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Abstract: Postprocess correction is essential to improving the model forecasting result, in which
machine learning methods play more and more important roles. In this study, three machine
learning (ML) methods of Linear Regression, LSTM-FCN and LightGBM were used to carry out
the correction of temperature forecasting of an operational high-resolution model GRAPES-3km.
The input parameters include 2 m temperature, relative humidity, local pressure and wind speed
forecasting and observation data in Shaanxi province of China from 1 January 2019 to 31 December
2020. The dataset from September 2018 was used for model evaluation using the metrics of root mean
square error (RMSE), average absolute error (MAE) and coefficient of determination (R2). All three
machine learning methods perform very well in correcting the temperature forecast of GRAPES-3km
model. The RMSE decreased by 33%, 32% and 40%, respectively, the MAE decreased by 33%, 34%
and 41%, respectively, the R2 increased by 21.4%, 21.5% and 25.2%, respectively. Among the three
methods, LightGBM performed the best with the forecast accuracy rate reaching above 84%.

Keywords: model correction; machine learning; GRAPES model

1. Introduction

Numeric weather prediction has achieved good results through the accumulation of
scientific knowledge, greatly improved computing power, and continuous improvement of
the observation system [1]. However, due to the uncertainty of the initial field of the nu-
merical model and its approximate treatment of the atmosphere, coupled with the random
non-linear chaotic characteristics of the atmosphere [2,3], the numerical model inevitably
has forecast bias [4]. The statistical post-processing method has successfully corrected
many defects inherent in the prediction of numerical weather prediction models [5]. Perfect
Prognostic (PP) method was proposed by Klein [6] in 1970. Then, Glahn et al. [7] pro-
posed a Model Output Statistical (MOS) method, which became the most commonly used
post-processing method. For example, it was used by Taylor et al. to assess temperature
forecast error [8]; the spatial and temporal patterns of U.S. nationwide MOS forecast errors
compared to individual station error trends prove to be a powerful forecasting tool for
real-time forecasters, and nationwide MOS forecast error maps are useful. Combined
with the field of grid analysis, Guan et al. [9] applied the Kalman filter-based decayed
mean deviation estimation method to effectively improve the accuracy of temperature
prediction for most of the year, with the greatest benefit from April to June, but sometimes
it does not perform well when the spring and fall transition seasons are longer. Cheng and
Steenburgh [10] used traditional model output statistics (ETAMOS), Kalman filter (ETAKF),
7d fixed error correction method (ETA7DBR) to correct the 2 m temperature predicted by
the North American mesoscale model; ETAKF and ETA7DBR produce better predictions in
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the stationary cool-season mode when persistent valley and basin cold pools are present.
Najafi and Moradkhani [11] used the Bayesian model averaging method to evaluate the
multi-model comprehensive analysis of extreme runoff in the impact assessment of climate
change. Bothwell and Richardson [12] used the perfect forecast method and logistic regres-
sion to develop equations for forecasting lightning in Alaska on a 10-km grid and in the
continental United States on a 40-km grid, and these equations can be applied to NCEP
model predictions. Lerch and Baran [13] used the ensemble model output statistical method
for EMOS model estimation and the ‘Grand limited area model ensemble prediction system’
to predict European wind speeds. The similarity-based semi-local models proposed show
significant improvement in predictive performance compared with standard regional and
local estimation methods. Traditional post-processing methods are based on pre-statistical
assumptions, which limits the methods to further improve the effect of model correction to
a certain extent.

