM27)/EM27) were 0.26% (−0.20%–0.72%) for XCO2 and −0.38%
(−2.31%–0.70%) for XCH4. After deducting the influence of the two S5-P data (14 and 15 July,
Figure S5), the difference of XCH4 would reduce to −0.13% (−1.77%–0.70%).
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OCO-3, GOSAT, GOSAT-2, and S5-P) at CRCS in Dunhuang, western China.

The satellites’ footprints were also plotted on the map to show the differences between
ground and satellite XCO2 observations (Figure 5 and Figure S5). There was a footprint
from GOSAT on 16 July close to the CRCS (Figure 5), XCO2 from GOSAT (411.75 ppm)
was approximately 1 ppm lower than the surface observation (412.73 ppm), and XCH4
(1879.8 ppb) were close to EM27/SUN results (1880.7 ppb). This footprint was also observed
by GOSAT-2 on 11, 16, and 17 July (Figure S6). XCO2 from GOSAT-2 on these days were
413.34, 416.00, and 411.63 ppm, respectively, which were higher (2.96 ppm on 17 July)
or lower (−0.68 ppm on 11 July and −1.54 ppm on 16 July) than ground observations
on the same time. Meanwhile, the differences of XCH4 among GOSAT-2 and ground
observations (satellite minus surface observations) were less than 5 ppb (4.3, −3.2, and
3.4 ppb, respectively), while the differences in XCO varied bigger on different days (−3.1,
13.5, 1.48 ppb, respectively). The discrepancies between OCO-2/OCO-3 and ground
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EM27/SUN observations in the east of the CRCS were narrower than those in the west
side. For example, the differences between OCO-2 and EM27/SUN on 11 and 18 July were
0.96 ppm and 1.31 ppm, which were narrower than the difference with the tracks in the west
of CRCS on 7 July (2.97 ppm) and 16 July (1.86 ppm). Furthermore, the difference between
OCO-3 and EM27/SUN in the east of the CRCS on 28 June was 0.001 ppm, which was also
narrower than the OCO-3 track on the west side on 26 June (1.59 ppm). Fortunately, both
GOSAT, GOSAT-2, and OCO-2 passed through the CRCS on 16 July, and the average XCO2
from OCO-2 (414.59 ± 0.87 ppm) was close to GOSAT-2 retrieved (414.45 ± 3.30 ppm), but
higher than the results from GOSAT (412.40 ± 1.10 ppm) and EM27/SUN (412.74 ± 0.07 ppm).
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observation site from 26 June to 19 July 2021. The observation data from different satellites were
selected as a region spanning 5◦ latitude and 10◦ longitude of the center of the EM27/SUN site.

3.4. Comparison with Surface In Situ and Column CO2 and CH4 Mole Fractions

The column mole fractions were also compared with in-situ observations at CRCS.
Because ground EM27/SUN tracks the sun and observes its near-infrared spectrum to
further retrieve XCO2 and XCH4, only GHGs in the daytime on cloudless days can be ob-
served and retrieved. The XCO2 and XCH4 were 0.90 ppm and 72 ppb lower than their
corresponding in situ CO2 and CH4 mole fractions observed at the same time, while their
ratio was higher (Table 1). Hourly XCO2 was close to the daily and hourly averaged CO2
mole fractions on different days and showed similar trends (Figures 1A and S2A). How-
ever, hourly XCH4 exhibited large gaps with CH4 mole fractions (Figures 1B and S2B),
probably due to photoreaction removal of CH4 in the upper atmosphere. The discrep-
ancies of column and in-situ mole fractions were also reflected by the significant cor-
relation between CO2 and XCO2 (r = 0.51, p < 0.01, n = 68) as well as XCO (r = 0.53,
p < 0.01), but not for CH4 and XCH4 (r = 0.057, p = 0.645).

