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Abstract: High spatial resolution (1 km or finer) precipitation data fields are crucial for understanding
the Earth’s water and energy cycles at the regional scale for applications. The spatial resolution of the
Global Precipitation Measurement (GPM) mission (IMERG) satellite precipitation products is 0.1◦

(latitude) × 0.1◦ (longitude), which is too coarse for regional-scale analysis. This study combined
the Geographically Weighted Regression (GWR) and the Multifractal Random Cascade (MFRC)
model to downscale monthly GPM/IMERG precipitation products from 0.1◦ × 0.1◦ (approximately
11 km × 11 km) to 1 km in Hubei Province, China. This work’s results indicate the following: (1) The
original GPM product can accurately express the precipitation in the study area, which highly
correlates with the site data from 2015 to 2017 (R2 = 0.79) and overall presents the phenomenon
of overestimation. (2) The GWR model maintains the precipitation field’s overall accuracy and
smoothness, with even improvements in accuracy for specific months. In contrast, the MFRC model
causes a slight decrease in the overall accuracy of the precipitation field but performs better in
reducing the bias. (3) The GWR-MF combined with the GWR and MFRC model improves the
observation accuracy of the downscaling results and reduces the bias value by introducing the MFRC
to correct the deviation of GWR. The conclusion and analysis of this paper can provide a meaningful
experience for 1 km high-resolution data to support related applications.

Keywords: GPM/IMERG; precipitation spatial downscaling; geographically weighted regression;
multifractal theory

1. Introduction

As a fundamental factor in the water and energy cycle, precipitation data with high-
resolution and accuracy play an important role in hydrological, meteorological, and eco-
logical studies [1,2]. Traditionally, precipitation data are obtained from rain gauges or
ground weather radars. However, the interpolation of rain gauges cannot always attain the
necessary accuracy due to the sparse distribution of stations, especially in mountainous and
remote areas, and the precipitation detected by ground-based radar also faces challenges in
practical applications because of its limited range and high uncertainties [1,3–6]. With the
development of modern remote sensing technology, gridded satellite precipitation datasets
have provided more reliable estimations of precipitation at the global scale since the 1980s,
such as the Climate Prediction Center (CPC), the MORPHing technique (CMORPH) [5], the
Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) [6], the Tropical
Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) [7], and
the Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement (GPM)
mission (IMERG) [8]. As the successor of TRMM/TMPA, the more advanced GPM/IMERG
products have 0.1◦ × 0.1◦ and 0.5 h resolutions and spatial coverage between 60◦ N and
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60◦ S, so the TRMM/TMPA data will no longer be produced and released after the TMPA-
to-IMERG transition is completed in mid-2019 [9]. Nevertheless, the spatial resolution
of GPM/IMERG is still too coarse for relevant research and applications at the regional
scale; and it is essential to downscale the GPM/IMERG precipitation products to a finer
resolution (1 km × 1 km or 0.01◦ × 0.01◦ generally) and while preserving their accuracy.

The spatial downscaling of satellite-based precipitation mostly employs statistical
methods instead of dynamic models. The statistical downscaling methods can be grouped
into three categories, namely transfer function models, weather-pattern-based approaches,
and weather generators [10–14]. The geographically weighted regression (GWR) model
is a transfer function downscaling method. The MLR model can establish the global
linear regression equation between precipitation and other environmental factors such
as vegetation and terrain, at coarse/low resolution, and then complete the prediction by
employing the coefficients at fine/high resolution [15–17].

However, global regression analysis may miss local details that can be significant if the
relationship is spatially nonstationary [18], and Fotheringham et al. [19] proposed a local
regression model called the GWR to handle the problem. The GWR model allows the linear
regression parameters to vary in space and is more reasonable for spatial downscaling
of precipitation estimates [20–23]. Chen et al. [24] successfully built a GWR downscaling
procedure for the monthly TRMM 3B43 products in Gansu Province, China. Xu et al. [25]
and Zhang et al. [26] also proved that GWR-based satellite precipitation downscaling
algorithms performed better than MLR-based algorithms over various regions.

The GWR model is a transfer functions downscaling method. The commonly used
environmental variables in regression models include elevation, slope, aspect, NDVI, land-
surface temperature (LST), and geolocation (longitude and latitude) [6,23,27]. Although
the vegetation index has been widely selected as the key independent variable in many
downscaling studies, researchers also find that the response of vegetation to precipitation
normally lags by 2–3 months that the lag effect behaves differently in various kind study
areas [28]. Additionally, because vegetation growth is suppressed and promoted in some
land covers types, such as water bodies, urban areas, and farmlands [29], vegetation data
of these land covers must be excluded and masked when the vegetation index is adopted
in research. Considering the inconvenience of the vegetation index and the whole study
arrangement, DEM, LST, and geolocation were finally chosen as explanatory factors to
achieve spatial downscaling in this paper.