In recent years, with the widespread application of artificial intelligence technology in
the computer field, ML technology has made remarkable achievements in many fields in-
cluding atmospheric science. It has proven to be a powerful tool for identifying weather and
climate patterns [14–17], improving parameterization of global circulation models [18–20],
weather and climate prediction [21–28], and post-processing of numerical weather forecast-
ing [29,30]. Frnda et al. [31] trained a three-layer artificial neural network (ANN) using the
weather station data of eight major cities in Slovakia and the Czech Republic to improve
the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast output
accuracy to the same level as that provided by the limited area model, and it can deliver
a more accurate temperature and precipitation forecast in real-time. Bonavita et al. [32]
modified the IFS model of the ECMWF with ANNS. Rasp and Lerch [33] addressed en-
semble post-processing with neural network method, which significantly outperforms
baseline post-processing method while being computationally more affordable in a case
study of 2-m temperature prediction at a German ground station. Chapman et al. [34] used
convolutional neural networks (CNN) to improve post-processing studies of the National
Center for Environmental Prediction’s Global Forecast System in the field of integrated
vapor transport forecasting in the eastern Pacific and western United States. This work
demonstrates that CNN have the potential to improve forecasting skills for precipitation
events affecting the western United States to 7 days. HAN et al. [35] used the deep learning
method of CU-net to correct gridded forecasts of four weather variables from the European
Centre for Medium-Range Weather Forecasting Integrated Forecast System Global Model
(ECMWF-IFS): 2-m temperature, 2-m relative humidity, 10-m wind speed and 10-m wind
direction. The results show that CU-net improves ECMWF-IFS forecast performance for all
four weather variables for all forecast lead times from 24 h to 240 h. Li et al. [36] used the
model output machine learning method (MOML) to predict 2 m surface temperature. Based
on ECMWF model grid data and reanalysis field data, MOML showed better prediction
performance than the ECMWF model and MOS, especially in winter. Kang et al. [37] used
support vector machine (SVM)s, random forests (RF), gradient boosting decision trees
(GBDT) and extreme gradient spanning tree (XGBoost) algorithms to predict 2 m tempera-
ture, relative humidity, 10 m wind speed and wind direction, and the study showed that
the XGBoost method performed the best, slightly better than GBDT and random forests.
The 0–10 days average prediction accuracy of 2 m relative humidity and 10 m wind speed
and direction improved by nearly 15%, and the temperature accuracy improved by 20~40%.
Chen and Huang [38] proposed an ensemble learning method for bias correction of station
temperature forecast based on ECMWF model products and combined a new ensemble
learning model (ALS model) through ANN, long short-term memory network (LSTM) and
linear regression model. The correction effect is significant for the regions where the station
temperature forecast error is larger and the temperature peak forecast. Cho et al. [39] used
RF, Support Vector Regression (SVR), ANN, and Multi-Model Ensemble (MME) to calibrate
Local Data Assimilation and Prediction System next-day model outputs for maximum and
minimum air temperature, verifying the superiority of the ensemble approach. Xu et al. [40]
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constructed a statistical MME for deterministic and probabilistic precipitation forecasts to
predict precipitation from 1 to 6 months in advance. To sum up, compared to traditional
methods, ML methods are more powerful in nonlinear simulation and can often achieve
higher accuracy.

The Global/Regional Assimilation and Prediction System (GRAPES) [41,42] is an
operational numerical prediction model developed by the China Meteorological Admin-
istration (CMA), thus the optimization and improvement of the GRAPES model results
have become important tasks in CMA for better operational forecast services. The high-
resolution GRAPES-3km model especially provides essential forecasting information for
highly impacted local scale weather, and the model is one of the main reference sources for
province-level forecasting, which makes this study of great significance to the grass-roots
forecast operation. There are several studies on the revision of the ECMWF model [35,36,38]
in China areas using ML methods, but no study focused on the operational GRAPES-3km
model at present. In addition, many previous studies are still in the research stage and
have not been put into actual business applications. We compared and analyzed the correc-
tion effects of three ML methods on the temperature forecast of GRAPES-3km model in
Shaanxi Province, and the research results have been successfully applied to the operational
meteorological service guarantee of the 14th National Games with significant forecasting
improvement.

