
����������
�������

Citation: Frezzini, M.A.; Di Iulio, G.;

Tiraboschi, C.; Canepari, S.; Massimi,

L. A New Method for the Assessment

of the Oxidative Potential of Both

Water-Soluble and Insoluble PM.

Atmosphere 2022, 13, 349.

https://doi.org/10.3390/

atmos13020349

Academic Editor:

Kimitaka Kawamura

Received: 26 January 2022

Accepted: 17 February 2022

Published: 19 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

A New Method for the Assessment of the Oxidative Potential of
Both Water-Soluble and Insoluble PM
Maria Agostina Frezzini , Gianluca Di Iulio, Caterina Tiraboschi, Silvia Canepari and Lorenzo Massimi *

Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
mariaagostina.frezzini@uniroma1.it (M.A.F.); diiulio.1556615@studenti.uniroma1.it (G.D.I.);
tiraboschi.1762257@studenti.uniroma1.it (C.T.); silvia.canepari@uniroma1.it (S.C.)
* Correspondence: l.massimi@uniroma1.it

Abstract: Water-soluble and insoluble fractions of airborne particulate matter (PM) exhibit different
toxicological potentials and peculiar mechanisms of action in biological systems. However, most of
the research on the oxidative potential (OP) of PM is focused exclusively on its water-soluble fraction,
since experimental criticisms were encountered for detaching the whole PM (soluble and insoluble
species) from field filters. However, to estimate the actual potential effects of PM on human health, it
is essential to assess the OP of both its water-soluble and insoluble fractions. In this study, to estimate
the total OP (TOP), an efficient method for the detachment of intact PM10 from field filters by using
an electrical toothbrush was applied to 20 PM10 filters in order to obtain PM10 water suspensions to
be used for the DCFH, AA and DTT oxidative potential assays (OPDCFH, OPAA and OPDTT). The
contribution of the insoluble PM10 to the TOP was evaluated by comparing the TOP values to those
obtained by applying the three OP assays to the water-soluble fraction of 20 equivalent PM10 filters.
The OP of the insoluble fraction (IOP) was calculated as the difference between the TOP and the
WSOP. Moreover, each PM10 sample was analyzed for the water-soluble and insoluble fractions of
10 elements (Al, Cr, Cs, Cu, Fe, Li, Ni, Rb, Sb, Sn) identified as primary elemental tracers of the
main emission sources in the study area. A principal component analysis (PCA) was performed
on the data obtained to identify the predominant sources for the determination of TOP, WSOP, and
IOP. Results showed that water-soluble PM10 released by traffic, steel plant, and biomass burning is
mainly responsible for the generation of the TOP as well as of the WSOP. This evidence gave strength
to the reliability of the results from OP assays performed only on the water-soluble fraction of PM.
Lastly, the IOPDCFH and IOPDTT were found to be principally determined by insoluble PM10 from
mineral dust.

Keywords: toothbrush detachment; PM water suspension; total oxidative potential (TOP);
ascorbic acid (OPAA) assay; dithiothreitol (OPDTT) assay; 2′,7′-dichlorofluorescein (OPDCFH) assay;
elemental tracers

1. Introduction

Air pollution is widely recognized as a key topic in public health protection actions [1,2].
Exposure to particulate matter (PM) is one of the major global health concerns [3,4], since
it may adversely affect human health, leading to the development of several chronic and
acute pathologies, such as cardiovascular and respiratory diseases, lung cancer, bronchitis,
diabetes, and neurodevelopmental disorders [5–8]. A growing number of epidemiological
studies reported associations of PM pollution with health effects also at low levels, often
below current air quality standards [9,10]. Therefore, the evaluation of exposure to PM and
associated health risks is crucial for planning targeted mitigation strategies and policies to
protect human health.

The main cytotoxicity mechanism involved in developing damaging health effects
and promoting chronic diseases is the ability of PM to induce oxidative stress, due to the
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interaction between cells and particles and the production of excess reactive species, such as
reactive oxygen species (ROS), reactive nitrogen species (RNS) and reactive carbon species
(RCS), which can upset the balance of intracellular oxidants and antioxidants [11–13]. PM
can trigger oxidative responses by different pathways, such as the introduction of particle-
bound ROS into the respiratory system, or the introduction of redox-active species inducing
the catalytic generation of reactive species and, thus, the depletion of antioxidants [14–16].

