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Abstract: Background: Ozone (O3) and nitrogen dioxide (NO2) are substances with oxidizing ability
in the atmosphere. Only considering the impact of a single substance is not comprehensive. However,
people’s understanding of “total oxidation capacity” (Ox) and “weighted average oxidation” (Ox

wt)
is limited. Objectives: This investigation aims to assess the impact of Ox and Ox

wt on the novel
coronavirus disease (COVID-19). We also compared the relationship between the different calculation
methods of Ox and Ox

wt and the COVID-19 infection rate. Method: We recorded confirmed COVID-
19 cases and daily pollutant concentrations (O3 and NO2) in 34 provincial capital cities in China. The
generalized additive model (GAM) was used to analyze the nonlinear relationship between confirmed
COVID-19 cases and Ox and Ox

wt. Result: Our results indicated that the correlation between Ox

and COVID-19 was more sensitive than Ox
wt. The hysteresis effect of Ox and Ox

wt decreased with
time. The most obvious statistical data was observed in Central China and South China. A 10 µg m−3

increase in mean Ox concentrations were related to a 23.1% (95%CI: 11.4%, 36.2%) increase, and a 10
µg m−3 increase in average Ox

wt concentration was related to 10.7% (95%CI: 5.2%, 16.8%) increase in
COVID-19. In conclusion, our research results show that Ox and Ox

wt can better replace the single
pollutant research on O3 and NO2, which is used as a new idea for future epidemiological research.

Keywords: oxidants; COVID-19; air pollution; GAM; ozone; nitrogen dioxide

1. Introduction

Previous epidemiological studies have shown that the components of the atmosphere
are complex and diverse, and many of them have oxidizing properties, for instance, ozone
(O3) and nitrogen dioxide (NO2), which affect the normal operation of the respiratory
system [1]. In addition, some studies have also confirmed that the effects of O3 or NO2 on
the respiratory system and cardiovascular diseases can be observed [2,3]. However, these
studies have certain limitations. Ozone (O3) is unstable in the atmosphere and reacts with
NO2 and other oxides of nitrogen under light conditions to form secondary pollutants that
are harmful to the human body [4]. Their relationships are as follows:

NO2 + UV photons (hv)→ O + NO (1)

O + O2 → O3 (2)

O3 + NO→ NO2 (3)

The instability between O3 and NO2 makes it impossible to accurately determine their
respective contributions to human health.

Previous research targeted the calculation of the dual pollutant model but ignored the
chemical conversion between NO2 and O3 [5,6]. Only a few reports pay attention to the
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potential risks to human health caused by the dynamic changes between NO2 and O3 [7]. In
the above formula, the conversion between NO2 and O3 is rapid and continuous [6]. Under
normal circumstances, the sum of NO2 and O3 is regarded as a constant by us, so we define
the “total oxidation capacity” as Ox [8]. Chardon et al. used the Ox method to calculate
and quantify the correlation between ozone concentration and respiratory diseases [9].
However, this method is still imperfect. Ozone and NO2 do not have equivalent oxidizing
power. Ozone is an oxidant with stronger oxidizing power than NO2, so the concept of
weighted average oxidation (Ox

wt) is introduced [10]. The improved method can more
accurately determine the redox effect produced by the combined action of O3 and NO2.
Values of Ox

wt were used in previous studies to explore the impact of environmental factors
on COPD [11].

In previous literature reports, the relationship between O3 and acute respiratory in-
fection (ARI) and upper respiratory tract inflammation (URTI) has been clearly observed,
which helps to assess the potential risks of O3 to the human body [12]. A small part of the
formation of NO2 comes from nature, which is mainly due to fuel combustion and automo-
bile exhaust emissions [13]. Therefore, an experiment that selected people living next to the
highway as the research object found that for every 17.9 ppb (2 SD) increase in NOx, the
probability of having a forced vital capacity (FVC) defect increased by 1.6% (p = 0.005) [14].
In addition, the discussion that the joint action of NO2 and O3 can cause a series of respira-
tory diseases has also been mentioned in the previous literature [15]. However, the acute
respiratory infectious disease caused by novel coronavirus disease (COVID-19) that broke
out at the end of 2019 [16] has swept the world in a short period of time and has brought
a great impact on production and, more generally, life in human society [17]. Most of the
patients showed symptoms of fever, dry cough, and fatigue. Critically ill patients have
symptoms of dyspnea, multiple organ failure and even death [18]. And COVID-19 has been
confirmed to be spread through three methods: direct transmission, aerosol transmission
and contact transmission [19]. Aerosol transmission may be a result of the fact that droplets
mix in the air to form aerosols and cause infection after inhalation. Therefore, we have
reason to guess that changes in NO2 and O3 concentrations will have an influence on the
spread of COVID-19.

