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Abstract: Precipitation time series exhibit complex fluctuations and statistical changes. Existing
research stops short of a simple and feasible model for precipitation forecasting. In this article, the
authors investigate and forecast precipitation variations in South Korea from 1973 to 2021 using
cyclostationary empirical orthogonal function (CSEOF) and regression methods. First, empirical
orthogonal function (EOF) and CSEOF analyses are used to examine the periodic changes in the
precipitation data. Then, the autoregressive integrated moving average (ARIMA) method is applied
to the principal component (PC) time series derived from the EOF and CSEOF precipitation analyses.
The fifteen leading EOF and CSEOF modes and their corresponding PC time series clearly reflect the
spatial distribution and temporal evolution characteristics of the precipitation data. Based on the PC
forecasts of the EOF and CSEOF models, the EOF–ARIMA composite model and CSEOF–ARIMA
composite model are used to obtain quantitative precipitation forecasts. The comparison results
show that both composite models have good performance and similar accuracy. However, the
performance of the CSEOF–ARIMA model is better than that of the EOF–ARIMA model under
various measurements. Therefore, the CSEOF–ARIMA composite forecast model can be considered
an efficient and feasible technology representing an analytical approach for precipitation forecasting
in South Korea.

Keywords: precipitation forecasting; Empirical Orthogonal Function (EOF); Cyclostationary Empirical
Orthogonal Function (CSEOF); seasonal cycle; autoregressive integrated moving average (ARIMA);
climate change

1. Introduction

Global climate and environmental changes have become major worldwide issues in
recent years. In particular, interactions between the atmosphere and slowly changing oceans
will have profound and long-term effects on humans. Because agricultural production
and hydrological management are heavily influenced by the climate, meteorologists are
interested in the effects of climate and environmental changes, such as variations in periodic
meteorological phenomena [1].

Precipitation is an important variable in climate change research and significant in
hydrological processes [2,3]. It is the main component of the water cycle and has a great
influence on surrounding environments and hydrological systems. Changes in the timing
and amount of precipitation in a given area can lead to serious flood hazards or agricultural
failures due to floods and droughts. Because human-induced climate change accelerates
the hydrological cycle of the ecosystem, forecasting precipitation on the decadal scale is be-
coming increasingly important for long-term water resource management [4,5]. Advanced
precipitation forecasting technologies and timely precipitation diagnoses can help improve
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the operation of water storage facilities and prevent potential flood disasters. The latest
Intergovernmental Panel on Climate Change report indicated that there is growing concern
in the scientific community regarding the significant increases observed in the amount and
intensity of precipitation and regarding the corresponding variations [6].

Much research has been conducted regarding forecasting precipitation, with many
studies highlighting that the trends observed in the annual and monthly precipitation
of different regions depend on the region of interest and the time period examined [7–9].
Several studies have focused on seasonal predictions of precipitation at the regional level
using different technologies, such as regional climate models [10], in conjunction with
other climate variables [11,12]. Some studies have improved the approaches used to
forecast climate index values, such as projections with teleconnection indices [13] and the
development of other ensemble forecasting models [14,15]. In addition, many studies have
closely investigated the various trends and spatiotemporal characteristics of precipitation
in South Korea [16–19].

Precipitation is measured by various observation systems on the ground and in space.
Therefore, understanding the nature of measurement data is the basis for understanding
uncertainty and reliability [20]. Weather radar provides the spatial distribution of precipi-
tation estimation, but due to various natural factors, it will also be limited in estimating
accurate precipitation [21]. The rain gauge data is considered to be real ground data
because of its high quality, resolution and availability [22]. From this point of view, the
research of rain gauge data and precipitation data set has many advantages, so it has a
wide application prospect.

In general, traditional statistical methods are typically used for long-range forecasting,
with the incorporation of dynamical methods contributing improvements. Some successful
approaches have involved performing climate forecasting using multiple regression and
correlation analysis methods. The Dynamical Climate Models have been used in SST
Forecasts from 1997 to 1998 with precisely enough verification [23]. Seasonal prediction of
coastal ocean conditions in the Atlantic have been evaluated by a higher skill Linear Inverse
Model (LIM) [24]. The evolution and dynamic predictability of Madden–Julian oscillation
(MJO) have been exploited and estimated in achieving the likely forecast potential in their
own research [25,26].

