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Abstract: Based on Beijing’s Air Quality Index (AQI) and concentration changes of the six major
pollutants from 2019 to 2021, the results are visualized through descriptive statistics, and the air
pollution status and influencing factors of Beijing’s AQI are analyzed using the ARIMA model and
neural network. A forecast system is built and the fitting effects of the two models are compared. The
results show that PM2.5, PM10, and O3 of the six major pollutants have the greatest impact on AQI.
Beijing’s air quality now shows a trend of improvement in recent years; however, there is obvious
seasonal evidence that the summer pollution index has been high. Therefore, special attention should
be paid to the treatment of ozone pollution in summer. Both models are useful for the forecast of
AQI, but the forecast effect of the neural network model is better than that of the ARIMA model.
Moreover, when using the additive seasonal model for the long-term forecast of monthly data, it is
found that the Beijing AQI still shows seasonal cyclicality and has a slightly decreasing trend in the
next two years. This research provides a basis for the forecast of air quality and policy enlightenment
for environmental protection departments to deal with air pollution.

Keywords: AQI; visual analysis; heat map; ARIMA model; neural network model

1. Introduction

In the past few years, air pollution problem in China, especially Beijing, has been so
severe that it has received widespread attention from all over the world. Cities are dense
areas of economic activities, and therefore, populations, and Beijing is the political and
economic center of China. After a stage of radical pursuit of economic growth, improving
air quality and overall living environment is the current focus of China’s realization of
green development. Therefore, it is important to study Beijing’s air quality issues to find
ways to tackle air pollution problems and provide a reference for other cities.

The correlation between human activities and the atmospheric system in urban ecosys-
tems has been increasing year by year [1]. Domestic research on air quality conditions began
in the 1990s, behind abroad [2]. In terms of air quality characteristics, some researchers have
studied the temporal and spatial distribution characteristics of China’s AQI, finding that
the national air quality situation shows a spatial clustering effect. High pollution and low
pollution regions show a pattern of north–south differentiation, and the overall air quality
of the country shows the distribution characteristics of slightly lighter in the south and
lighter in the east [3,4]. The AQI showed a downward trend from 2016 to 2019, showing
a “U” shape in the middle of the month [5]. The state has put forward clear pollution
control requirements. Many local government departments regard pollution prevention
and control as their primary task, and air quality monitoring has become an urgent need.
Therefore, an accurate air quality forecast system can reflect the air conditions promptly
and provide preparation information for the Ministry of Environmental Protection [6].

The statistical forecast is to analyze data through mathematical modeling, using
correlation analysis [7], multiple regression [8,9], principal component analysis [10], gray
model [11], fuzzy comprehensive evaluation method [12], harmonic regression [13], and
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other methods to predict air quality. However, it is difficult to provide air quality data in a
timely and rapid manner due to the long forecast period. With the development of data
collection and processing technology and the integration of various disciplines, data mining
and machine learning methods have been used to analyze environmental information, and
obtain timely and accurate air information and provide guiding suggestions [14–18].

Firstly, this paper compares data of Beijing’s AQI and the concentration data of
six major pollutants from 2019 to 2021, comprehensively evaluates its air quality, and
explores factors affecting the air quality. Secondly, it uses time series models and data
mining methods to establish predictive models. The ARIMA model is constructed based on
the time series data of AQI, and the three-layer neural network model is constructed based
on the daily average data and the data of the concentration of six major pollutants. Finally,
study shows that the two models are effective for AQI to make short-term forecasts and
analyses. Furthermore, this paper analyzes the long-term forecast of Beijing’s air quality
index based on the seasonal ARIMA model and compares it with the short-term forecast
to draw a comprehensive conclusion, which could be helpful to provide references for
relevant departments for urban air and environmental governance.

Compared with previous research on air quality, this paper not only uses the combina-
tion of visual analysis and time series model, but also considers the delayed effect of air
pollution. On the basis of short-term forecast, the long-term forecast of air quality index
is added, which makes the results more convincing and representative. Additionally, this
paper includes a cluster analysis on the air quality index of Beijing in different periods and
a multi-layer perceptron (MLP) neural network model based on the built-in algorithm of
data mining technology to classify and evaluate the air quality level of the city. Finally, the
classification rules of the six pollutants are used to explore a classification model with high
accuracy, and a comprehensive comparison is made with the previous descriptive analysis,
which effectively avoids the problems of chance and errors caused by the use of a single
method. Research results are time-sensitive and have strong practical significance.

2. Analysis of Beijing’s Air Quality

According to the “Technical Regulations on Ambient Air Quality Index” [19], the sub-
index of the air quality of each pollutant is calculated based on the monitoring concentration
of pollutants. The lower the value of AQI, the better the air quality; on the contrary, the
higher the value, the worse the air quality is. This paper crawls the daily and monthly data
of Beijing’s AQI and six pollutant concentrations from 1 January 2019 to 15 November 2021,
including nine effective fields such as date, AQI value, and air quality grade. After data
screening and testing, there is no missing information or errors, with a total of 1050 valid
data points day by day.