Benoit B. Mandelbrot coined the term “fractal” in 1975, and fractal theory developed
quickly in the following decades [30–33]. The fractal/multifractal phenomenon exists
wildly in the natural world, such as the well-known example of the coastline of Britain, for
which one can obtain diverse measurement results at different scales [34]. The evidence
concerning the multiple scaling or multifractal behavior of precipitation fields has been
well documented in the scientific literature, and the self-similarity-based multiplicative
random cascade model was introduced into the spatial downscaling research of satellite
precipitation, which is a type of weather-generator method [35–37]. For example, Posadas
et al. [38] developed a reliable spatial downscaling model for TRMM 3B42 datasets by
applying the multifractal technique over the Southern Peruvian Andes. Furthermore, Xu
et al. [39] combined multifractal analysis and an artificial neural network (ANN) model to
downscale the TRMM 3B43 precipitation in Southwest China.

The GWR method achieves the spatial downscaling goal by fitting and utilizing the
regression coefficients, whose effects highly depend on the explanatory power of selected
environmental factors, and the multifractal analysis method can complete the task of
downscaling using the self-similarity and scale invariance of the precipitation field without
any other information. Moreover, one downscaling model cannot always behave perfectly
for various precipitation-estimate products in diverse geographical conditions, and the
complexity of different models also varies greatly.
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Improving the common downscaling models to improve the downscaling accuracy is
also the focus of scholars in China and internationally. With the continuous updating of
downscaling results, some scholars have proposed new interpolation algorithms.

The evaluation of a hybrid interpolation algorithm based on the GWR model is
constantly updated. Li et al. estimated the annual precipitation of the Lancang River Basin
(LRB) from 2001 to 2015 based on the GWRK model [40]. Residual correction is a necessary
step of the hybrid downscaling method. Zhang et al. [28] presented a regression model
with a residual correction method. In the experiment, five interpolation methods (IDW,
spline regularization, spline tension, ordinary Kriging, and simple Kriging) were applied
to the residuals, and the best interpolation method was selected through cross-validation.

The purpose of this study is to evaluate the performance of two classic spatial down-
scaling methods (transfer function models and weather generators) and a hybrid down-
scaling method for predicting monthly fine-resolution precipitation fields based on the
latest GPM/IMERG products and to offer input-data support for relevant applications and
experiences for other similar studies. We chose Hubei Province, China, as a study area, and
the study period comprised 36 months from January 2015 to December 2017.

2. Materials and Methods
2.1. Methodology
2.1.1. Geographically Weighted Regression (GWR) Model

The GWR model is an extension of the ordinary linear regression model obtained by
embedding the location information as a regression parameter, and the model coefficients
vary in geographical space for exploring spatial heterogeneity [19,24]. The local GWR [41]
equation can be expressed as follows:

Rn = ϕ0(xn, yn) +
K

∑
j=1

ϕk(xn, yn)Pnk+εn, n = 1, 2, . . . , N (1)

where N denotes the total number of cells, K denotes the number of regression parameters,
Rn / Pnk is the precipitation and the k-th effect factor of cell n, ϕ0 and ϕk represent the
regression coefficients, and εn is the residual error.

To obtain the integral high-resolution precipitation of the whole of Hubei province, the
data range involved in the regression must be larger than that of the study area; therefore,
N equals 4890 in this paper. After the GWR model of the study area is constructed with
the precipitation and DEM, LST, and longitude and latitude (K equals 4) at the 10 km scale,
we use the 4 coefficients to achieve the prediction by the 1 km DEM, LST, and geological
information (longitude and latitude).

The Koenker (BP) statistic can test heteroscedasticity or non-stationarity, and it is
strongly recommended to apply a GWR analysis if the non-stationarity is statistically
significant [42,43]. The Jarque–Bera statistic for assessing model bias indicates whether the
residuals are normally distributed [44–46].

Because the unknown coefficients are much more than equations in the GWR model,
ϕ̂(xn, yn) is estimated by the weighted least squares (WLS) method [18], which takes the
following form:

ϕ̂(xn, yn) =
[
UTω(xn, yn)U

]−1
UTω(xn, yn)V (2)

V =


R1
R2
...

RN

 (3)
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U =


1 P11 · · · P1K
1 P21 · · · P2K
...

...
. . .

...
1 PN1 · · · PNK

 (4)

ϕ̂ = [ϕ0 ϕ1 · · · ϕK]
T (5)

ϕ̂(xn, yn) =


ϕ0(x1, y1) ϕ1(x1, y1) · · · ϕK(x1, y1)
ϕ0(x2, y2) ϕ1(x2, y2) · · · ϕK(x2, y2)

...
...

. . .
...

ϕ0(xN , yN) ϕ1(xN , yN) · · · ϕK(xN , yN)

 (6)

ω(xn, yn) =


ωn1 0 0 0

0 ωn2 0 0
...

...
. . .