Many climatic variables, such as precipitation, surface temperature, and solar flux,
are known to exhibit periodic (annual, monthly, daily, etc.) variations in their statistical
features. Analyses of such datasets performed using stationary approaches often yield
meaningless statistical characteristics, representing the weak error correction performance
of these methods and their inaccuracy in obtaining long-term predictions. Therefore, it is
both appropriate and advantageous to adopt a cyclostationary methodology for statistical
analyses of climatic phenomena that display strong cyclical trends.

Precipitation has typical cyclical variations with statistical fluctuations and seasonal
tendencies. Particularly when a precipitation dataset covers several weather stations or
spans different seasons, stationary methods can be used to obtain only the most obvious
statistical trends. In climate studies, empirical orthogonal function (EOF) analyses are often
used to study possible spatial patterns of variability and how these patterns change with
time. Some studies have used EOF models to analyze precipitation data. Cahalan analyzed
monthly precipitation data over the US and Canada based on EOFs and their variances [27].
Singh compared major rainfall patterns using the main modes of OLR data [28]. Svensson
showed that most of the variance observed in rainfall in four periods could be explained by
an elongated spatial rainfall pattern [29]. As such, EOF analyses are sometimes classified
as multivariate statistical techniques. However, EOF analyses are not based on physical
principles. Thus, to adequately analyze a comprehensive dataset, we use a cyclostationary
empirical orthogonal function (CSEOF) analysis technique; this approach is useful for
extracting evolving spatial patterns.

The existing scholarship in this field, however, tends to use complex system model
or more input data and stays short of generalizing a simple and easy-to-use method for
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precipitation forecasting. This study primarily focuses on the analysis of the most dominant
component of the seasonal cycle of precipitation in South Korea. Empirical orthogonal
function (EOF) and CSEOF analyses are conducted to extract individual modes in the
observed precipitation data to obtain the temporal and spatial evolution of individual
synoptic fields. We use EOF and CSEOF analyses as the primary techniques to analyze
the temporal evolution of the variability in precipitation and demonstrate the physical
mechanism associated with each mode of precipitation variability. The autoregressive
integrated moving average (ARIMA) model is used to examine and forecast the evolution
of the temporal modes of precipitation variability derived from the EOF and CSEOF.
Precipitation forecasts are generated from the regressed temporal and spatial patterns. The
present study provides a detailed explanation of the observed changes in precipitation
variables and explores a feasible statistical methodology for forecasting precipitation in a
monsoon climate.

The data used in this study are described in Section 2. The EOF and CSEOF analysis
methods used to analyze precipitation variability and the ARIMA model are also explained
in Section 2. The cyclical seasonal characteristics of precipitation variability are presented in
Section 3. The forecasting performance and related mechanisms are discussed in Section 4.
Conclusions are presented in Section 5.

2. Data and Methodology
2.1. Data

The primary data used in the present study were precipitation measurements taken
over South Korea by the Korea Meteorological Administration (KMA). A realtime quality
control system was developed for meteorological data measured by integrated meteorolog-
ical sensors based on a comparison of quality control procedures developed for meteorolog-
ical data by the World Meteorological Organization and the KMA. The 56 weather stations
from which the data analyzed in this study were collected are generally well distributed
across the mainland, as shown in Figure 1, while data from Jejudo and Ulleungdo as well
as some missing data were excluded from the analysis. The dataset represents the longest
and most consistent precipitation observations available in South Korea, spanning 49 years
(1973–2021). In this study, the data from the first 44 years (1973–2016) of the time series are
used to generate the forecasting model, while the last five years (2017–2021) of precipitation
records are used to validate the model.

2.2. Methodology

The statistical techniques used in this study are EOFs and CSEOFs for decomposing
the data and ARIMA models for forecasting.

2.2.1. Empirical Orthogonal Function

Empirical orthogonal function analyses [30] are among the most widely applied tech-
niques in oceanography and atmospheric science research. In this method, a spatiotemporal
dataset is decomposed into orthogonal basis functions determined by the data. The method
is similar to principal component analysis; however, EOFs can detect both temporal and
spatial patterns.