Acellular assays have been widely used to measure the oxidative potential (OP) of
particles in order to provide a proxy of the oxidative properties of PM [17], as they are rec-
ognized as valid exposure metrics to investigate the effects of PM on living organisms [18].
OP is frequently measured by the ascorbic acid assay (OPAA), which provides a measure
of the particle-induced depletion of chemical proxies for the cellular ascorbic acid antioxi-
dant, and by the dithiothreitol assay (OPDTT) that is based on the PM-catalyzed electron
transfer from a chemical surrogate of cellular reducing agents (i.e., adenine dinucleotide,
NADH, and nicotinamide adenine dinucleotide phosphate, NADPH) to O2 [17,19–21].
In addition, the dichlorofluorescein assay (OPDCFH) is often applied to determine OP of
PM samples, although the assay was originally used to monitor ROS formation in the
cellular environment [22,23]. When applied in acellular assays, DCFH responds to the ROS
already present in particles, and not to the ROS formed by redox processes (as AA and
DTT assays). Indeed, it measures particle-bound ROS, which are inherently adherent to the
particles, releasing a fluorescent intensity that is converted into equivalent H2O2 to express
the final ROS concentration [22]. Therefore, the DCFH assay is conventionally included
in OP assays in several works in this research field [17,24–26]. Each OP assay is sensitive
to different oxidative properties of PM, and appears to have different relationships with
health outcomes [16,17,27]. Therefore, there are no appropriate criteria for choosing the
most representative assay and the synergic application is frequently suggested [28–30].

Water-soluble and insoluble fractions of PM exhibit different mechanisms of action
in biological systems [30–32], and while it has been shown that insoluble species can con-
tribute significantly to the toxicological potential of PM [27,30,33], most of the literature
OP data refer only to the PM water-soluble fraction, which is considered more bioavail-
able [34,35]. Insoluble species have shown an intrinsically high redox activity and the
capability of exerting a wide spectrum of negative health endpoints, such as the generation
of oxidative stress markers in human cells, the disruption of the cell membrane, and the
induction of cellular DNA damage [11,36–39]. Therefore, various studies have suggested
that insoluble components of PM may play an important role in generating oxidative
damage and highlight the need to investigate the OP of insoluble particles [27,28,40,41].
However, the application of the OP assays to insoluble PM is very difficult, and thus it is
still not clear how much insoluble PM may contribute to the OP.

In recent work, the contribution of insoluble components to the OP was evaluated
directly on the aqueous suspension of PM10 field filters, without any preliminary filtration
step, by adding reagents of each assay directly in contact with the sampled filter immersed
in the extraction solution [15,42]. However, uncertainty associated with the measurements
was observed and was probably due to the operative limits of performing OP assays
directly on particles too embedded in the membrane filters. On the other hand, Wang et al.
(2013) and Daher et al. (2011) evaluated the redox activity of PM by collecting particles
directly into a liquid medium through a BioSampler, and by applying OP assays to the
unfiltered aqueous suspension [40,43]. However, the OP of PM is still mainly quantified by
offline assays in extracts of aerosol particles collected on filters [25,44]. In other studies, the
contribution of PM insoluble species to the OP was evaluated using ultrasounds or organic
solvents for the extraction of the insoluble fraction of PM [30,33,45]. However, ultrasounds
have been shown to induce the formation of ROS in the solution, while organic solvents
may themselves alter the OP of PM, introducing a bias in the toxicological assessment.
Moreover, it has been demonstrated that different extraction procedures generate significant
differences in the measured OP of PM [19], thus leading to misinterpretation of the results
obtained. These studies have considered separately the contribution of the water-soluble
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and/or insoluble fraction to the OP. However, with the aim of investigating the possible
toxicological effects related to PM exposure under real-world conditions, it would be useful
to apply OP assays directly to a PM water suspension for the assessment of the overall OP
of PM (water-soluble and insoluble species).