2.1. Analysis of the Change Characteristics of AQI
2.1.1. Temporal Characteristics of Beijing’s AQI over the Years

Due to the different number of days in February each year and the fact that the data
after November 2021 are not used, the blank data are represented by the value 0. The
number of good days of air quality is an important index to measure the quality of air
quality in a city. It can be seen from Figure 1 that the proportion of excellent and good
air quality in the whole year has increased significantly year by year. The proportion of
light pollution level decreased compared with the previous two years. As of 31 October,
although the moderate pollution in 2021 increased slightly compared with 2020, it still
decreased significantly compared with 2019. Only two days of serious pollution occurred
in 2021, indicating that the air quality in Beijing fluctuated greatly in 2021, but the air
quality was excellent, accounting for 29.93%, and the air quality was good, accounting
for 47.37%. Although some extreme weather conditions occurred, the overall trend of air
quality throughout the year was good.
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Figure 1. 2019–2021 Beijing’s AQI level comparison chart.

2.1.2. The Characteristics of Monthly and Seasonal Changes in Beijing’s AQI from 2019
to 2021

According to the four seasons in the northern hemisphere, spring is from March to
May, summer is from June to August, autumn is from September to November, and winter
is from December to February [20]. We analyzed the monthly data of Beijing’s AQI, as
shown in Figure 2. The monthly average of AQI reached a peak of 107.33 in June, followed
by March, and the monthly average of AQI was 99. The least polluted month of the year is
October. Seasonal changes in air quality are further considered and an AQI seasonal index
was derived. Compared with the overall average (81.18), the AQI in spring (87.67) and
summer (91.56) was above average, whereas the AQI in autumn (66.17) and winter (79.33)
was slightly below average. This is consistent with the conclusion of the monthly average
of AQI, indicating that there are significant seasonal differences in air quality in Beijing,
and the severe air pollution in summer may be related to the severe excess of ozone.

Figure 2. Visualization of the monthly average value of Beijing’s AQI 2019–2021.

2.2. Analysis of the Change Characteristics of the Concentration of Six Pollutants
2.2.1. The Time Characteristics of the Concentration Changes of the Six Pollutants

The time trend of the annual average concentration of the six pollutants is shown in
Figure 3. It can be seen from the chart that the annual average concentration changes of the
six pollutants have the same trend, and they all show a trend of the declining year by year.
Although the ozone concentration in 2021 has slightly increased compared with 2020, it
still has a downward trend compared with 2019. It shows that Beijing’s air control has been
somewhat effective in the past three years, but in the process of air pollution control in the
next few years, it is necessary to focus on the control of ozone pollution.
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Figure 3. The temporal characteristics of the six pollutants in Beijing from 2019 to 2021.

2.2.2. Monthly and Seasonal Variation Characteristics of the Six Pollutants

Cluster analysis is carried out on the average values of six types of air pollutants in
each month, as shown in Figure 4. The color depth in the heat map indicates the expression
amount of the index. The greater the expression amount, the darker the color. The tree
on the left shows the clustering results of different months. It is found that a year can be
divided into two parts by the expression of air pollutants. This corresponds to whether
Beijing is in the heating period. During the heating period, a large amount of fuel is
consumed and the exhaust emission increases, resulting in a high content of pollutants
in the air; In the north, the weather is dry and cold in winter, the probability of people
choosing to drive increases, and vehicles will produce a lot of tail gas. At the same time,
atmospheric inversion often occurs, which is not conducive to air convection, and pollutants
are difficult to diffuse, resulting in poor air quality.

Figure 4. Heat map of six air pollutant indicators.
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After the overall description of the six main pollutants in Beijing from 2019 to 2021, the
concentration variation characteristics are analyzed monthly. It can be seen from Figure 5
that the particulate pollutant PM2.5. The concentration of PM10 is higher in spring and
winter, and tends to be lower in summer. The lowest mass concentration occurs in August.
The change trend of the concentration values of pollutants CO, SO2 and NO2 is roughly
the same, showing a downward trend first and then an upward trend. On the whole,
it presents a “U”-shaped structure, in which CO concentration reaches its lowest value
in April; the concentration of SO2 reached its lowest value in July. NO2 also shows the
variation characteristics of low concentration in summer and high concentration in winter.
There is a small recovery from February to March, and the concentration reaches its lowest
value in July. It can be seen that the concentrations of these five pollutants are lower in
summer, lighter in pollution and higher in autumn and winter

As mentioned above, the monthly average index of Beijing’s AQI showed the highest
trend in June, which may be caused by the increase in ozone concentration. In order to
verify our conjecture, a monthly analysis of ozone concentration from 2019 to 2021 was
carried out. It can be seen from the monthly change trend of ozone that the annual ozone
concentration reaches its peak in June and is lower in December, showing an inverted
U-shaped structure different from the other five types of pollutants. Then, a seasonal anal-
ysis of the concentrations of six pollutants was conducted, finding that the concentrations
of the five major pollutants, as shown in Figure 5a–f PM2.5, PM10, SO2, CO, and NO2, are
low in summer and high in winter, whereas the concentration of O3 was the opposite, high
both in summer in winter. The concentration is lower, which indicates that the poor air
quality in summer is mainly caused by the increase in ozone concentration.