In EOF analyses, spatiotemporal data X(r,t) are represented in terms of loading vectors
(L) and their principal component (PC) time series, as follows:

X(r, t) = ∑
n

PCn(t)Ln(r) (1)

where Ln(r) represents a specific spatial pattern and PCn(t) represents the temporal evolu-
tion of Ln(r).
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Figure 1. Location of 56 precipitation stations in South Korea.

This equation signifies a decomposition of a given dataset into a number of spatial
and temporal patterns. The spatial patterns are orthogonal to each other and are ordered
by magnitude; the temporal patterns oscillate over time. The loading vectors represent the
independent patterns of variability in the dataset and are often interpreted as a physical
model of the system from which the data were derived [31].

2.2.2. Cyclostationary Empirical Orthogonal Function

A CSEOF is the basic function in a cyclostationary process and is a cyclostationary
analog of an EOF obtained using a stationary approach [32]. The CSEOF analysis method
is described in detail by Kim and North [33]. In CSEOF analyses, spatiotemporal data are
represented as follows:

X(r, t) =
d−1

∑
k=0

ck(r, t)e2πikt/d (2)

where d is the nested period representing the inherent periodicity in the data.
By calculating the covariance function and the Bloch function, the space–time CSEOFs

can be obtained using the following equation:

X(r, t) = ∑
n

PCn(t)CLn(r, t) (3)

where CLn(r,t) is a cyclostationary loading vector (CSLV) and PCn(t) is the corresponding
PC time series.

In contrast to EOF analyses, the CSLVs are time-dependent. The temporal evolution of
a spatial pattern also depends on periodic data with period d, calculated as follows:

CLn(r, t) = CLn(r, t + d) (4)
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Thus, CSLVs are periodic, time-dependent eigenfunctions of the covariance statistics.
An essential component in CSEOF analyses is determining the nested period. Selecting

a proper nested period requires an adequate understanding of the physical and statistical
characteristics of the dataset being analyzed [34].

The CSEOF technique is conceptually similar to the EOF technique in that both extract
sequences of spatial patterns as eigenfunctions based on the spatiotemporal structure
of the covariance function. However, the major difference between EOF and CSEOF
is that in CSEOF analyses, each CSLV represents a set of spatial patterns. The critical
motivation for the temporal dependence of CSLVs is that the spatial patterns of many
known phenomena in climate science and geophysics evolve over time with recognizable
periods while exhibiting slow fluctuations over longer time scales. A comparison of studies
that used EOF and CSEOF techniques can be found in Kim and Wu [35]. Recent studies
have demonstrated the efficacy of CSEOFs in extracting robust modes representing climate
variabilities [36,37].

2.2.3. Autoregressive Integrated Moving Average (ARIMA)

An autoregressive integrated moving average (ARIMA) was introduced by Box and
Jenkins [38]. It is a statistical analysis model that uses time series data to either better
understand the data set or to forecast future tendency. This model is usually applied to
estimate related values in a time series; it is autoregressive if it predicts future values based
on past values

An ARIMA(p,d,q) model can be understood by outlining each of its components
as follows. Autoregression (AR): refers to a model that shows a changing variable that
regresses on its own lagged, or prior, values. Integrated (I): represents the differencing of
raw observations to allow for the time series to become stationary. Moving average (MA):
incorporates the dependency between an observation and a residual error from a moving
average model applied to lagged observations. Thus, the model can be written as follows:(

1 −
p

∑
i=1

αiLi

)
(1 − L)dXt =

(
1 +

q

∑
j=1

β jLj

)
εt (5)

where Xt is the time series value, p is order of the autoregressive part, d degree of first
differencing involved, q is order of the moving average part, α and β are the parameters of
the model, ε is white noise and L is Lag operator.

The key difficulty in applying the ARIMA model is identifying the orders of the
model. Numerous available tests can be used to determine the orders of an ARIMA model.
Two common proposed methods include the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) [39,40].