In this study, we studied the causes of the global spread of COVID-19 from an envi-
ronmental perspective. We selected the oxidative air pollutants O3 and NO2 as the study
objects and performed a traditional analysis of the single-pollutant model. Also, we op-
timized the traditional method and the Ox and Ox

wt methods are used to evaluate the
COVID-19 infection rate. In addition, this study also reflects the lagged effects of O3 and
NO2 on COVID-19 to assess the adverse health effects. This study is expected to be of
great importance for comprehending the oxidative capacity of dual pollutants and human
health prediction.

2. Materials and Methods
2.1. Study Location

This study selected 34 provincial capital cities in China from 73◦33′ to 135◦05′ east lon-
gitude and 3◦51′ to 53◦33′ north latitude. The selected 34 cities have developed economies,
high population densities, and complete medical facilities, which will help to obtain more
complete data. In addition, these cities have a wide range of regional distribution, so the
statistical data has a certain degree of representativeness.

2.2. Data Collection

We collected data on daily confirmed cases of COVID-19 in 34 provincial capital
cities in China from 1 September 2020 to 31 December 2020, which were obtained from
the National Health Commission of China “COVID-19 cases. Available online: http:
//www.nhc.gov.cn (accessed on 1 September 2020)”. Data on air pollutants (O3 and NO2)
were obtained from the online air quality monitoring and analysis platform “Pollutant
concentration. Available online: https://www.aqistudy.cn (accessed on 1 September 2020)”.

http://www.nhc.gov.cn
http://www.nhc.gov.cn
https://www.aqistudy.cn
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2.3. Statistical Analysis

Previous reports have shown that environmental pollutants play a great role in res-
piratory diseases [20,21]. The Generalized Additive Model (GAM) can help analyze the
possible link between environmental pollutants and COVID-19 [22,23]. We analyzed the
potential impact of a single pollutant. However, the two pollutants selected in this study
have oxidative properties and cannot exist stably in the air [24]. Therefore, the “total
oxidation capacity” concept Ox and the “weighted average oxidation” concept Ox

wt are
introduced in the analysis. The specific formula is expressed as:

Ox = O3 + NO2

Ox
wt = (1.07volts (V) × NO2 + 2.075volts (V) × O3)/3.145

To study the short-term effects of O3 and NO2 on COVID-19 more comprehensively,
we analyzed and compared the mixed effects of O3 and NO2. The relationship model is
established by a bivariate smoothing spline [25].

The hysteresis of oxidizing species (O2 and NO2) was also considered in this study.
The 1–7 days after pollutant discharge is selected as the lag period of this study. The reason
for this choice was that the incubation period of COVID-19 reported by researchers is
mostly 1–7 days [26,27]. Similarly, GAM is applied to analyze the relationship between
COVID-19 and the hysteresis effect of pollutants in different regions and to calculate the
influence of Ox and Ox

wt on COVID-19 in the hysteresis model.
Finally, this study explored the potential impact of changes in pollutant concentration.

We conducted a regional study on Ox and Ox
wt, divided into four regions: North China, East

China, Central China and South China, and other regions. We adjusted the concentration of
Ox and Ox

wt with combined oxidation ability to calculate the relative risk (RR) of COVID-19.
The specific formula is as follows:

RR = exp (β × IQR)

where β is the coefficient of the pollutant in the model calculations, and IQR is the interquar-
tile range of the pollutant during model calculation (P(75%)–P(25%)) [28]. The health effects
of pollutants are characterized by the RR coefficient.

In this study, the original data is huge, involving four months of observational data
in 34 cities. Based on this, we first used Microsoft Excel to preprocess the data, and then
the GAM analysis was completed by R software, which can be used to deal with the
relationship between O3, NO2, Ox, Ox

wt and COVID-19. The software uses the mgcv and
hmisc extension packages [29]. The estimations were expressed as their 95% confidence
intervals (95% CI).