2.3. Correlation between AQI and the Concentration of Six Pollutants

Correlation analysis is carried out on the data of six pollutant indicators every day.
The main reference indicator is the Pearson correlation coefficient, which is used to measure
the degree of correlation between two variables. In the correlation heat map, the numbers
in the grid are the correlation coefficients, the red squares indicate the positive correlation
between the indicators, and the blue squares indicate the negative correlation between
the indicators. The heavier the color, the stronger the correlation between the indicators.
It can be seen from Figure 6 that at a significance level of 5%, the correlation between
particulate pollutants PM2.5 and PM10 is the largest, with a correlation coefficient as high
as 74%, whereas the content of O3 is not significant between PM2.5, PM10, and NO2. The
correlation between the amount of ozone and the content of PM2.5, PM10, and NO2 does
not affect each other; the content of PM2.5, PM10, and O3 has a relatively large and positive
correlation with AQI, that is, these three the higher the concentration of these pollutants,
the larger the corresponding AQI and the worse the air quality. This is exactly the same as
the results of the previous analysis.

In short, Beijing’s AQI and the concentration characteristics of the six major pollutants
are analyzed together, and the time development trend and the changes in months and
seasons are visualized to provide a comprehensive and intuitive understanding. The
current situation of air pollution in Beijing in the past three years. Studies have shown
that the three indicators that have the greatest impact on AQI are PM2.5, PM10, and O3.
Beijing’s air quality changes show obvious seasonal characteristics. In the past three years,
Beijing’s air quality reached the worst in June. This is due to the significant increase
in ozone concentration during summer. However, on the whole, Beijing’s AQI and the
concentration of six pollutants have shown a trend of the declining year by year. AQI has
improved significantly, with more and more days showing good grades, mainly due to the
recent years. The government has taken many measures to improve air quality and can
provide timely countermeasures when there are significant changes in air quality, especially
in the treatment of pollutant emissions during the heating period in winter. However, the
continuous high content of ozone is still a thorny issue facing today. Therefore, in the future
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air pollution control, in addition to continuing to control particulate pollutants in winter,
we should also focus on ozone pollution in summer.

Figure 5. Monthly average data of the six major pollutants in Beijing for the same period of the three
years from 2019 to 2021. (a) Monthly average data of the PM2.5 concentration in Beijing for the same
period of the three years from 2019 to 2021. (b) Monthly average data of the PM10 concentration in
Beijing for the same period of the three years from 2019 to 2021. (c) Monthly average data of the CO
concentration in Beijing for the same period of the three years from 2019 to 2021. (d) Monthly average
data of the SO2 concentration in Beijing for the same period of the three years from 2019 to 2021.
(e) Monthly average data of the NO2 concentration in Beijing for the same period of the three years
from 2019 to 2021. (f) Monthly average data of the O3 concentration in Beijing for the same period of
the three years from 2019 to 2021.
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Figure 6. Correlation heat map of six air pollutant indicators.

3. A Forecast of AQI
3.1. Establish an ARIMA Forecast Model
3.1.1. Data Selection and Description

When using the time series analysis method to predict Beijing’s AQI, considering
the completeness of time and the accuracy of the forecast, we selected the AQI data from
1 November 2020 to 31 October 2021 as a training set to build an ARIMA model and make
forecasts, with a total of 365 valid data points; we selected the AQI data from 1 November
2021 to 15 November 2021 as the test set to verify the fitting effect of the model.

3.1.2. Empirical Analysis of the ARIMA Model

(1) The stability test of the original sequence

Time series mapping of AQI of Beijing 1 November 2020–31 October 2021, as shown
in Figure 7. From the time series chart, it can be seen that in the past year, Beijing’s AQI
fluctuated greatly: there were two abnormal peaks, and the AQI value was not always in a
constant value near the fluctuation. In order to further verify the stability of Beijing’s AQI,
we have carried out a graph test of the self-correlation coefficient.

Figure 7. Time series of Beijing AQI original data.

Observing from Figures 8 and 9, the autocorrelation coefficient of the original Beijing’s
AQI has long-term training, the rate of decay to zero is relatively slow, and the self-
correlation coefficient after decay to double the standard deviation has a cyclical trend,
which directly indicates that there is a long-term correlation between the original time
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series data. Since the method of graph test has a certain degree of subjectivity, it is further
tested by unit root test, and the results are consistent. Therefore, the sequence can be judged
to be non-stable.

(2) Smooth processing of data

Atmosphere 2022, 13, x FOR PEER REVIEW 9 of 24 
 

 

 

Figure 8. An apocalypse coefficient plot of the original AQI data in Beijing. 

 

Figure 9. Partial correlation diagram of the original AQI data in Beijing. 

(2) Smooth processing of data 

The original data is smoothed, and the first-order difference is made on it, and the 

time series diagram of AQI after the first-order difference is drawn. Verify the stationarity 

of the sequence after the first-order difference. It can be seen from Figure 10 that after the 

first-order difference of Beijing’s AQI, the time series graph fluctuates around a constant 

value, essentially showing a steady state. 