...
0 0 · · · ωnN

 (7)

where ω(xn, yn) denotes the spatial weight matrix of cell n, which reflects the local spatial
features of precipitation. According to Tobler’s First Law of Geography [47], observations
that are closer to the location (xn, yn) should have a greater weight in the estimation than
observations which are farther away. Gaussian and bi-square kernel functions are two
common kernel types for the GWR model, and this paper implements the adaptive bi-
square function to quantify the nonnegative attenuation relation between weights and
distance. The weights are calculated by the following:

wnm =

{ [
1− (dnm/bn)

2
]2

dnm ≤ bn

0 dnm > bn
(8)

where wnm and dnm represent the weight and the Euclidean distance of cells n and m,
respectively; bn denotes the distance from position n to its pth nearest neighbor, and the
calibration of the adaptive kernel involves the estimation of the p-value.

The extensively employed measure of goodness of fit in GWR is the corrected Akaike
Information Criterion (AICc) [48], which can be expressed as follows:

AICc = 2N loge

(√
SSE/(N − tr(S))

)
+ N loge(2π) + N

(
N + tr(S)

N − 2− tr(S)

)
(9)

where SSE is the residual sum of squares, and tr(S) is the trace of the hat matrix.
In GWR, the golden section search was adopted to determine the optimal bandwidth

at a 10 km scale. Because the calculation is too complicated for such a large area, which
incorporates 4890 positions, several code optimizations were accomplished in this work.
The coefficients of the GWR model at 1 km scale can be computed by the obtained optimal
bandwidth, and then the high-resolution precipitation field can be predicted with 1 km of
independent data.

2.1.2. Multifractal Random Cascade (MFRC) Model

The multifractal analysis is a quantitative tool to describe the mass distribution of
fractal space. Many researchers have proposed the self-similarity-based spatial downscaling
method by utilizing the multifractal characteristics of precipitation [38,39]. The MFRC
model employed in this study was derived from Pathirana and Herath’s work [39], and the
random cascade process is depicted in Figure 1.
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Figure 1. Random cascade processes. Equation (20) for Rl
(i,j), the l-th level estimated precipitation in

cell (i,j).

The homogeneous multifractal precipitation is expressed by the following equation:

Ml
(i,j) =

{
Ml−1

(i/2,j/2) ×W(i,j) , l > 0
M0

(i,j) , l = 0
(10)

where i/j denotes the row/column index in the grid, and W(i,j) represents the random
cascade weight in cell (i, j) to obtain level l homogeneous precipitation Ml

(i,j). In this work,

M0
(i,j) denotes the level 0 homogeneous field, while the initial 10 km precipitation data,

which covers the entire study region as an 85 × 56 grid, is the 4th level field (M4
(i,j)).

The W(i,j) in Equation (10) influences the downscaling results directly, and it can be
calculated by Equations (11)–(13):

W(i,j) = BY(i,j) (11)

P[B = 0] = 1− b−β, P
[

B = bβ
]
= b−β (12)

Y(i,j) = b−σ2 lnb
2 +σX(i,j) (13)

where b denotes the branching number with value of 4, β and σ are parameters of the β-
lognormal model, and X(i,j) represents the random variable following a standard normal
distribution according to classical multifractal theory. Combining Equations (11)–(13) and the
Mandelbrot–Kahane–Peyriere (MKP) equations [32,38,49], W(i,j) yields Equations (14)–(19):

P
[
W(i,j) = 0

]
= 1− b−β (14)

P
[
W(i,j)= bβ−σ2 lnb

2 +σX(i,j)
]
= b−β (15)

β = 1 +
τ′(q)

2
− τ′′(q)

2
q +

τ′′(q)
4

(16)

k =
τ′′(q)
2lnb

(17)

τ(q) = lim
l→∞

log2Ql(q)
−log2λl

(18)

λl = b−l/2, l = 0, 1, 2, . . . . (19)

where λl represents the level l scale ratio, Ql(q) denotes the qth order statistical moment
of Ml

(i,j), and q is in the range [−10, 10] in this study; τ(q) is the quality index describing
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the fractal characteristic of precipitation, while τ′(q) and τ′′(q) are the first and second
derivatives of τ(q), respectively.

In the estimation of β and k and the subsequent downscaling process, it is necessary
to recover the spatial heterogeneity of the estimated precipitation in the end, and this can
be achieved by Equation (20) as follows:

Rl
(i,j) = Ml

(i,j)·G
l
(i,j) (20)

where Rl
(i,j)/Gl

(i,j) denotes the value of the l-th level estimated/heterogeneous precipitation
in cell (i,j). The level-4 heterogeneous precipitation at the 10 km scale is calculated by
Equation (21):

G4
(i,j) = N4 ×

A(i,j)

∑i,j A(i,j)
(21)

where A(i,j) denotes the monthly average precipitation value in cell (i,j) in a specific month
during the study period, and N4 represents the total number of level 4 grid cells.