The scheme of the forecasting approaches is shown in Figure 2.
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Figure 2. Scheme of the analysis and forecasting.

3. Results and Discussion
3.1. Seasonal Cycle of Precipitation

The spatial distribution of mean precipitation in South Korea from 1973 to 2021 is
shown in Figure 3, where the distribution represents the precipitation interpolation at each
weather station. The means of precipitation in Figure 3 indicate the primary variabilities in
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precipitation. As expected, the mean is more in the north and south and less in the middle
because of seasonal fluctuations in precipitation in the summer.
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Figure 3. Spatial distribution of mean monthly precipitation data totals from 1973–2021 in
South Korea.

The annual precipitation is approximately 11,250 mm (1973–2021 average), with more
than 60% of the annual rainfall occurring between June and August. Boxplots of the
monthly precipitation from 1973 to 2021 are plotted in Figure 4. The annual periodicity
involves obvious precipitation increases in the summer, with maximums occurring in July
and August corresponding to the summer monsoon in Asia; precipitation is lower at other
times of the year.
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Figure 4. Boxplots of monthly precipitation data totals from 1973 to 2021 in South Korea. The upper
and lower boundaries of each box indicate the upper and lower quartiles of the distribution; the
median values are shown by the cross and line within the box, and the extreme upper data values are
shown by dots above and below the box.
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The precipitation data are decomposed into individual modes using EOF and CSEOF
analyses. The main motivation for using these techniques is to investigate the mechanisms
associated with changes in the variability of precipitation. A scree plot of the accumulated
percentages obtained in the EOF and CSEOF analyses is shown in Figure 5 to show how
they cumulatively rise. We present the two leading EOF and CSEOF modes to illustrate the
temporal and spatial variations in precipitation.
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Figure 5. The scree plot of the accumulated percentage of EOF and CSEOF analysis, with 13 leading
modes from the EOF, 15 modes from the CSEOF can account for more than 95% of total variance.

Therefore, Figure 6 shows the first and second EOF modes, which explain 77.57%
and 7.89% of the total variance, respectively. The PCs and loading patterns correspond-
ing to the two leading modes are described in Figure 6a,b by normalized homogeneous
correlation maps. The loading patterns in Figure 6c,d come from interpolation based on
dispersion points.

The PC time series of the first and second modes of the EOF analysis (Figure 6a,b) both
represent special cycles with slight fluctuations over longer time scales than those seen
in the CSEOF modes. The amplitude of the first PC (Figure 6a) fluctuates over an annual
cycle, similar to the original precipitation data. The loading patterns of the first EOF mode
(Figure 6c) exhibit obvious symmetry between the north and south regions, and those of
the second mode (Figure 6d) exhibit an increase from north to south.

The advantage of the CSEOF analysis is demonstrated by the PC time series. The
nested period d is set to 12 months in the CSEOF analysis because the seasonal cycle is to
be extracted. The first CSEOF mode of precipitation explains 73.86% of the total variance
(Figure 7). The PC time series of the first mode (Figure 7a) and the cyclostationary loading
patterns (Figure 7b) are shown for 12 months, from January to December. The loading
patterns are interpolated based on the dispersion points. This mode denotes the seasonal
cycle. The most pronounced feature of the CSLVs is the slowly varying precipitation
throughout the year: the vectors indicate low rainfall from January to May, plenty of
rainfall from June to September, and decreasing rainfall from October to December. The
corresponding PC time series exhibits interannual and decadal variations in the seasonal
cycle, as well as an increasing trend that is significant but not conspicuous, with stronger
natural variability.
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Figure 6. First and second EOF modes of precipitation: (a) principal component time series of 1st
EOF mode, (b) principal component time series of 2nd EOF mode, (c) loading vectors of 1st EOF
mode, (d) loading vectors of 2nd EOF mode.



Atmosphere 2022, 13, 500 9 of 17

Atmosphere 2022, 13, x FOR PEER REVIEW 9 of 17 
 

 

fall from June to September, and decreasing rainfall from October to December. The cor-

responding PC time series exhibits interannual and decadal variations in the seasonal cy-

cle, as well as an increasing trend that is significant but not conspicuous, with stronger 

natural variability. 