Figure 8. An apocalypse coefficient plot of the original AQI data in Beijing.

Figure 9. Partial correlation diagram of the original AQI data in Beijing.

The original data is smoothed, and the first-order difference is made on it, and the
time series diagram of AQI after the first-order difference is drawn. Verify the stationarity
of the sequence after the first-order difference. It can be seen from Figure 10 that after the
first-order difference of Beijing’s AQI, the time series graph fluctuates around a constant
value, essentially showing a steady state.

Figure 10. Time series diagram of Beijing’s AQI after first-order difference.
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In order to further verify the conjecture, the autocorrelation and partial autocorre-
lation coefficient graphs of AQI after the first-order difference was made. As shown
in Figures 11 and 12, the autocorrelation coefficient of the Beijing’s AQI series after the
first-order difference quickly decays to zero, indicating that the series after the first-order
difference has a short-term correlation, and it is preliminarily determined that the series is
stable after the difference. The unit root test method is used again to verify as shown in
Table 1. The p value is less than 0.01, and the null hypothesis of the unit root is rejected,
which is consistent with the conclusion of the graph test; that is, the AQI data is stable after
the first order difference.

(3) White noise test of stationary series

Figure 11. Autocorrelation coefficient after the first-order difference of Beijing AQI.

Figure 12. The partial autocorrelation coefficient after the first-order difference of Beijing AQI.

Table 1. Unit root test of the first-order difference sequence.

ADF Statistics p-Value

−9.8993 <0.01

After the differentiated sequence passes the stationarity test, it needs to be tested
for pure randomness to prevent the stationary sequence from being a pure white noise
sequence. If it is a white noise sequence, then the sequence does not have any value for
further research. Therefore, the R software is used to perform the Ljung–Box method for
the pure randomness test of the 6-period and 12-period lags on differential AQI column,
and the results are listed in Table 2. The analysis shows that in the first-order difference
series with a lag of 6 and 12 periods, the p-value is less than the significance level of 0.05.
Therefore, the null hypothesis that the differenced series is a white noise series is rejected,
and the result is significant. From this, it can be judged that the time series after the first-
order difference is not a purely random white noise series, it can be researched to a certain
extent, and the subsequent modeling analysis can be carried out on it.
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(4) Identification and order determination of ARIMA model

Table 2. White noise test of difference sequence.

X-Squared df p-Value

60.504 6 3.555 × 10−11

78.253 12 8.878 × 10−12

Since the autocorrelation coefficient and the order of the partial autocorrelation coef-
ficient of the model after the first-order difference are not obvious, the identification and
order determination of the ARIMA model has brought some obstacles. Therefore, using
the automatic order-setting model of R software and various manual repeated attempts,
many more reasonable models are compared and analyzed, and the results are listed below.
The results of other attempts are not listed one by one. According to the model’s Akaike
information criterion, the smaller the model’s AIC value, the better the model’s fitting
effect. After repeated experiments, it can be found that the model with more significant
parameters is ARIMA (5,1,4), and the fitting results are shown in Table 3.

(5) ARIMA model fitting effect test

Table 3. Model fitting results.

ARIMA Model σ2 Estimated Log-Likelihood Aic

ARIMA (5,1,2) 1864 −1888.06 3792.12
ARIMA (5,1,4) 1822 −1885.28 3790.57
ARIMA (4,1,2) 1885 −1890.33 3974.67

Perform a residual white noise test on the fitted ARIMA (5,1,4) model to see whether
it extracts the effective information completely, as shown in Table 4 below. After analysis,
it can be seen that the p-values of the lag 6 and 12 lag white noise tests are both greater
than the significance level of 0.05, and the original hypothesis that the residual is white
noise cannot be rejected, indicating that the fitting model has basically extracted effective
information, and the model is the significant sex.

(6) Model forecast

Table 4. Residual white noise test after model fitting.

X-Squared df p-Value

7.3767 6 0.2874
11.792 12 0.4625

Use the established ARIMA (5,1,4) to predict AQI for the next 30 periods, and select
the data of the first 15 periods in the future as the test set to verify the error of the forecast
model. The forecast results are shown in Figure 13. It can be seen from the forecast result
graph that in the next 30 days, although the air quality in Beijing will fluctuate to a certain
extent, the overall difference is not big, and the air quality is still showing a good trend.

In order to consider the fitting effect of the model, we use 1 November 2021–15
November 2021 as the test set, compare the predicted value obtained by the ARIMA (5,1,4)
model with the true value, and combine the error indicators specified in the previous
section to compare the results Include under. The comparison of the predicted value and
the real value of the model, the histogram of the absolute error and relative error, as shown
in Figures 14–16, indicates that the error between the real value and the predicted value in
the first six cycles is slightly larger, but after the six periods, the predicted value gradually
moves closer to the true value. In the thirteenth issue, the difference between the predicted
value and the true value is very small, indicating that the fitting forecast result of the
ARIMA model is more accurate, but there is still room for improvement.
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Figure 13. ARIMA model predicts Beijing’s AQI map.