2. Model Forecast and Observation Data

The GRAPES-3km model forecasting data from 1 January 2019 to 31 December 2020
were used for correction post-processing, with a time span of 731 days. The temporal and
spatial resolution of the model are 1 h and 0.03◦ (about 3 km), respectively. The model
starts twice a day at 00:00 (UTC) and 12:00 (UTC). A total of 37 forecast timeliness of 0–36 h
(hourly increments) was selected. For each forecast timeliness, the model produces two
forecast results every day, with a sample size of (731 × 2). The contemporaneous surface
observation data of 293 meteorological stations in Shaanxi Province (Figure 1) comes from
the data-sharing platform of the Chinese Academy of Meteorological Sciences.
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Figure 1. Research area of Shannxi Province and the distribution of observation stations. The shaded
color represents the relief elevation.

Temperature is mainly related to meteorological factors such as air pressure, humidity
and wind that reflect the state of the atmosphere. So, several elements of the model
products were selected, including 2 m air temperature, 10 m wind U and V components,
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local pressure and relative humidity; the wind speed value was calculated from U and V
components.

During the 14th National Games in China, the GRAPES-3km model data and obser-
vation data from 1 September to 26 September 2021 were used to conduct operational
practical tests on the overall performance of the model.

3. Data Preprocessing

The outlier values of the observation data were detected with three times the standard
deviation and removed. The missing values were filled by linear interpolation to form a
more precise and complete observation dataset.

The GRAPES-3km model forecast outputs are grid point data. First, the outlier samples
exceeding climate extreme values of the model data were removed, and then the model
data were interpolated to the positions of 293 sites using the inverse distance weighting
(IDW) method.

Each sample consists of observational data, model forecast data and station location
information. The observation data include the 48 hourly four elements of air pressure, wind
speed, relative humidity, and temperature before the forecast time, which were arranged
in the order from early to later to form the observation time series. The model forecast
data also include the four elements with a time range of 12 h before the forecast leading
time. If the forecast leading time is less than 12 h, the time range includes 0 to the leading
time hour. The model data were also arranged in chronological order from early to later.
Station location information includes station longitude, latitude, and altitude. The three
kinds of data are combined into a complete data sample in sequence. Because there are
37 prediction time periods (0 to 36 h), in total, 37 ML models were trained with the sample
datasets for each ML method, respectively.

The data need to be standardized before inputting to the ML model for two methods
of linear regression and LSTM-FCN, which was performed with the Python ML package
scikit-learn. The bottom layer of the LightGBM model is based on a decision tree. The
decision tree enters different branches according to the value of the feature, and each feature
is independent of each other. Unlike the neuron of the neural network, which accumulates
each input signal, the LightGBM model does not need to standardize the input features,
which is more convenient for usage.

4. Methods and Modeling

In this study, three machine learning methods of Linear Regression, Long-Short Term
Memory Fully Convolutional Network (LSTM-FCN) [43] and LightGBM [44] were used
to study the 2 m air temperature prediction of the GRAPES-3km model. These three
methods were selected for comparing the correction effects of traditional ML methods
and deep learning methods on the model. Linear Regression performs a regression task
using least square function to model the relationship between one or more independent
variables and dependent variables. This function is a linear combination of one or more
model parameters called regression coefficients. There is an epidemiological example
to predict disease and velocity of COVID-2019 cases in India using linear regression by
Sujath et al. [45]. Wang et al. [46] used the linear regression method to study the temperature
correction in Shaanxi Province. Linear regression method outperforms other methods in
short-term forecasting [36]. On the one hand, numerical model forecast does not deviate
very much from short-term predictions, so a linear relationship can be established, which
is well applied between its output and observations. It is also the simplest ML method,
fast to compute, and works well in many situations. Its disadvantage is that it does not fit
nonlinear data well. The linear regression method was implemented using scikit-learn.