From Equations (20) and (21), it is possible to calculate M4
(i,j) from 10 km satellite

precipitation data. The expected value of W(i,j) equals 1; therefore, M0
(i,j) equals the average

of M4
(i,j). Then it is possible to obtain the model parameters β and σ from Equations (16)

and (17) with which to calculate the higher resolution homogeneous precipitation (Ml
(i,j)).

The recovery of level-l precipitation heterogeneity is achieved with Equation (22)
(Posadas et al. 2015):

Rl
(i,j) = Tl

(i,j) ×
Ml

(i,j)G
l
(i,j)

∑i,j Ml
(i,j)G

l
(i,j)

(22)

where Tl denotes the large-scale forcing factor, and Gl
(i,j) and Tl

(i,j) can be calculated with
Equation (23):

Gl
(i,j) = G4

(i,j) , T(i,j)
l = Nl × R4

(i,j) i = i/2l−4, j = j/2l−4 (23)

The initial 10 km precipitation field was downscaled to 0.625 km at the 8th level in this
study to enhance the heterogeneity of the precipitation; the model always runs the random
cascade process for multiple times and takes the mean value of different results. Finally,
the 1 km high-resolution precipitation estimates were obtained by bilinear interpolation
from the average downscaled field.

2.1.3. GWR-MF Model

The GWR-MF model uses the MFRC model to downscale the regression residual of
the point set in the study area obtained by the GWR model to obtain the residual after
downscaling, and then adds the residual of the point set obtained with the corresponding
point data of GWR to compensate and correct the results after downscaling of the GWR.

The results of the GWR-MF model are obtained by MFRC interpolation based on GWR,
and its principle can be expressed as follows:

RGWR-MF = RGWR + ResidualMF (24)

where GWR-MF is the precipitation prediction value, RGWR is the GWR precipitation after
downscaling, and ResidualMF is the residual value after downscaling of the MFRC model.

The MFRC model requires the l-th heterogeneous precipitation to recover heterogene-
ity. The GWR-MF model applies GWR to obtain high-resolution monthly precipitation
which can be used to enhance the heterogeneity of high-resolution daily precipitation.
In this study, GWR high-resolution (1 km × 1 km) monthly precipitation with spatial
resolution of 1 km was introduced to restore the heterogeneity of MFRC model. Recall that
in Equation (22) that Gl

(i,j) denotes the value of the l-th level heterogeneous precipitation in
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cell (i,j), and it equals the average monthly precipitation downscaled with the GWR at a
1 km × 1 km spatial resolution.

2.1.4. Validation

This paper adopts the correlation coefficients (CCs) and relative bias (bias) to measure
the accuracy of the predicted precipitation. A CC close to 1 (or 0) indicates a strong
positive statistical relation (or no statistical relation) between the predicted precipitation
and the ground observations. The absolute value of bias close to zero is desirable from the
perspective of calculating predictions nearly identical to observations. These evaluation
criteria are given by the following equations:

CC =
∑n

i=1
(

Di − D
)(

Ei − E
)2

∑n
i=1
(

Di − D
)2

∑n
i=1
(
Ei − E

)2 (25)

Bias = ∑n
i=1 Ei

∑n
i=1 Di

−1 (26)

where Di and Ei denote gauge-measured precipitation and the final downscaled estimates,
respectively, while D and E represent the average values of Di and Ei, respectively.

The performance of the GWR model is quantified by the goodness of fit (R2), the
standardized residuals (StdResid), and the AICc value, in which R2, and StdResid can be
calculated with the initial precipitation field and the predicted value at coarse resolution;
and the AICc value is computed by Equation (9) for the GWR model. R2 ranges between
0 and 1 for positively correlated variables, and the larger it is, the stronger the statistical
relation between predictions and observations. The magnitude and distribution of StdResid
can reflect the model’s robustness and fitness to some extent. The more significant the mul-
tifractal characteristics in the initial satellite-based precipitation field are, the more reliable
the MFRC downscaled results are in theory. In the end, 1 km downscaled precipitation
should be as smooth as possible to reveal the natural rainfall phenomenon.

2.2. Study Area and Data
2.2.1. Study Areas

Hubei Province (29°1′–33°6′ N, 108°21′–116°7′ E), which is located in Central China,
with an area of approximately 185,900 km2, was selected as a case study area in this study
and is shown in Figure 2. The study region has a complex landform, and the topography
is slanted downward form east to west. The Yangtze River and its longest tributary, the
Han River, cross the province, and thousands of lakes dot the landscape of Jianghan Plain,
giving Hubei the name of the “Province of Lakes”. The Jianghan Plain occupies most of
Central and Southern Hubei, while the west and the peripheries are more mountainous,
with ranges such as the Wudang Mountains and the Daba Mountains. Hubei Province has
a humid subtropical climate, with four distinct seasons. Precipitation shows great spatial
variation due to geography and the climate, and the overall trends of precipitation decrease
from the southeast to the northwest.