Figure 14. Comparison of predicted value and the true value of ARIMA model.

Figure 15. Absolute error histogram of ARIMA forecasting model.

Figure 16. The relative error histogram of the ARIMA forecasting model.
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3.2. Establish a Neural Network Forecast Model
3.2.1. Data Selection and Description

The data used to build the neural network model are the daily average data of Beijing’s
AQI from 1 November 2020 to 15 November 2021, and the concentration of six major air
pollutants, a total of 380 items, and the most classic three-tier structure to build a model.
Through the dimensionless processing of the data, the construction of a training sample
set, and a test sample set to build a model, the model learns the changing laws of historical
pollutant concentration data and realizes short-term forecast of air quality changes.

3.2.2. Theoretical Overview of Neural Network Models

The neural network is derived from neuroanatomy and neurophysiology. It is a
technology that simulates the intelligent processing of the human brain. It is a mathematical
model of the structure and function of biological neural networks and has the ability to
process multi-dimensional functions. The neural network structure is composed of multiple
neurons combined with each other. Each neuron input has a specific weight, and the
learning process of the neural network is the process of constant adjustment of the weight
in the iterative process.

The neural network consists of three layers: input layer, hidden layer and output
layer. The input layer is not responsible for calculation but is mainly responsible for the
information of input variables. The number of nodes is the number of influencing factors
designed; the hidden layer is between the input layer and the output layer. The middle
of the output layer contains unobservable network nodes, which mainly transform the
sample variables. Each hidden node is a function of the sum of input weights so that it has
corresponding learning rules to train the network; the output layer is mainly responsible for
outputting the final forecast. As a result, it transmits information to the outside world, and
the number of nodes is the number of predictors required. The sample is usually divided
into a training set and a test set. The training set is used to build the model, and the test set
is used to test the fitting effect of the model.

Artificial neural networks are increasingly closely related to other subject areas. The
neural network field mainly includes multilayer perceptron models, back-propagation
neural networks, convolutional neural networks, and so on. The air quality seems disor-
derly on the surface, but its changing law is affected by many factors such as pollution
sources, coal burning, and transportation for a long time. It is a complex non-linear system.
Multi-layer perceptron is also called multi-layer feedforward neural network. Information
is transmitted in one direction and different layers are fully connected. It has an excellent
nonlinear mapping and generalization capabilities and can perform air quality control
based on the inherent connection of the data itself.

Based on the built-in algorithm of data mining technology, this paper establishes a
neural network model of multi-layer perceptron (MLP) to predict the air quality in Beijing,
correlate various dimensions in a large amount of data, train and learn the data, and mine
the associated information of the data. In total, 80% of the data is selected as the training
set for the learned model by a fixed random seed number, and the remaining 20% of the
sample data is used for testing.

3.2.3. Empirical Analysis of Neural Network Model

The fitting results of the true air quality value and the predicted value of the model
are shown in Figure 17, and the changes between the two are basically the same. The
effect of the model is judged by indicators such as average absolute error (MAE) and
average absolute percentage error (MAPE). The smaller the value, the higher the accuracy
of the model.



Atmosphere 2022, 13, 512 13 of 22

Figure 17. Neural network model forecast diagram.

After obtaining the concentration values of the six major pollutants, the high/low
values of the concentration limits close to the concentration of the pollutants, and the
corresponding air quality sub-index, the air quality sub-index is calculated, and then the
maximum AQI value is selected as AQI. The final selection of values takes a long time.
Although accurate AQI values and levels can be obtained, there is a lag, and air quality
early warning cannot be effectively provided.

Therefore, this article is also based on the data mining algorithm and uses the daily
data of six pollutants to classify the air quality levels layer by layer, through regularization
and the use of Dropout and other methods to avoid data overfitting, the air quality in
Beijing on the day was finally determined. The pollutants that have the greatest impact
on air pollution levels can also be obtained. The accuracy of the model is 89.8%. The
classification levels of air quality results are shown in Figure 18.

Figure 18. Accuracy of the classification model.

The daily air quality level is used as the typed dependent variable, and the six air
pollutant indicators are used as independent variables for importance analysis. It can be
seen from Figure 19 that PM2.5, PM10, and O3 have a greater impact on the air quality
level, and are the main factors that determine the specific value of AQI and the air quality
level. Their importance is 23%, 19%, and 18%, respectively. The result corresponds to the
result of the correlation heat map. PM2.5 has the greatest impact on air quality. It stays in
the air for a long time and is rich in a lot of harmful substances. It not only affects human
health but also affects the global climate. Air governance is not one day’s work; thus, it
is necessary to accelerate industrial transformation, advocate the use of clean energy by
society, and strengthen waste gas treatment procedures.
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Figure 19. Analysis of the importance of six air pollutant indicators.