Long Short-Term Memory Fully Convolutional Network (LSTM-FCN) have received
widespread attention over the past decade for their ability to successfully model nonlinear
feature interactions [47]. Long Short-Term Memory (LSTM) [48] is an extension of recurrent
neural networks (RNN) with capable of learning long-term dependencies. It has a cell state
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and three gates of forget gate, input gate and output gate which provides them with the
power to selectively learn, unlearn or retain information from each of the units. It is widely
used in time series problems, which are naturally associated with meteorological data.
This study attempts to use LSTM to mine the time series association between observation
data and forecast elements. The limitation of LSTM networks is that they can only take
time series data as input. If LSTM is used alone, it is impossible to combine site weather
element forecast and site location information. To solve this problem, LSTM-FCN was
chosen. LSTM-FCN is a time-series-based multivariate LSTM full convolutional network
that has the capability to successfully model nonlinear feature interactions. Through the
FCN layer, the time series information mined by LSTM, the forecast of meteorological
elements of the site, as well as the altitude, latitude and longitude information of the site
are combined. Karim et al. [43] mentioned that the proposed LSTM-FCN achieves state-of-
the-art performance compared to others. The Keras framework was used to implement the
LSTM-FCN method. The input of the LSTM model is the air pressure, relative humidity,
wind speed and temperature of the observation station in the past 48 h, splicing 4 × i
eigenvalues (the pressure, temperature, humidity and wind speed of the ith prediction
time of the GRAPES-3km model, the value of i is 0–12) to form a time series (sample size,
4 × (48 + i)), after two LSTM layers (the number of LSTM units are 256 and 64, respectively),
the output is spliced 7 eigenvalues (the pressure, temperature, humidity, wind speed
at the current forecast time of GRAPES-3km model and station latitude, longitude and
altitude) and then connect two fully connected layers (the number of neurons is 256 and 32,
respectively, and the activation function is ReLU) to obtain the final result. For example, at
time 0, the LSTM-FCN stitching layer has 4 × 48 + 7 = 199 eigenvalues, and at time 13, the
LSTM-FCN stitching layer has 4 × 60 + 7 = 243 eigenvalues. The structure diagram of the
LSTM-FCN model at time 0 is predicted, as shown in Figure 2. The optimizer is Adam, and
the initial learning rate is set to 0.3 × 10−4.
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LightGBM is widely used [49–51], and has the advantages of high accuracy, less
overfitting and a fast training speed. Ke [30] mentioned that LightGBM speeds up the
training process of traditional GBDT by more than 20 times, while achieving almost the
same accuracy. LightGBM is a gradient boosting framework that uses tree-based learning
algorithms. It is designed to be distributed and enables highly efficient training across
large-scale datasets with low memory cost by implementing two novel techniques of
gradient-based one-sided sampling and exclusive feature bundling. It is a variant of the
decision tree and is based on a histogram algorithm. The basic idea is discretizing successive
floating-point eigenvalues into k integers, and at the same time constructing a histogram
with a width of k. When traversing data, the statistics are accumulated in the histogram
based on the discretized values as indexes, and when the data are traversed once, the
histogram accumulates the required statistics, and then according to the discrete values of
the histogram, iterates to find the optimal segmentation point. Because LightGBM only
supports two-dimensional structured datasets, each sample in the dataset is the LightGBM
input feature sequence. This study uses the Python environment to import the LightGBM
package to achieve. The schematic diagram of the correction method of LightGBM is shown
in Figure 3.

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 2. Structure diagram of LSTM-FCN model for predicting 0 aging. 

 

Figure 3. Schematic diagram of LightGBM correction method. 

We used the GridSearchCV function of scikit-learn to adjust the parameters of 

LightGBM to obtain the optimal parameter settings. Through the parameter test, the pa-

rameter list is obtained, as seen in Table 1. The parameters of the LightGBM model are 

initialized to obtain the final training result. 

  

Figure 3. Schematic diagram of LightGBM correction method.

We used the GridSearchCV function of scikit-learn to adjust the parameters of Light-
GBM to obtain the optimal parameter settings. Through the parameter test, the parameter
list is obtained, as seen in Table 1. The parameters of the LightGBM model are initialized to
obtain the final training result.
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Table 1. LightGBM model core parameters.

Learning rate 0.03
Boost type GBDT
Max depth 5
Num leaves 120

Objective Regression_12
Feature fraction 0.8
Bagging fraction 0.9

Bagging freq 5

5. Verification Scores

RMSE, MAE, R2 and the forecast accuracy rate scores were used to evaluate the forecast
correction effects.