2.2.2. Precipitation Datasets

The GPM aims to provide a new generation of global rainfall and snowfall obser-
vations, as a successor of the TRMM. The Core Observatory satellite was launched in
February 2014 by the National Aeronautics and Space Administration (NASA, Washing-
ton, D.C., United States) and the Japan Aerospace and Exploration Agency (JAXA, Tokyo,
Japan), carrying the GPM Microwave Imager (GMI) and the Dual-Frequency Precipita-
tion Radar (DPR). The GPM sensors improve the ability to detect solid precipitation due
to the new high-frequency channels (165.6 and 183.3 GHz) for the GMI and Ka-band
(35.5 GHz) for the DPR. The most advanced IMERG is a 0.5 h, 0.1◦ × 0.1◦ resolution,
60◦ N–60◦ S spatial coverage dataset and is computed by using GPM and several other
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satellite precipitation products, using the Goddard Profiling Algorithm (GPROF). Three
modes (early, late, and final runs) are available with the IMERG product depending on
latency and requirements, and the final-run IMERG product can provide more accurate
results based on monthly rain gauge calibration. The latest level-3 05b version of IMERG
final-run monthly estimates from 2015 to 2017 selected in this study was downloaded from
https://pmm.nasa.gov/data-access/downloads/gpm (Accessed on 16 June 2021). All
raw data are clipped to the study area, reprojected to the UTM 49N, and resembled 10 km
resolutions as initially coarse precipitation fields, which still hold the same accuracy as the
original 0.1◦ IMERG product in geographic coordinate systems.
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Figure 2. Distribution of topography, meteorological stations, and precipitation in Hubei Province,
China.

The ground-observed precipitation of 75 rain gauge stations was parsed from the
Hubei Meteorological Bureau website (http://www.hbqx.gov.cn/qx_tqsk.action, accessed
on 20 January 2021), as shown in Figure 2. The stations are distributed randomly over the
entire study area. Since the function of rain-gauge data was to validate the downscaling
results independently, they were not used to correct GPM/IMERG precipitation.

The correlation between the original GPM and the site data is shown in Figure 3. Most
of the results are above 0.6, which indicates a clear correlation between the two. Therefore,
this paper uses the precipitation of 75 rain gauges to verify the downscaling results.

2.2.3. DEM and LST Datasets

DEM and LST data were extensively used as explanatory variables in spatial down-
scaling research for satellite-based precipitation. The 30 m ASTER GDEM (V2) data were
selected in this paper and downloaded from the Geospatial Data Cloud (http://www.
gscloud.cn) (Accessed on 16 June 2021). Terra-MODIS daytime LST products (MOD11A2)
with 1 km resolution used in the study were obtained from the NASA Land Processes
Distributed Active Archive Center (LP DAAC, https://ladsweb.modaps.eosdis.nasa.gov)
(Accessed on 16 June 2021). The monthly LST data were generated by averaging four 8-day
MOD11A2 data files for each calendar month, and the missing values were interpolated by
the nearest neighbor resampling algorithm. Both DEM and LST data were adjusted to the
same spatial range and projection as the processed GPM/IMERG precipitation fields, and
then resembled and aggregated to 10 km and 1 km resolutions. The longitude and latitude
information was ultimately calculated from the projected raster.

https://pmm.nasa.gov/data-access/downloads/gpm
http://www.hbqx.gov.cn/qx_tqsk.action
http://www.gscloud.cn
http://www.gscloud.cn
https://ladsweb.modaps.eosdis.nasa.gov
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Figure 3. Correlation of precipitation between GPM data and station data.

3. Results
3.1. The Performances of GWR Models

The GWR models adopting the adaptive bi-square kernel function were constructed
in this paper for all 36 months, and the optimal p-value [50], which represents the number
of neighbors counted in the prediction of the current position, mostly determines the GWR
model’s performance. The R2 and AICc of 36 GWR models are shown in Figure 4a, and the
p-values are shown in Figure 4b.

The AICc value of the GWR model depends on the SSE value (see Equation (9)). The
average AICc value during the whole study period was 25,108.379. At the same time, due
to the obvious influence of different months, the AICc value fluctuates seasonally.

The p-values of 36 GWR models are in the range of 51–54, irregularly, as shown in
Figure 4b, which indicates that tens of neighbor points were counted into the local regres-
sion at the current position. The non-stationarity in the neighborhood within approximately
50–60 km is slight enough to ignore it and can reasonably achieve the local linear regression.
Residuals in GWR models were not required to be normally distributed, because the WLS
is a biased estimation method from the beginning. For the same month in December
2016, the StdResid values and the distribution curve of the GWR model are depicted in
Figures 5 and 6. There are no severe clusters in the whole study area, and the StdResid
values are mainly in the range of −2~2.