3.3. Model Comparison

In this chapter, the ARIMA model and the multi-layer perceptron neural network
model are used to predict Beijing’s AQI, and a variety of evaluation indicators such as
root mean square error and average absolute percentage error are selected for these two
models. Comparing the fitting effect of the model, these indicators take into account the
error between the predicted value and the true value, which can be a good analysis of the
pros and cons of the model fit. The expressions of these indicators are:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (3)

SMAPE =
1
n

n

∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)/2

× 100% (4)

Among them, is the predicted value of the test set data, and is the true value.
Combining the selected test set data, using these four indicators to compare the pros

and cons of the two models, the results are shown in Table 5. Combined with error analysis,
it is found that the forecast effect of the neural network model is far better than that of the
time series ARIMA model. However, the ARIMA model also has certain advantages. It
can predict future data based on historical data of endogenous variables without using
other variables. The forecast results within a certain period still have a certain reference
value. The neural network model has a good self-adaptive ability, and the forecast results
are relatively good, but it cannot accurately and specifically describe the mathematical
relationship between data and variables. Therefore, in the process of use, the two forecast
methods can be combined, or further consider the related influence of other factors, and
further optimize the forecast of Beijing’s AQI.

In this chapter, the data from 1 November 2019 to 15 November 2021 are selected,
and Beijing’s AQI is fitted and predicted using the ARIMA model and the neural network
model. Among them, the ARIMA model uses the data of the last 15 days as the test set,
and the neural network randomly selects the test set using the eight-to-eight method and
uses the error-index to comprehensively evaluate the fitting effect of the two models. The
results show that both the ARIMA model and the neural network model are significant
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in predicting AQI, and the established models are reasonable and effective. Through
comparison, it is found that the fitting effect of the neural network is better than that of the
ARIMA model. The features can be referred to each other and used in combination.

Table 5. Comparison of model errors.

Model MAE RMSE MAPE SMAPE

ARIMA model 39.06 51.21 50.84% 51.93%
Neural network model 13.66 43.17 12.81% 12.75%

4. Long-Term AQI Forecast Based on Seasonal Model

Based on the results of the previous analysis of Beijing air quality visualization, it
can be seen that the AQI of Beijing shows more obvious seasonal characteristics. In the
above paper, short-term forecast was made for the daily data of Beijing AQI, and in this
chapter, long-term forecast of Beijing AQI is made based on the seasonal model of ARIMA
model, so the model was built by selecting 83 monthly air quality data from January 2015
to November 2021. Therefore, 83 monthly air quality data points from January 2015 to
November 2021 were selected as the experimental data, and the data from December 2021
to February 2022 were used as the data set to verify the model fitting effect, and the original
monthly data points were pre-processed in the following section.

4.1. Data Preprocessing

(1) Smoothness test

The time series plot of the AQI monthly data is drawn using R software, as Figure 20
shown below. From the time series plot of the monthly data, it is known that from January
2015 to November 2021, the overall AQI of Beijing shows a decreasing trend and has a
more obvious seasonal effect. Subsequently, the graphical test of autocorrelation and partial
autocorrelation coefficients was conducted, as shown in Figures 21 and 22, and its autocor-
relation coefficients have a long-term trailing and periodic trend, and the monthly data of
Beijing air quality index is initially inferred to be unsteady by the graphical test observation,
and in order to further evaluate objectively the steadiness, the series is concluded to be a
non-steady time series after unit root test using R software.

(2) Pure randomness test

Figure 20. Time series of Beijing AQI monthly data.
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Figure 21. Monthly AQI series autocorrelation chart.

Figure 22. Monthly data AQI bias autocorrelation graph.

Similar to the ARIMA model for short-term forecast of AQI daily data, a pure ran-
domness test is performed on the original series before the modeling analysis in order to
investigate whether there is any correlation between the series and whether there is value
for further study. The pure randomness test was performed using the Box.test function
in the R software, and the results are shown in Table 6. It can be seen that the p-values of
delayed 6 periods and delayed 12 periods are significantly less than 0.05; therefore, the
original hypothesis is rejected, and the monthly data series of Beijing AQI is not a white
noise series, which can be used for subsequent modeling analysis.

Table 6. Results of pure randomness test.

Delayed Orders p-Value

Delayed by 6 periods 2.754 × 10−7

Delayed by 12 periods 3.188 × 10−11

4.2. Construction of Seasonal Model

From the above time series graph, we can see that the original series shows the change
of year as the cycle, and the selected air quality data is monthly data, so the cycle length
s = 12. To make the original time series smooth, we need to eliminate the linear trend
and seasonal periodicity of the series. Therefore, the monthly AQI data of Beijing are first
differenced to eliminate the linear trend, and then differenced to eliminate the seasonal
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periodicity in 12 steps. The series after the first-order twelve-step differencing is denoted
as AQI-diff12, and its time series is plotted as shown in Figure 23. The series after trend
differencing and seasonal differencing has no obvious upward or downward trend and
no obvious periodicity, fluctuating around the zero value, which can be initially judged
as a smooth time series after differencing. The autocorrelation coefficients and partial
autocorrelation coefficients of the series after differencing are verified by the graph test
method, as shown in Figures 24 and 25. The autocorrelation coefficient quickly decays to
zero, and the p-value of the pure randomness test of the differenced series is 0.01, which is
smaller than the significance level of 0.05. The original hypothesis is rejected, indicating
that the series is smooth after eliminating the linear trend and seasonal trend. The p-value
of the differenced series after the pure randomness test is 0.019, which is less than the
significance level of 0.05. Therefore, the differenced series is still a non-white noise series,
and the next modeling analysis is conducted for this series.