 

Figure 7. First CSEOF modes of precipitation: (a) principal component time series, (b) cyclostation-

ary loading vectors (CSLV). 

The second CSEOF mode shown in Figure 8 explains 5.05% of the total variance after 

omitting the seasonal cycle (the first mode) and adjusting for the seasonal cycle. The pre-

cipitation diminishes in April and then increases until July, decreases significantly in Au-

gust and then increases until December. The PC time series of the second mode shows a 

positive phase shift in approximately 2006. Compared with the years before 2006, more 

 

!

!

!
!

!
!

!
!

!

!

!

!

!

!

!
!

!
!

!

! !

!!
!

!

!

!

!

!

!

!

!

!

!

! !

!

!
!!

!

!
!

!

!

!
!

!

!

!

!
!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

! !

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

(a) 

(b) 

Jan Feb Mar Apr 

May Jun Jul Aug 

Sep Oct Nov Dec 

 
−1.00~−0.75

−0.75~−0.50

−0.50~−0.25

−0.25~0.00

 0.00~0.50

 0.50~1.00

 1.00~1.50

 1.50~2.00

 2.00~2.50

 2.50~3.50

Figure 7. First CSEOF modes of precipitation: (a) principal component time series, (b) cyclostationary
loading vectors (CSLV).

The second CSEOF mode shown in Figure 8 explains 5.05% of the total variance after
omitting the seasonal cycle (the first mode) and adjusting for the seasonal cycle. The
precipitation diminishes in April and then increases until July, decreases significantly in
August and then increases until December. The PC time series of the second mode shows a
positive phase shift in approximately 2006. Compared with the years before 2006, more
recent precipitation tends to be more extensive. Thus, the second mode indicates slightly
less precipitation in August and relatively large increases in precipitation in July.
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Figure 8. Second CSEOF modes of precipitation: (a) principal component time series, (b) cyclosta-
tionary loading vectors (CSLV).

In the EOF and CSEOF analyses, the thirteen leading EOF modes and fifteen leading
CSEOF modes account for 95.15% and 95.22% of the total variance, respectively; these
modes are statistically significant and distinct from the other modes; thus, they are selected
for forecasting according to the rule of thumb [41]. The 13 leading temporal modes from the
EOF and 15 modes form the CSEOF can account above 95% of total variance are interpreted
as the primary conditions for the formation of precipitation, with the remaining modes
considered as noise of data.
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3.2. Forecasting of Precipitation

Once the precipitation data are decomposed into EOF and CSEOF modes, an ARIMA
model is applied in the EOF and CSEOF space to derive precipitation variations in the PC
time series. This composition of analysis and regression method results in two combined fore-
casting models: a combined EOF–ARIMA model and a combined CSEOF–ARIMA model.

Forecasts of the temporal patterns and timescales of the PCs can be estimated using
these combined models. Figure 9 shows the forecasts for the four leading PCs of the
precipitation data. The forecasts for the first PC obtained using the EOF–ARIMA model
adequately capture the annual fluctuations, and the forecasts for the other PCs also exhibit
cyclical fluctuations (Figure 9a) with smaller amplitudes. The forecasts obtained using
the CSEOF–ARIMA model continue the interannual and decadal trends observed in the
CSEOF analysis (Figure 9b). The amplitudes of the fluctuations are continuations of the
past PCs; this is the goal of the CSEOF–ARIMA model.
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forecasts of EOF–ARIMA, (b) PC forecasts of CSEOF–ARIMA.

Based on the PC forecasts, precipitation forecasts can be easily extrapolated using
the loading vectors (spatial patterns) of the EOF and CSEOF. Quantitative precipitation
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forecasts are calculated for 56 weather stations over five years using the EOF–ARIMA and
CSEOF–ARIMA models, and the results are then checked against the observed precipitation
data. Figure 10 shows scatter plots of the observations and the forecasts resulting from the
two models. The points corresponding to forecasts from EOF–ARIMA and observation
partly dotted around above and below the y = x line divided by observation as 400 mm
(Figure 10a). It means that the forecasts are slightly overestimated when less than 400 mm
but underestimated when greater than 400 mm. In contrast, the points corresponding to
forecasts from CSEOF–ARIMA and observation clustered around the y = x line (Figure 10b).
It looks more evenly distributed and to have higher dispersion.
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Figure 10. Scatter plots on observation and forecasts of EOF–ARIMA and CSEOF–ARIMA: (a) EOF–
ARIMA forecasts, (b) CSEOF–ARIMA forecasts.