To this aim, a non-invasive, simple, and efficient method, recently validated by Mas-
simi et al. [46] for the recovery of the elements in PM10, was used for the detachment and
suspension in water of intact PM10 from field filters by using an electrical toothbrush [47,48].
The retrieved PM10 water suspension was used for the assessment of the overall OPDCFH,
OPAA, and OPDTT of intact PM10 samples (water-soluble and insoluble fraction) and for
the evaluation of the real contribution of insoluble particles to PM redox properties.

2. Materials and Methods
2.1. Sampling Site and Procedure

PM10 filters were collected in the city of Terni, in Central Italy, in the Region of Umbria
(42◦34′ N; 12◦39′ E) at the sampling site Prisciano (PR) of the Environmental Protection
Agency of Umbria Region (ARPA Umbria). The sampling site was selected for its proximity
to a steel plant (geographical coordinates: 42◦34′20.30′′ N; 12◦40′44.23′′ E) and for the high
documented concentration of several toxic elements present mainly in the insoluble fraction
of PM10 [49,50].

Two single-line samplers (Giano sampler, Dadolab Srl, Cinisello B., Milan, Italy),
equipped with sampling heads for PM10 certified UNI EN 12341 (2014) [51] and poly-
tetrafluoroethylene membrane filters (PTFE; 47 mm diameter, pore size 2 µm, Cobetter
Filtration Equipment Co., Ltd., Hangzhou, China), worked in parallel at 2.3 m3/h to collect
24-h PM10 filters for 20 days, from 5 to 24 May 2021. In total, 20 couples of twin PM10 field
filters were collected and analyzed.

2.2. Analytical Procedure

PM10 filters collected from one of the two sample lines were processed by follow-
ing a previously optimized and detailed chemical fractionation procedure, involving the
water-extraction of PM10 filters and the acid digestion of the residue, followed by elemental
analysis of both the water-soluble and insoluble fractions [49,50,52,53]. After the removal
of the supporting polymethyl pentene ring from each sampled filter, PM10 filters were
immersed in 10 mL of deionized water (produced by Arioso UP 900 Integrate Water Purifi-
cation System, Seoul, Korea) and then extracted by rotating agitation (Rotator, Glas-Col,
Hangzhou Yooning Instrunents, Hangzhou, Zhejiang, China) for 30 min at 60 rpm. The
obtained solution was then filtered through a nitrocellulose filter (NC filter; pore size
0.45 µm, Merck Millipore Ltd., Billerica, MA, USA) to obtain the PM10 water-soluble frac-
tion. Subsequently, the PM10 filters containing the residue and the nitrocellulose filter
used for the filtration were acid-digested in a microwave oven (Ethos Touch Control with
Q20 rotor, Milestone, Sorisole, Bergamo, Italy) using 2 mL of HNO3 (67%, Promochem,
Wesel, Germany) and 1 mL of H2O2 (30% Suprapur, Merck Millipore Ltd., Billerica, MA,
USA). The digested solutions were diluted to 50 mL with deionized water and filtered by
nitrocellulose syringe filters (diameter 25 mm, pore size 0.45 µm, GVS Filter Technology,
Morecambe, England, UK) to obtain the PM10 insoluble fraction. Water-soluble and in-
soluble fractions of PM10 samples were analyzed for the determination of 10 elements
(Al, Cr, Cs, Cu, Fe, Li, Ni, Rb, Sb, Sn) in the two fractions using quadrupole inductively
coupled plasma mass spectrometry (ICP-MS, Bruker 820-MS, Billerica, MA, USA). Fur-
ther information about the instrumental conditions and performance of the method is
reported in Astolfi et al. [54]. The analyzed elements were selected as they were already
identified as primary elemental tracers of the predominant emission sources in the Terni
basin [49,50]. The minimum detection limit (MDL), concentrations, the mean and standard
deviation of PM10 mass, and of the elements analyzed in the water-soluble and insoluble
fraction of PM10 collected at PR are reported in Table 1. PM10 mass concentration data
were obtained from ARPA Umbria reports available online (www.arpa.umbria.it, accessed
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on 25 January 2022). Average solubility percentages (%) of the elements in the 20 PM10
samples are shown in Figure 1.
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Figure 1. Average solubility percentages (%) of the elements in the 20 PM10 samples collected at PR
and average contribution percentages (%) of the two solubility fractions to the TOPDCFH, TOPAA,
and TOPDTT.