3. Results

Our study utilized data on pollutants and patients from 34 capital cities from 1 Septem-
ber 2020 to 31 December 2020. In this study, O3 and NO2 were selected as the research
objects, and O3, NO2, Ox, and Ox

wt were analyzed.
Table 1 shows the relationship between NO2, O3, Ox, Ox

wt and COVID-19. A strong
correlation between COVID-19 and O3 was observed in Zhengzhou and Guiyang, which
were 67% (95%CI: 30%, 114%) and 53% (95%CI: −6.8%, 153%) respectively. For NO2,
the populations in Changsha and Urumqi showed more obvious sensitivities of 70%
(95%CI: 3.1%, 183%) and 67% (95%CI: −12%, 221%), respectively. During the study pe-
riod, Zhengzhou observed the peaks of Ox and Ox

wt regarding COVID-19 infection rates,
which were 49% (95%CI: 25%, 79%) and 24% (95%CI: 12%, 37%), followed by Guiyang.
The corresponding Ox and Ox

wt results in Guiyang were 44% (95%CI: −7.4%, 124%) and
21% (95%CI: −3.4%, 51%). However, the correlation between Ox and Ox

wt in Harbin and
COVID-19 was only weakly detected, corresponding to 0.7% (95%CI: −10%, 13%) and
2.4% (95%CI: −4.1%, 9.5%), respectively. The infection rate of COVID-19 in Zhengzhou
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showed a good correlation with O3, Ox, Ox
wt. The high population density and poor air

quality in Zhengzhou are the possible reasons for this result. In addition, the government
has implemented control measures to reduce the spread of COVID-19, which has reduced
motor vehicle NOx emissions to a certain extent [30]. Also, the increase in O3 concentra-
tions is mainly correlated with NOx emissions reduction, so O3 may be closely related to
COVID-19 [31]. These results are consistent with other recent research [32,33].

Table 1. Single pollutant effect for COVID-19 in some China cities.

O3 NO2 OX Ox
wt

Beijing 3.7% (−6.4%, 14%) ## ## 0.23% (−4.1%, 4.7%)
Tianjin ## ## ## ##

Shanghai ## ## ## ##
Chongqing ## 18% (−7.9%, 53%) 1% (−9%,13%) ##
Shenyang ## 8.5% (−24%, 56%) ## ##

Harbin 4.3% (−11%, 23%) 17% (−11%, 55%) 0.7% (−10%,13%) 2.4% (−4.1%, 9.5%)
Changchun ## ## ## ##

Shijiazhuang ## ## ## ##
Jinan ## ## ## ##

Nanjing ## 3.3% (−31%, 56%) ## ##
Hangzhou ## ## ## ##

Fuzhou ## ## ## ##
Zhengzhou 67% (30%, 114%) ## 49% (25%, 79%) 24% (12%, 37%)

Wuhan 4.5% (3.1%, 5.9%) ## 15% (13%, 16%) 4.9% (4.2%, 5.5%)
Changsha 3.2% (−7.9%, 15.9%) 70% (3.1%, 183%) 5.5% (−5.3%, 17%) 2.1% (−3.2%, 7.8%)

Hefei ## ## 2.3% (−18%, 17%) ##
Guangzhou 32% (19%, 46%) 32% (6%, 64%) 23% (13%, 33%) 12% (7.8%, 17%)

Nanning ## 40% (−58%, 370%) ## ##
Lanzhou 8.6% (−23%, 53%) 3.7% (−27%, 49%) 4.8% (−16%, 31%) 3.2% (− 9.9%,18%)
Yinchuan ## ## ## ##
Taiyuan ## ## ## ##
Huhehot ## ## ## ##

Xi’an 24% (−2.9%, 58%) ## 3% (−22%, 37%) 3.8% (−10%, 20%)
Urumqi ## 67% (−12%, 221%) 26% (−36%, 151%) ##
Xining ## ## ## ##
Lasa ## ## ## ##

Chengdu 1.1% (−14%, 20%) 45% (−8.1%, 129%) 4.8% (−10%, 22%) 1.6% (−6%, 9.9%)
Guiyang 53% (−6.8%, 153%) ## 44% (−7.4%, 124%) 21% (−3.4%, 51%)
Haikou ## ## ## ##

Kunming 8.6% (−34%, 81%) ## 5.1% (−38%, 81%) 3.3% (−19%, 33%)
Nanchang ## ## 11% (−1.5%, 25%) 6% (−0.4%, 13%)

Notes: ## Indicates no correlation.