XCO2 and XCH4 showed different diurnal variation patterns with the corresponding
CO2 and CH4 mole fractions (Figure 6). Hourly XCO2 and XCH4 (Figure 6) were calculated
from the four days (11, 12, 14, and 16 July) because there were continuous observations in
good weather conditions. Hourly XCO2 and XCH4 showed a curve like a dome from 11:00
to 17:00: their mole fractions started to increase in the morning and achieved their peak
at 13:00 (XCH4) or 14:00 (XCO2), but XCH4 decreased faster than XCO2 because XCH4 at
17:00 was lower than that at 11:00 (Figure 6). The hourly averaged CO2 mole fraction in the
four days decreased from 414.60 ppm at 11:00 to 414.03 ppm at 12:00 CST, and then showed
a trend similar to that of XCO2 (Figure 6A). The gap between CO2 and XCO2 was lowest
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around the local mid-noon (0.76 ppm at 14:00 CST) but highest in the morning (1.82 ppm at
11:00 CST). Meanwhile, the hourly averaged CH4 mole fraction decreased monotonically
from 11:00 to 17:00 CST due to photochemical removal and showed a similar trend to XCH4
after 13:00 (Figure 6B). The gap between CH4 and XCH4 was also largest at 11:00 (72 ppb),
narrowed to ~65 ppb at 13:00, and remained there until 16:00. The mole fraction ratio of
XCO2/XCH4 and CO2/CH4 exhibited a similar growth trend with a gap of approximately
7 (Figure 6C). Many factors could affect the diel mole fraction gaps between column and
surface values. One probable reason might be the differences in sink processes because
CO2 is mainly absorbed by ground vegetation, while CH4 can be removed by OH radical
in the whole atmosphere. Another possible reason could be the influence of the changes in
the planetary boundary layer (PBL) height. The PBL height could increase in the morning
due to the heating effect of the ground after sunrise and thus dilute the near-surface GHG
mole fractions under the PBL.
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3.5. Influences of Meteorological Conditions

Wind could dilute a high concentration of atmospheric compositions from their source
region and transport them to relatively clean areas. CO2 and CH4 mole fractions were
412.62 ± 2.94 ppm and 1960 ± 22 ppb at the wind speed at <1 m s−1, and increased to
their highest values at wind speeds between 1 and 2 m s−1. Their mole fractions generally
decreased with increasing wind speed (Figure 7A,B). The patterns were different from those
observed in an urban site in Shanghai, where their mole fractions continuously decreased
from the wind speed at <1 m s−1 to 3–4 m s−1 but reversed after that [31]. There are
few emission sources around the observation site, so the mole fractions reflect the local
background level near the CRCS under the lowest wind speed (<2 m s−1), and emissions
from Dunhuang city were transported to the CRCS at higher wind speeds (2–4 m s−1),
while clean airmasses from surrounding mountains were carried at the highest wind speed
(>4 m s−1). Although XCO2 and XCH4 were column mole fractions, they also varied
along with wind speed (Figure 7C,D). The XCO2 was highest (413.47 ppm) at 1–2 m s−1, and
decreased to the lowest value (411.53 ppm) at 4–5 m s−1, but reversed at wind speeds >5 m s−1

(Figure 7C). However, the XCH4 increased continuously with increasing wind speed until
5 m s−1 (Figure 7D). GHG mole fractions and wind varied at different altitudes [16,58,59],
which was probably the main reason for the discrepancy among surface and column
mole fractions.
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The bivariate polar plots provide a graphic method to show the impact of wind
speed and wind direction on the concentrations of atmospheric compositions [31,60]. CO2
enhancements mainly occurred under the wind direction (WD) from the northeast and
northwest, while its mole fractions can be diluted under the WD from the southwest
(Figure 8A). Higher CH4 mole fraction mainly occurred under the WD from the northwest,
similar to one of the CO2 source regions (Figure 8B), suggesting there was a point source
from the northwest emitting both CO2 and CH4. The nearby solar thermal power plants
(~2 km south of CRCS, Figure 1D) or other sources probably emitted some anthropogenic
emissions and transport them to the CRCS. Wind from the southwest direction could bring
the airmass with a lower CH4 mole fraction. The bivariate plot for XCO2 and XCH4 would
be a useful tool to investigate the influences of wind in the future, although these plots
cannot be drawn in this study due to the limited volume of hourly data.
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4. Conclusions

XCO2 and XCH4 were first measured at a Gobi Desert site in western China in the
summer of 2021. The diurnal XCO2 showed a sinusoidal model, while XCH4 appeared to
have a unimodal distribution. Most of the satellite-retrieved XCO2 and XCH4 were close to
the ground-observed values, but more differences appeared in the spatial distribution of
satellite retrievals than the temporal change of ground observations. Ground-based XCO2
values were close to the surface CO2 mole fractions, while XCH4 had a large gap with
CH4 mole fractions. Many factors could affect the temporal variation and discrepancy of
column and surface CO2 and CH4 mole fractions, such as differences in sources and sinks,
changes in PBL height, plant photosynthesis and respiration rate, chemical removal of
CH4, valley wind, and dust storm. Wind can dilute and accumulate atmospheric CO2 and
CH4 mole fractions from different wind directions, but its effect on XCO2 and XCH4 needs
more investigation in the future because the wind also varies at different altitudes. The
observation period in this study was short and some conclusions are not sufficient enough.
A longer observation of column mole fractions, along with other atmospheric components,
should be done in the future to obtain more valuable results and conclusions.

Supplementary Materials: The following supporting information can be downloaded at: https:
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FTIR and G2301 spectrometer data at Dunhuang, China is available in the Science Data Bank (DOI:
http://www.doi.org/10.11922/sciencedb.01233) (Wei and Lyu, 2021).
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