3.2. The Performances of MFRC Models

A scale region that obeys the power law is called non-scaling, which is a requirement
of fractal analysis, in which case the relationships between the statistical moments, Q(λ, q),
and the scale ratios, λ, appear as straight lines in a log–log diagram. According to mul-
tifractal theory [7,32,37,39] there are four phenomena that can indicate a certain object
possessing multifractal characteristics, which can be described as follows: the quality index,
τ(q), is not a simple linear function of the order q of Q(λ, q); the singularity exponent, α(q),
is strictly decreasing with the increment of q; the multifractal spectrum, f (α), is a convex
function of α which reaches the single peak when α(q) = 0; and the generalized dimension,
D(q), decreases monotonically with the increment of q.
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The large majority of the 36 monthly homogenized precipitation fields during the study
period have been proven to be multifractal objects, and the indicators mentioned above in
July 2016, the same month analyzed in the GWR model, are depicted in Figure 7, and they
reveal the typical multifractal characteristics. However, aberrations at different degrees
also occurred in homogenized precipitation in February and December 2015, November
2016, and December 2017. Figure 8 illustrates the anomalies present in the homogenized
precipitation field in February 2015.

Atmosphere 2022, 13, x FOR PEER REVIEW 12 of 22 
 

 

 
(a) statistical moments and scale ratios 

 
(b) quality index 

 
(c) convex function 

 
(d) generalized dimension 

  

Figure 7. Multifractal characteristics verification in homogenized precipitation fields in July 2016. 
(a) statistical moments and scale ratios, (b) quality index, (c) convex function, (d) generalized di-
mension. 

 

(a) singularity exponent                      (b) convex function 

Figure 8. An abnormal phenomenon existed in the homogenized precipitation field of February 
2015. (a) singularity exponent, (b) convex function. 

All downscaling methods were designed to enhance the heterogeneity of precipita-
tion fields at a subpixel level in practice—in other words, to create reasonable and diverse 
precipitation intensity values within a 100 km2 area—since the initial spatial resolution is 
10 km. For the MFRC downscaling model, the sub-pixel heterogeneity is solely produced 
by the random variable X of the cascade generator, in that it always takes the mean values 
of multiple downscaled results because of the absolute randomness at any position. 

Unfortunately, a kind of self-contradiction that creates heterogeneity with X and av-
erages the different results, so the number of times the cascade process is run is essential 
for the performance of the final model and the consumption of computing resources. 

Figure 7. Multifractal characteristics verification in homogenized precipitation fields in July 2016.
(a) statistical moments and scale ratios, (b) quality index, (c) convex function, (d) generalized
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Figure 8. An abnormal phenomenon existed in the homogenized precipitation field of February 2015.
(a) singularity exponent, (b) convex function.

All downscaling methods were designed to enhance the heterogeneity of precipitation
fields at a subpixel level in practice—in other words, to create reasonable and diverse
precipitation intensity values within a 100 km2 area—since the initial spatial resolution is
10 km. For the MFRC downscaling model, the sub-pixel heterogeneity is solely produced
by the random variable X of the cascade generator, in that it always takes the mean values
of multiple downscaled results because of the absolute randomness at any position.

Unfortunately, a kind of self-contradiction that creates heterogeneity with X and
averages the different results, so the number of times the cascade process is run is essential
for the performance of the final model and the consumption of computing resources.
Twenty times was determined to be feasible in this work based on abundant experiments,
and the initial 10 km precipitation grid and the downscaled results of running the cascade
process for 10/20/50 times in December 2015 are displayed in Figure 9. Many tiny spots
with errors exist in the “10 times” downscaled results and those errors are visibly reduced
in the “20 times” downscaled results, whose value range is closer to the initial field as well.
The “50 times” downscaled results do not show significant improvements compared to the
“20 times” results, and instead, considerable time is wasted in processing.

3.3. The Performances of GWR-MF Models

The Multifractal objects usually have a self-similarity. Therefore, the downscaling
decomposition process of the precipitation field in the random cascade model requires
the precipitation field to have statistical homogeneity in order to reflect the regional self-
similarity of the homogeneous background field.

In the downscaling process of the MFRC model, with the help of the GPM monthly
mean of precipitation field, to restore the heterogeneity of the precipitation field, the
downscaling results show obvious mosaic characteristics. To explore whether the use of
the low-resolution heterogeneous precipitation field in the process of restoring the spatial
heterogeneity of the high-resolution precipitation background field has an impact on the
downscaling results, this paper uses the corresponding monthly scale precipitation field
with 1 km resolution obtained by the GWR model to enhance the spatial heterogeneity
of the MFRC model after downscaling. The local regression is well realized by using the
downscaling results of the GWR model with a 1 km resolution to enhance heterogeneity.
As seen from Figure 10, the downscaling result of the MFRC model has no obvious mosaic
characteristics or clustering phenomenon.
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Table 1 shows the 36-month downscaling accuracy evaluation results based on the
GWR-MF model.
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Table 1. Results of 36 months accuracy evaluation of the GWR-MF model.