The RMSE is the square root of the ratio of the sum of the squares of the deviation
between the forecasting value and the true value to the number of observations. It is used
to measure the deviation between the forecasted value and the true value. The smaller the
RMSE value, the higher the forecast accuracy.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

where ŷi is the predicted value, and yi is the observation value.
The MAE is the average value of the absolute error, which can better reflect the actual

situation of the predicted value error.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (2)

R2 is the coefficient of determination (goodness of fit), which reflects the proportion
of the dependent variable that can be explained by the independent variable through the
regression relationship. When R2 = 1, the predicted value and the true value in the sample
are the same without any error. If R2 = 0, the numerator is equal to the denominator, and
each predicted value of the sample is equal to the mean. R2 is not the square of r, it may
also be a negative number (numerator > denominator).

R2(y, ŷ) = 1− ∑n−1
i=0 (yi − ŷi)

2

∑n−1
i=0 (yi − yi)

2 (3)

6. Results

In order to more accurately reflect the distribution characteristics of the overall data in
the training set and validate set, we extracted the validate set every 5 days from the two
years dataset, and the rest was used as training set. Three methods of Linear Regression,
LSTM-FCN and LightGBM were used to train and validate the dataset, and the results
were scored. As shown in Figure 4, the average RMSE of the GRAPES-3km model forecast
for 37 timeliness is 2.90 ◦C. For linear regression, the correction improvement rate of RSTM
is about 33% to the value of 1.95 ◦C. The RMSE improvement rate of LSTM-FCN correction
is about 34% to the value of 1.92 ◦C. LightGBM method performs the best with the RMSE
value of 1.48 ◦C and the improvement rate of 40%. The MAE of the GRAPES-3km model,
Linear Regression, LSTM-FCN and LightGBM are 2.25 ◦C, 1.30 ◦C, 1.29 ◦C, and 1.14 ◦C,
respectively. The R2 values of the model output and three correction methods reached 0.96
or higher.
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Figure 4. Averaged RMSE (a), R2 (b) and MAE (c) values of the GRAPES-3km model and the three
correction methods.

In the distribution of the RMSE and MAE from 0 to 36 h forecast timelines (Figure 5),
the correction results of Linear Regression, LSTM-FCN and LightGBM are affected by
the GRAPES-3km model output. The RMSE and MAE were basically consistent with
the change trend of GRAPES-3km model except for the initial 3 h, showing a trend of
alternating troughs and crests, and the overall trend of prolonged forecasting effect with
time effect is decreasing.
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The model and observation data of September 2018 were used as a test set to test
the correction performance of the three methods of Linear Regression, LSTM-FCN and
LightGBM. The overall average RMSE and MAE results are shown in Table 2, the RMSE of
0–36 h forecast by GRAPES-3km model are all greater than 2.0 ◦C with an average value of
2.472 ◦C. The RMSE values of the 0–36 h of the Linear Regression correction are between
0.78–1.97 ◦C with an average value of 1.665 ◦C. The RMSE values of the 0–36 h of the
LSTM-FCN correction are 0.70–2.26 ◦C with an average value of 1.689 ◦C. The RMSE values
of the LightGBM correction are 0.62–1.84 ◦C with an average value of 1.485 ◦C. The RMSE
improvement rates of the three correction methods are 32.6%, 32.1% and 39.9%, respectively.
The overall correction performance according to RMSE, from best to worst, is LightGBM,
LSTM-FCN and Linear Regression. For the MAE, an average values of the GRAPES-3km
mode, Linear Regression, LSTM-FCN and LightGBM are 1.946 ◦C, 1.299 ◦C, 1.288 ◦C and
1.140 ◦C, respectively. The improvement rates of MAE of the three correction methods are
33.3%, 33.8%, and 41.4%, respectively.

Table 2. Overall average temperature forecast scores and improvement rates from the correction
methods in September 2018.