(1) Model identification and model ranking

Figure 23. Time series of monthly AQI data after first-order twelve-step differencing.

Figure 24. Autocorrelation of monthly AQI data after first-order 12-step differencing.

Based on the above autocorrelation and partial autocorrelation plots after differencing,
the first step is to consider the characteristics of the autocorrelation coefficients and par-
tial autocorrelation coefficients within 12 orders of the series after trend differencing and
seasonal differencing in order to determine the short-term correlation model. In the auto-
correlation and partial autocorrelation plots of the differenced series, the autocorrelation
coefficients and partial autocorrelation coefficients up to order 12 are not truncated, so an
ARMA(1,1) model is attempted to extract the short-term autocorrelation information of the
differenced series.
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Figure 25. Biased autocorrelation of monthly AQI data after first-order 12-step differencing.

The second step considers the autocorrelation characteristics of the season in question
in order to confirm the choice of additive or multiplicative seasonal model. The approach
is to consider the characteristics of autocorrelation coefficients and partial autocorrela-
tion coefficients in autocorrelation plots and partial autocorrelation plots with delayed
12th order, 24th order, etc. with the length of the period as the unit. According to the
autocorrelation and partial autocorrelation plots, the autocorrelation coefficients and partial
autocorrelation coefficients of the delayed 12th and 24th orders fall within the range of
2 times the standard deviation, and the corresponding values of the delayed 24th order are
smaller, which shows that there is no significant seasonal effect in the differenced series,
so we initially consider a simple seasonal model, i.e., an additive seasonal model. At this
point, the seasonal differencing order D = 1, p = 0, and Q = 0.

Combined with the previous first-order twelve-step differencing information, the
additive seasonal model fitting ARIMA (1,(1,12),1) was finally determined, and its model
structure is as follows.

∇1∇1xt =
(1− θ1B)
(1− φ1B)

εt (5)

(2) Parameter estimation of the model

The final fitted model has been determined in the previous step of the analysis, and
the next step is to determine the caliber of this model based on the observed values of the
series, which means that the values of the unknown parameters in the fitted model need to
be estimated. Using R software, the parameters of the fitted additive seasonal model were
estimated according to the maximum likelihood estimation method, and the following
results were obtained, as shown in Table 7.

Table 7. Estimated values of parameters.

Parameter p-Value Standard Deviation

φ̂1 0.2895 0.1163
θ̂1 −1.0000 0.0501

Based on the above results, the caliber of the fitted additive seasonal model can be
seen as

∇1∇1xt =
(1 + B)

(1− 0.2895B)
εt (6)

where B is the delay operator and εt is the white noise sequence, i.e., εt ∼WN(0, σ2).

(3) Model testing



Atmosphere 2022, 13, 512 19 of 22

A white noise test of the residuals was performed on the established additive seasonal
model in order to determine the significance of the model. Next, the Box.test function in the
R software was used to test whether the residual series is a white noise series, and the test
results are shown in Table 8. According to the results of the white noise test of the residuals,
the p-value corresponding to the LB statistic at each order of delay is significantly greater
than the significance level of 0.05; therefore, it can be considered that the residual series of
the fitted additive seasonal model is a white noise series, which means that the established
model is significantly valid.

Table 8. White noise test.

X-Squared df p-Value

2.0741 6 0.9128
18.393 12 0.1043

4.3. Forecast Analysis of the Additive Seasonal Model

Based on the established additive seasonal model, the Beijing air quality index from
December 2021 to February 2022 was selected as the test set to verify whether the model
had a more accurate fit. Using the same short-term correlation criteria as above, the results
are shown in Table 9. As can be seen from the graphs, the differences between the predicted
and true values are small and the error values are within acceptable limits, indicating that
the additive seasonal model is appropriate and valid for extrapolating the future long-term
Beijing AQI, with high forecast accuracy and reasonable and credible results.

Table 9. Model goodness of fit.

Model MAE RMSE MAPE SMAPE

ARIMA
(1,(1,12),1) 15.55 24.87 34.57% 23.89%

The predicted results of Beijing AQI for the next 24 periods are shown in Figure 26. It
is observed that the AQI index still shows seasonal cycles and still has a slightly decreasing
trend in the next two years.

Figure 26. ARIMA model long-term forecast graph.

4.4. Section Subsection

In this section, the long-term forecast of AQI in Beijing is based on the seasonal model
of ARIMA model, which shows an overall decreasing trend of AQI in Beijing from January
2015 to November 2021 with a more obvious seasonal effect. The parameters of the fitted
additive seasonal model are estimated according to the maximum likelihood estimation
method, and the AQI of Beijing from December 2021 to February 2022 is predicted according
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to the additive model, and the results show that the AQI still shows a seasonal cycle and
still has a slightly decreasing trend in the next two years.