Month
2015 2016 2017

CC Bias CC Bias CC Bias

1 0.549 0.080 0.806 0.442 0.807 0.315
2 0.964 0.056 0.772 0.008 0.651 0.338
3 0.766 0.172 0.831 0.061 0.917 0.009
4 0.887 0.056 0.891 −0.002 0.794 −0.011
5 0.801 0.125 0.703 0.222 0.698 0.155
6 0.843 0.004 0.798 0.186 0.890 0.193
7 0.791 0.114 0.783 −0.125 0.689 0.207
8 0.273 0.060 0.431 −0.030 0.828 −0.015
9 0.773 0.114 0.832 0.142 0.782 −0.032

10 0.787 0.024 0.463 0.105 0.874 0.023
11 0.780 0.177 0.738 0.128 0.824 0.158
12 0.856 0.402 0.893 0.210 0.841 0.547

3.4. Comparison of 1 km Final Downscaled Results of GWR, MFRC, and GWR-MF Models

Ignoring the anomalies for specific months in GWR and MFRC models construction,
we see that all 36 monthly precipitation fields derived from the GPM/IMERG products were
downscaled from 10 km spatial resolution to 1 km in this study. The accuracy assessment
was accomplished with CC and bias by utilizing the initial 10 km precipitation data. The
downscaled results of the three methods and the ground-observed precipitation at 75 rain
gauge stations were analyzed.

As depicted in Figure 11, satellite-derived 10 km precipitation data possess the equiv-
alent accuracy and quality relative to the rain gauges’ observations at monthly temporal
scale, which holds a mean CC value of 0.770 and a mean bias value of 13.202% for the entire
study period. The largest CC value of 0.966 shows up in February 2015, and it is a little
overestimated in satellite precipitation fields for most months; however, the discrepancy
between the two datasets may also be quite huge under extreme situations. Calibration of
initial precipitation fields, not discussed in this study, is necessary for better downscaling
performance due to the ineluctable random errors to some extent.
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Figure 11. Accuracy assessment of different downscaled results from GWR and MFRC models. (a) CC
of GWR and MFRC models, (b) Bias of GWR and MFRC models.

Compared to the GPM/IMERG-based 10 km precipitation fields, the downscaled
results of the GWR and MFRC models can remain with the same accuracy as the mean CC
values of the GWR/MFRC models, which are 0.771 and 0.731, respectively, and the mean
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Bias values of the GWR/MFRC models are 14.018% and 11.865%, respectively, where the
data points and lines are severely overlapped in Figure 11.

The results show that the three adopted downscaling methods for the monthly 10 km
resolution satellite precipitation cannot significantly enhance the sub-pixel heterogeneity
according to the similar statistical index (CC/Bias), even in the GWR/MFRC results.
Perhaps the predicted precipitation should have been as smooth as possible and identical to
the original 10 km data to maintain the intrinsic details and consistency. The downscaling
goal was already successfully satisfied when the high-resolution estimated precipitation
quality did not decrease obviously, and the spatial distribution was not distorted in the
whole study area.

Based on an analysis of the downscaling accuracy evaluation results of the GWR/MFRC
model, the downscaling results of the GWR model have a higher correlation with the true
value of precipitation, but in terms of bias evaluation, the MFRC model is better than the
GWR model. Combining the GWR model with MFRC for hybrid downscaling can maintain
and improve the correlation and reduce the deviation of the results.

Since the GWR downscaling model in July 2016 holds a high goodness of fit (R2 = 0.989),
and the multifractal characteristics are also satisfactory in the same month, the initial 10 km
precipitation grid and the downscaled results of the three models in July 2016 are displayed
in Figure 12, and the CC and bias values of the four fields are compared in Table 2.
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The scatter diagram of precipitation field data and station observation data after
downscaling in July 2016 is shown in Figure 13. The downscaling data of the GWR model
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and MF model are very close to GPM product data, and the downscaling data of the
MFRC model are quite different from the GPM product data in some months. The accuracy
of downscaling data of several models is reduced in meteorological stations with large
precipitation, and the data of GPM data are significantly different in meteorological stations
with large precipitation.
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Figure 13. Scatter plots of rain gauges observation data and precipitation data of GPM product,
GWR model, MFRC model, and GWR-MF model in July 2016. (a) Scatter plots of observed data and
generated data in July 2016, (b) Scatter plots of rain gauges data and precipitation data of different
models in July 2016.

The GWR/MFRC downscaled results have a good performance, with a substantial
distribution and a rational value range. The difference between the GWR and MFRC results
is that the former is smoother, and the latter shows an apparent mosaic-like trait suggesting
that the spatial resolution did not improve. The downscaling results of the GWR-MF model
have higher CC/lower bias values than the GWR/MFRC model.