The mean monthly values of the precipitation forecasts obtained from the two com-
bined models are compared with the observations, as shown in Figure 11. Because of
the effect of the Asian monsoon, rainfall is uneven, with most rainfall occurring in the
summer. The EOF–ARIMA forecasts are not particularly good, especially for the summer
months. However, the CSEOF–ARIMA forecasts not only capture the seasonal variations in
precipitation but also give confident quantitative predictions of the precipitation amounts.
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Figure 11. Temporal mean of observation with EOF–ARIMA and CSEOF–ARIMA forecasts.

The mean deviations of the forecasts obtained for the summer monsoon season (June,
July, August and September) at each weather station are shown in Figure 12. The EOF–
ARIMA model gives higher forecasts in June and September but relatively low forecasts
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in July and August (Figure 12a). In contrast, the mean deviation of the forecasts obtained
from the CSEOF–ARIMA model are much smaller, with small overestimations in June and
July and small underestimations in August and September (Figure 12b).
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forecasts mean deviation distribution.

When the EOF method is used to analyze precipitation time series data, it cannot
provide temporal variation responses in the spatial domain when decomposing the time
components; thus, some errors result in the distribution analysis. The use of the CSEOF
method can make up for this deficiency.

In the spatial distribution of the mean deviation (Figure 12a,b), the errors spread over
in June are higher than those in July of the study area. We considered that the reason for
this result is that precipitation increases obviously and the distribution changes greatly in
July, leading to increased errors and causing the June and July deviation characteristics in
both methods.

Several statistical measures are used to evaluate the performance of the forecasting
methods: the mean absolute error (MAE), the root mean squared error (RMSE) and the
coefficient of determination (R2). We use these standards to measure the error between
the observed value and simulated value of our model so as to measure the applicability
and practicability of our model as a whole. Table 1 provides a comparison of these mea-
sures applied for the two combined models. The results show that both models achieve
good performance and that their accuracies are similar. However, the performance of the
CSEOF–ARIMA model is better than that of the EOF–ARIMA model under every measure.
The overall results indicate that the CSEOF–ARIMA model is an effective approach for
precipitation forecasting.
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Table 1. Quantitative statistical verification measures of forecasts.

Index MAE (mm) RMSE (mm) R2 CC

EOF–ARIMA 57.86 74.44 0.79 0.68
CSEOF–ARIMA 49.41 67.71 0.87 0.76

4. Discussion

Many scholars have adopted a wide range of methods for studying the precipitation
prediction work in South Korea, such as using the Weather Research and Forecasting (WRF)
and Very-Short-Range Forecast of Precipitation (VSRF) system models for precipitation fore-
casting in individual basins of South Korea [42–44]. In addition, some academics focused on
monthly precipitation forecasting over south Korea by combining the superensemble pro-
cedure with eigenvector analysis and correlation analysis [45,46]. Based on three different
Bayesian Regression Models, other researchers investigated the precipitation forecasting of
summer season in a region around Korea [47].

In order to better describe the performance of our model, we compare our model to
the published research about precipitation forecasting in Korea. The results are shown in
Table 2.

Table 2. Comparison of several precipitation forecasting models in Korea.