Table S1 lists the impact of O3, NO2, Ox, and Ox
wt on the infection rate of COVID-19

within 7 days of lag. In Zhengzhou and Changsha, the impact of pollutants on COVID-19
had gradually weakened over time. Compared with Zhengzhou, the lag effect in Changsha
on the third day is negligible. For every 10µg m−3 increase of Ox, the COVID-19 infection
rate increases by 0.06% (95%CI: −10%, 11%), with a 3-day lag, and 0.5% (95%CI: −4%, 6%)
increase of COVID-19 corresponding to a 10 µg m−3 increase in the 3-day lag average
concentrations of Ox

wt. In addition, we have observed that the lag effect of NO2 in Urumqi
had caused the COVID-19 infection rate to continue to rise, except for a decrease on the 7th
day. The peak on day 6 was 68% (95%CI: −43%, 404%). However, the lagging effects of pol-
lutants in Guiyang showed an overall upward trend, except for the phenomenon of falling
back on the 4th day after the lag. For a 10 µg m−3 increase in Ox, the infection rate of COVID-
19 was 8% (95%CI: −18%, 44%), 24% (95%CI: −12%, 78%), and 31% (95%CI: −16%, 106%)
on the 2nd, 5th, and 7th days of the lag, respectively.

Further, we have observed that under the combined effects of O3 and NO2 in Zhengzhou,
the infection rate of COVID-19 was as high as 125% (95%CI: 16.4%, 336%), far exceed-
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ing the 83.6% (95%CI: −25.4%, 352%) in Changsha. At the same time, Urumqi had an
83.1% (95%CI: −25.2%, 348%) infection rate close to that of Changsha. In addition, the data
we collected showed that O3 and NO2 did not have a significant impact in some areas, such as
Kunming, where an increase in the concentration of 10 µg m−3 was related to an increase in
COVID-19 by 1.9% (95%CI:−24.5%, 37.7%). Overall, the lag effects of pollutants were weak
for COVID-19 at a 7-day lag.

Figures S1–S4 show the relative risk of COVID-19 infection in the four regions of
China (East China, North China, Central China and South China, and other regions) with
changes in Ox concentration. For Shanghai in East China, the infection rate of COVID-19
had been increasing with the increase of Ox concentration. Similarly, in Taiyuan and Tianjin
in North China, Ox and COVID-19 showed an approximately linear growth relationship.
However, no definite causality had been observed in Beijing. Obviously, COVID-19 and
Ox in Guangzhou in South China were showing a J-shaped growth trend. Finally, both
Guiyang and Urumqi have shown a weak growth trend, which shows that the increase in
Ox concentration has a positive effect on the increase in the COVID-19 infection rate. High
Ox concentration greatly increases the risk of people suffering from COVID-19.

The relative risks of the relationship between Ox
wt and COVID-19 in different regions

of China (from Supplementary Materials Figures S5–S8). Comparing and analyzing Figures
S1 and S5, it can be found that the curve trends of Ox and Ox

wt in the same area have a
high degree of similarity. Taking Shanghai in East China as an example, the relative risk of
disease in the population was increasing when Ox

wt was in the concentration range of 0–15
µg m−3, which has obvious statistical significance. The same rising result was shown in
the Ox analysis in Figure S1. Therefore, the pathogenic risk of COVID-19 can be analyzed
in the characterization of Ox and Ox

wt.

4. Discussion

We analyzed the link between oxidizing pollutants (O3 and NO2) and COVID-19 by
using GAM. Our results showed: (1) The increase in COVID-19 infection rate is related to
the increase in O3 and NO2 concentrations in the short term; (2) In the joint analysis of O3
and NO2, the sensitivity of Ox is higher than that of Ox

wt; (3) In the hysteresis model, the
hysteresis effect of Ox and Ox

wt is constantly weakening.
As evidenced by previous epidemiological studies, O3 and NO2 are related to the

health of the human respiratory system [34]. However, most studies only consider the
effects of O3 or NO2 on the human body, and few reports consider both O3 and NO2. For
example, a study showed that O3 has obvious harm to children and has a negative impact
on human health [3]. The report did not mention the role of pollutant NO2. A study in
Tehran demonstrated that O3 and NO2 contribute to a range of respiratory diseases such as
COPD [35]. This is consistent with our results that O3 and NO2 have caused an increasing
number of confirmed cases of COVID-19.