The horizontal and vertical profiles of the GWR and MFRC downscaled results in
July 2016 at the Wuhan rain gauge station (114.05◦ E, 30.6◦ N) are depicted in Figure 14.
Both profile curves of the MFRC results have many jaggies corresponding to the mosaics
above and the curves of the GWR results are much smoother. As discussed in the analysis
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of MFRC models construction (see Section 3.2), in some instances, the prediction is too
random and produces unavoidable errors in an original 10 km pixel due to the internal
defect of the classic MRFC method that brings the mosaics or jaggies into the final results.
Although not all downscaled results have been displayed or analyzed in diagrams one by
one, there is sufficient evidence to conclude that the GWR models are more reliable and
suitable than the MRFC models for spatial downscaling of the latest monthly GPM/IMERG
precipitation products.
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Figure 14. The horizontal profile graph (a) and vertical profile graph (b) of GWR and MFRC down-
scaled results at the Wuhan rain gauge station in July 2016.

4. Discussion

The improved CC of the GWR model accounts for 47.2% of the model improvement,
and the bias-accuracy improvement accounts for 50%. The GWR model needs different
influence factors for correlation analysis besides latitude and longitude. Different influenc-
ing factors lead to diverse effects on downscaling, the overall improvement in accuracy is
uncertain, so it needs further exploration.
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The MFRC interpolation is not smooth enough, and it is hard to avoid a lot of mo-
saics. Meanwhile, there are many random errors, since not all of the months satisfied the
prerequisite for the multifractal theory.

According to the obtained downscaling accuracy evaluation results, the spatial distri-
bution of the precipitation background field after the downscaling of the GWR-MF model
is the same as that of the MFRC model and initial precipitation background field, which
shows that this method of downscaling of precipitation by the GWR-MF model is feasible.

When the rainfall value is large, the downscaling advantage of the GWR-MF model
is more obvious than that of the GWR model and MFRC model. The introduction of
the MFRC model is reasonable to improve the interpolation accuracy. The fusion of the
GWR model and the MFRC model can improve the correlation coefficient and reduce the
deviation.

In this paper, one of the reasons for the unsatisfactory results of the downscaling of
the MFRC model is that the low-resolution heterogeneous precipitation field is still used
in the process of restoring the spatial heterogeneity of the high-resolution precipitation
background field. Based on the MFRC model and GWR model, the GWR-MF model is
obtained to eliminate the influence of the low resolution heterogeneous precipitation field.

In the months with precipitation greater than 100 mm, the CC accuracy of the GWR-
MF model improves by 11.1%, and bias-accuracy improves by 2.8% over the GWR model.
Compared to the MFRC model, the CC accuracy of the GWR-MF model improves by 25%
over the MFRC model, and the bias-accuracy improves by 25% over the GWR model.
However, in the months with low rainfall, the accuracy of the GWR-MF model is still
higher than the MFRC model, despite being lower than the GWR model. According to the
statistical results from 2015 to 2017, the GWR-MF model performed well when the rainfall
was relatively high. However, the conclusions still need to be confirmed by more data.

5. Conclusions

This paper investigated and evaluated the spatial downscaling performances and
suitability of a typical GWR regression method, a multifractal-based weather generator
(MFRC) and a hybrid downscaling method for the latest monthly GPM/IMERG precip-
itation products from 0.1◦ × 0.1◦ to 1 km × 1 km for the 2015 to 2017 period in Hubei
Province, China. The main conclusions are as follows:

(1) The original GPM product can accurately express the precipitation in the study area,
which highly correlates with the site data from 2015 to 2017 (R2 = 0.79) and overall
presents the phenomenon of overestimation.

(2) Based on the analyses of models construction and the accuracy assessment results,
the GWR models are more reliable and suitable than the MRFC model, as they can
perfectly maintain the equivalent accuracy relative to the initial precipitation fields
and keep enough smoothness and consistency at a 1 km scale, as well.

(3) The GWR-MF model can improve CC and bias to a certain extent. In the months
with large precipitation in the study area, the superiority of the GWR-MF model is
more obvious. The GWR-MF model can weaken a large number of mosaics in the
downscaling of the MFRC model and avoid the disadvantage that the MFRC model
cannot be established effectively in a few months during the study period.

The analyses and conclusions in this paper can offer a meaningful information for
similar studies. The proposed model provides 1 km high-resolution data support for
regional ecology, hydrology, agriculture, or other relevant applications. It is noteworthy that
the discrepancy between the GPM/IMERG satellite products and the observed precipitation
by rain gauges exists and visible in any time period, and the calibration of the GPM/IMERG
series precipitation fields remains in progress.

The introduction of the GWR-MF model is reasonable in improving the interpolation
accuracy, but the accuracy is lower than that of the GWR model in individual months. Since
the experiments are only for precipitation over 36 months, it is necessary to confirm the
universality of several downscaling models in the long time-series model in the future.
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