Model RMSE RMSE Correction
Improvement Rate R2 R2 Correction

Improvement Rate
MAE MAE Correction

Improvement Rate

GRAPES-3km 2.472 - 0.721 - 1.946 -

Linear
Regression 1.665 0.326 0.877 0.216 1.299 0.333

LSTM-FCN 1.679 0.321 0.876 0.214 1.288 0.338

LightGBM 1.485 0.399 0.903 0.252 1.140 0.414

In operational weather forecasting, the accuracy of temperature forecast is judged by
using the difference between the forecast result and the actual value not greater than 2.0 ◦C,
that is, the forecast is judged to be correct, otherwise the forecast is wrong.

accuracy =
count

(∣∣∣Tpred − Treal

∣∣∣ ≤ 2.0
)

count(Treal)
× 100% (4)

where, Tpred is the predicted value of temperature, and Treal is the actual value. The accuracy
test results at 293 stations in September 2018 were calculated to verify the model forecast
and the correction performance for each station. The spatial distribution of forecast accuracy
values is plotted in Figure 6. For the GRAPES-3km model, accuracy varies widely from
station to station, and there are 154 stations with forecast accuracy of more than 60%. After
correction by the Linear Regression method, the accuracy values of all stations are above
60%, and there are 135 stations with accuracies of more than 80%. The forecast accuracy
values are improved by more than 30% in 143 stations compared with the model output.
For LSTM-FCN method, the accuracy values of all stations are more than 64%, and there
are 141 stations that are more than 80%. LightGBM has the best correction effect, with an
accuracy of more than 80% at 250 stations; there are 130 stations more than 85%, and the
accuracy values are improved by more than 30% at 170 stations.
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Using the research results, during the 14th National Games, we used the LightGBM
model to correct the temperature forecast and improve the forecast skills. The average
RMSE of 36 time periods is 2.356 for GRAPES-3km model and 1.526 for LightGBM correc-
tion; the RMSE decreases 35.2%. The average MAE of GRAPES-3km model is 1.725, and the
value is 1.143 after correction by LightGBM, with the MAE decreasing by 33.7%. The fore-
cast accuracy of GRAPES-3km model is 68.4% and the value is 84.1% after correction, with
the forecast accuracy increasing by 23%. The comparison results of the temperature forecast
accuracy of the three methods during the 14th National Games, as shown in Figure 7.
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7. Conclusions and Discussion

Three machine learning methods of Linear Regression, LSTM-FCN and LightGBM
were used to revise and compare the temperature forecast of the GRAPES-3km model
in Shaanxi Province of China. RMSE, MAE, R2 and forecast accuracy were used as the
evaluation metrics. After correction by the three methods, the RMSE values decreased
by 33%, 32%, and 40%, and the MAE values decreased by 33%, 34% and 41%, and the
R2 values increased by 21.4%, 21.5% and 25.2%, respectively. All three machine learning
methods perform well, with forecast accuracies of more than 78%. Among them, LightGBM
has the best performance with a forecast accuracy of more than 84%.

It can be seen from the change curve of RMSE and MAE for 0–36 h forecast, the three
methods are affected by the forecast temperature variation of the GRAPES-3km model,
and the forecast correction metrics become worse with the extension of forecast timelines.
LightGBM has the best correction performance at all forecast timelines.

The sample data volume in this study is large with each aging hour sample size
reaching 50,000, which can fully characterize the evolution of temperature and reduce the
probability of overfitting of the model. The past 48 h of temperature observation data were
used, so the daily changes and weather system evolution can be extracted by the machine
learning methods. In addition, the meteorological elements of the air pressure, wind speed
and relative humidity that are highly correlated with the temperature were used to help
learn more related information. The location information of the stations can reduce the
error from the spatial and altitude difference of stations.

The LightGBM method is slightly better than the other two methods. It has the
characteristics of feature parallelism and data parallelism and has the ability to find the
best cut points (features and thresholds) according to the assigned feature set, which
help to filter out the feature parameters that have a significant impact on the forecast
results. In the model prediction, the characteristics with large weight coefficients are given
a higher degree of participation, which can better reflect the changing characteristics of
meteorological elements. The method was applied to the meteorological forecast service of
the 14th National Games of China and performed well with an average forecast accuracy
rate of 36 h reaching 84.1%.
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