Model or System Study Area Precipitation Source
Type Predictor Time Scale Time Period

Performance Evaluation

RMSE CC R2

Bayesian Regression
Models [47] Over South Korea Stations and Grids GDAPS Monthly

(Average JJA) 1979–2007 1.09 - -

Meteorological
Model of WRF [42]

Imjin River Basin
of Korea peninsula Stations and Grids - 6 h 2007–2011 59.67–212.80 - -

WRF Model [43] Seoul & suburban
in South Korea Grids SST Data 3 h 26–29 July 2011 2.54–13.18 0.2–0.59 -

VSRF model [44]
Kyoungan River

basin of
South Korea

Stations and Radar
Reflectivity - Hourly 5.77–7.67 - 0.7–0.8

SVDA and CCA [45] Over South Korea Stations SLP Data Monthly 1954–2003 - 0.11–0.87 -

Cyclostationary EOF
and CCA [46] Over South Korea Stations SST Monthly 1973–2013 54.17–63.85 0.69–0.73 0.55–0.67

Cyclostationary EOF
and ARIMA Over South Korea Stations Precipitation Monthly 1973–2021 67.71–74.44 0.79–0.87 0.68–0.76

Table 2 shows the comparison between our model and several published characteristic
models on their study area input, datasets, time scale period and performance evaluation.

From the table, we can see that the study areas of these models are all or part of
South Korea, which provides comparability in this paper. In terms of data sources, the
precipitation data used in each model were basically station, satellite and radar observation
data. Data selection mainly depends on the characteristics and requirements of each model
The SVDA and CSEOF models all used station data, and others used satellite and radar
data. In the comparison of predictors, all models used some ocean variables as predictors
except ours; our model used its own station data as a predictor. Therefore, our model is
relatively simple in the composition architecture. From the analysis of time scale, the WRF
model system could forecast precipitation on multiple hour scale, which is the advantage
of these models. While other statistical models (include ours) could only do precipitation
forecasting on monthly scale. In terms of time period, some models are only aimed at
the forecast of concentrated rainfall in summer, while statistical models are aimed at the
precipitation forecast of long-time series throughout the year. From the analysis of model
performance, although there are differences in time scale, these models had obtained
accurate and reliable results.

We can see that our model only uses its own data as input data and does not have as
much data as other models. This is the characteristic of our model that is different from
other models.
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In our work, we provide a relatively simple method based on statistics for precipitation
forecasting in South Korea. The required data are only the rainfall observation data of
each station without complex data requirements. In terms of accuracy, it may not be more
accurate than other complicated methods, but it has strong applicability and can be applied
to station rainfall prediction in various or specific areas.

5. Conclusions

This study extends research and provides a simple and feasible method for precip-
itation forecasting that only relies on stations’ precipitation data. We investigated the
spatiotemporal variability in precipitation data in South Korea using EOF and CSEOF
analyses and proposed an effective methodology for precipitation forecasting. Of the total
variance in the spatial distribution and temporal evolution of the studied precipitation
data, the 13 leading EOF modes accounted for 95.15%, and the 15 leading CSEOF modes
accounted for 95.22%. The EOF modes represented cycles with longer time scales than the
CSEOF modes; the CSEOF modes represented interannual and decadal variations in the
seasonal cycle with stronger natural variabilities than those seen in the EOF modes.

We estimated precipitation forecasts using a regression method. The PC forecasts
obtained from the EOF–ARIMA model exhibited clear cyclical fluctuations, and those
obtained from the CSEOF–ARIMA model represented extensions of the interannual and
decadal variations observed in the CSEOF analysis. Based on the PC forecasts, quantitative
precipitation forecasts were calculated for 56 stations over five years using the EOF–ARIMA
and CSEOF–ARIMA models; these forecasts were then checked against the observed
precipitation data.

In this article, we combined the EOF and CSEOF models with the ARIMA model,
respectively, for precipitation forecasting. Based on the comparison between the simulated
values of the two models and the observed values, through the statistical measured values
(MAE, RMSE, R2), we preliminarily draw this conclusion: For these two models, the
CSEOF–ARIMA combined model performed better than the EOF–ARIMA combined model.
Because in the CSEOF analysis part, the precipitation data are decomposed into monthly
spatial distribution. That means the CSEOF model can fully take into account the seasonal
variation characteristics of rainfall data within the year, which shows the advantages over
the EOF model.

The finding suggests that the combined CSEOF–ARIMA forecasting model gave the
better approximation performance and that it captured the variational trends, temporal
evolution and recurrent seasonal cycles in the precipitation data. These results indicate that
the use of the CSEOF–ARIMA model is an accurate and efficient approach for precipitation
forecasting in Korea.
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