However, the monitoring data of O3 and NO2 may be one-sided, which is caused by
the dynamic chemical relationship between O3 and NO2 [36]. Measurements of O3 and
NO2 show differences due to variations in weather or measurement region [37]. In warm
areas, with sufficient sunlight, the diffusion capacity of pollutants is limited at this time
because of the stable conditions formed under the high-pressure system [38]. Therefore,
a large number of photochemical reactions that contribute to the formation of O3 are
carried out [39]. However, most NO2 comes from automobile exhaust emissions and the
combustion of coal and fossil fuels At this time, NO2 is the dominant substance and has
a negative correlation with O3. Therefore, the monitoring of a single pollutant cannot
accurately reflect the relationship between COVID-19 and pollutants, so we considered
using joint analysis [40].

Ox is the sum of O3 and NO2 [41], and the calculation method is simple and quick.
However, its shortcomings are also obvious. The oxidation capacity of O3 may be un-
derestimated because the different oxidation potentials of O3 and NO2 are not taken into
account [42]. The formula for Ox

wt describes the weighted average oxidation capacity [43].
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In the process of using Ox
wt for analysis, we assigned the oxidation potential of O3 to 2.075

V and the oxidation potential of NO2 to 1.07 V to better evaluate the oxidative capacity
of O3 and NO2 [44]. In the joint analysis, we found that the correlation between Ox and
COVID-19 is more sensitive than Ox

wt. There are many reasons for this result, and sampling
time in autumn and winter may be one of the main influencing factors. This photochemical
reaction is no longer active, so the role of O3 may be overestimated. For example, previous
studies have shown that the Ox

wt value in winter is less than that in summer, and the effect
of photochemistry seems to be very important [45]. It is undeniable that Ox

wt has improved
the metric for the oxidation reaction. Our research also confirmed this result, Ox

wt can be
used to determine the adverse effects of O3 and NO2 on human respiratory diseases (such
as COVID-19).

In addition, we have analyzed the hysteresis effects of pollutants, and the results show
that the hysteresis effects of Ox and Ox

wt have been declining over time. In the regional
study of Ox

wt and Ox, we observed that the increase in the concentration of pollutants
increased the relative risk of COVID-19 disease. The reasons for this phenomenon are
complex, including regional differences, concentration-response functions, and so on.

This study has the following two advantages. We studied the combined effects of
pollutants with oxidizing properties and explored the connection with the current world
pandemic (COVID-19); then, the potential risks to human health brought by the hysteresis
effect of pollutants were detected. But our research inevitably has some limitations. First,
the time period we selected for the study is relatively short, and changes in factors such as
seasons interfered with the research results; second, the relevant literature that has been
published is relatively scarce, and there is not enough supporting literature to be consulted
in the process of this research.

5. Conclusions

Our research shows that the chemical changes of O3 and NO2 as two oxidizing
substances cannot be ignored. Therefore, the research model of a single pollutant cannot
effectively reflect the true impact on COVID-19. Based on this, this research introduces two
concepts, Ox and Ox

wt. The Ox parameter solves the errors caused by the traditional single
pollutant model or double pollutant model statistics. Moreover, the value of Ox comes
from the addition of O3 and NO2, which is simple and convenient to calculate. Values for
Ox

wt take into account the oxidation ability of different substances more accurately, which
provides support for further research. Finally, the results of this study provide directions
for epidemiological research, and the interaction of pollutants (such as O3 and NO2) should
be considered. In addition, the single pollutant parameter has been adopted when the
national policy is formulated, and at the same time, the impact of pollutant interaction on
human health should also be evaluated.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/atmos13040569/s1, Figure S1. OX values in eastern China;
Figure S2. OX values in Northern China; Figure S3. OX value in southern China; Figure S4. OX values
in other cities of China; Figure S5. Ox

wt values in eastern China; Figure S6. Ox
wt values in northern

China; Figure S7. Ox
wt values in southern China; Figure S8. Ox

wt values in other cities of China;
Table S1. Lag effect for China cities.
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