5. Summary and Outlook

Based on Beijing’s AQI from January 2019 to November 2021 and the daily average
and monthly data of six major air pollutants, this article uses descriptive statistical analysis,
correlation analysis, and cluster analysis to visualize air quality development trends; Using
time series analysis and data mining algorithms to build models and make short-term
forecasts of Beijing’s air quality, the following conclusions are obtained:

Using statistical methods to analyze the air quality level, AQI and the distribution of
the six types of pollution concentration changes, the daily analysis results show that with
the continuous deepening of air pollution prevention and control work, the air quality in
Beijing continues to improve, AQI has improved significantly, and the level is excellent.
The proportion of days has increased year by year. The monthly analysis results show that
in the past three years, the air pollution level was the most serious in June, which was
mainly related to the serious excess of ozone content. The changes in air quality in Beijing
show obvious seasonal characteristics. The five main pollutants PM2.5, PM10, SO2, CO,
and NO2 have low concentrations in summer and high concentrations in winter; only O3
is the opposite of other pollutants. Because of the high concentration in summer and low
concentration in winter, the persistently high content of ozone is still a thorny issue facing
today, and the air quality varies greatly between the heating period and non-heating period.

The short-term forecast of Beijing air quality index using time series model and neural
network model overcomes the lag of the current air quality monitoring system, and the
AQI index high and low is determined by the co-construction of six air pollutants. The
results show that both ARIMA model and neural network model are significant for the
forecast of air quality index, and the established models are reasonable and effective, and it
is found by comparison, the fitting effect of the neural network is better than that of the
ARIMA model, but both models have their own characteristics. It was also found that
PM2.5, PM10, and O3 have a greater influence on the air quality class, and are the main
factors to determine the specific value of AQI and air quality class. When using the additive
seasonal model for long-term forecast of monthly data, it was found that the Beijing AQI
still shows seasonal cyclicality and still has a slightly decreasing trend in the next two years.
In summary, based on the conclusions of the article, we can propose measures to improve
air quality from the three perspectives of the government, society, and individuals.

The government must increase implementation of environmental protection policies
and investment in environmental protection technology. Environmental protection de-
partments should strengthen environmental management, earnestly implement national
and local laws and regulations, comprehensively use technical means and administrative
measures, and manage air quality through legislation, monitoring, and protection.

The analysis shows that PM2.5, PM10, and O3 have a greater impact on air quality
levels. Therefore, environmental protection management agencies have been established at
all levels from the central to the local level to use monitoring technology tools to publish
monitoring data promptly, inspect and dispose of pollution sources, and control building
dust, Pollution behaviors such as burning coal for heating and burning straw. Increase
investment in the field of environmental protection technology, develop reasonable treat-
ment equipment, reduce waste of resources, and improve sewage treatment technology.
Optimize the industrial structure, lower pollution standards, and increase pollution punish-
ment. Resource control policies such as pollutant discharge fees have a significant impact
on pollution control costs. The development of a washing energy industry with high energy
utilization and low pollution, and making good use of renewable resources such as solar
and wind energy. Air pollution has fluidity and regional characteristics, and its changes
are synchronized. Pollution between regions affects each other. Pollution prevention and
control is not just an administrative region’s problem. It is necessary to establish a regional
cooperation system, regional joint prevention and control, to solve cross-regional air pol-
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lution problems, for example, the Beijing-Tianjin-Hebei simultaneous implementation of
the “Regulations on the Prevention and Control of Emission Pollution from Motor Vehicles
and Non-road Mobile Machinery”, and so on. Improve urban green coverage, borrow the
characteristics of plants to absorb dust and purify the air, provide zoning control strategies
for the in-depth fight against pollution, and continue to promote precise, scientific, and
legal pollution control.

The society must vigorously promote environmental protection knowledge, raise
awareness of protecting the atmospheric environment, and advocate low-carbon life. Pre-
vention and control work increasingly requires scientific and refined management. The
city should adhere to project emission reductions and management emission reductions
according to changes in air quality in months and seasons, and promote the formation of a
spatial pattern, industrial structure and lifestyle that conserves resources and protects the
environment. The aims are to deepen the “one microgram” action, focus on the coordinated
governance of PM2.5, PM10 and O3, and achieve green transformation of the industrial
structure, green and low-carbon energy structure, green optimization of vehicle structure,
and green and clean urban appearance.

Another aim is to establish an action pattern led by the government and public par-
ticipation. With the expansion of the scale of cities and the improvement of the level of
economic activities, the number of motor vehicles has increased, and cars emit a large
amount of NO2 and inhalable particulate matter, which will seriously damage the envi-
ronment and affect people’s health. Therefore, it is necessary to consciously eliminate
old motor vehicles and improve awareness of the purification and treatment of polluting
vehicle exhausts, supporting the development and use of new energy vehicles. The general
public should actively participate in environmental protection activities and environmental
protection supervision, consciously practice a simple and moderate, green and low-carbon
lifestyle, and offer advice and suggestions for a more beautiful Beijing.
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