Equivalent PM10 filters from the second sample line were instead subjected to PM10 tooth-
brush detachment and suspension in water, as thoroughly described in Massimi et al. [46].
This method has been already applied only by Süring et al. [47,48], who used this procedure
to quantify allergen-loaded particles in PM10 by flow cytometry. Briefly, each filter was put
in a polystyrene Petri dish of 50 mm diameter and overlaid with 10 mL of deionized water.
Subsequently, the filter was held with PTFE tweezers and brushed for 2 min using an electri-
cal toothbrush with a sensitive brush head (Braun, Germany, Oral-B Vitality Sensitive). The
obtained total PM10 water suspension was then used in this study for the application of the
three OP assays. The performance of this method for the recovery of the elements in PM10
was evaluated by Massimi et al. [46] after applying the chemical fractionation procedure
described above to the obtained PM10 water suspensions and to equivalent PM10 samples
not subjected to the toothbrush detachment, revealing an efficiency of approximatively 70%
for the recovery of the elements. Moreover, this method is described in Süring et al. [47,48].
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Table 1. Minimum detection limit (MDL), concentrations, mean and standard deviation of PM10 mass, and of the elements analyzed in the water-soluble and
insoluble fraction of the 20 PM10 samples collected at PR. PM10 mass concentration was not detected (N.D.) on 17, 18, and 24 May 2021.

,

Water-Soluble Fraction (ws) Insoluble Fraction (i)

PM10 Al Cr Cs Cu Fe Li Ni Rb Sb Sn Al Cr Cs Cu Fe Li Ni Rb Sb Sn

UoM µg·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3 ng·m−3

MDL 5 1.7 0.063 0.00076 0.033 3.3 0.045 0.031 0.018 0.051 0.46 4.7 1.9 0.00054 0.44 22 0.018 0.71 0.039 0.074 0.11
05/05/2021 26 21 2.5 0.017 0.73 7.6 0.27 0.4 0.34 0.059 0.065 178 97 0.058 10 661 0.22 31 0.39 0.39 1.1
06/05/2021 37 23 1.6 0.027 0.71 6.9 0.90 0.38 0.45 0.048 0.048 447 135 0.15 20 1157 1.3 59 0.97 0.55 2
07/05/2021 36 25 4 0.025 1.7 9 0.45 0.8 0.43 0.14 0.076 371 246 0.14 23 1618 0.041 74 0.95 1 2.5
08/05/2021 20 29 1.8 0.011 1.3 10 0.22 0.53 0.2 0.14 0.36 117 52 0.035 7 441 0.12 23 0.23 0.32 1.5
09/05/2021 24 30 2.6 0.01 1.1 12 0.12 0.69 0.36 0.14 0.16 143 69 0.039 13 402 0.13 37 0.45 0.24 0.99
10/05/2021 21 10 1.1 0.012 0.93 10 0.15 0.41 0.41 0.2 0.13 148 52 0.051 6.7 306 0.15 9 0.59 0.3 0.68
11/05/2021 21 63 4.1 0.028 1.5 16 0.68 0.6 0.7 0.23 0.22 355 109 0.11 10 879 0.4 24 0.71 0.68 1.5
12/05/2021 25 20 2.2 0.029 1.4 8.2 0.46 0.47 0.41 0.051 0.041 224 114 0.072 17 944 0.3 52 0.43 0.5 1.7
13/05/2021 29 11 2.2 0.022 1.3 7.1 0.66 0.68 0.37 0.05 0.05 158 44 0.034 9 384 0.34 21 0.26 0.22 0.68
14/05/2021 20 28 2.3 0.029 1.3 8.6 0.17 1.1 0.38 0.11 0.24 124 202 0.033 23 1101 0.11 184 0.16 0.46 2.2
15/05/2021 18 7.2 1.2 0.009 0.42 5.5 0.05 0.33 0.16 0.10 0.043 51 39 0.011 4.1 227 0.041 15 0.11 0.19 0.52
16/05/2021 13 25 2 0.012 0.79 9 0.15 0.45 0.33 0.084 0.04 277 508 0.058 31 2791 0.23 151 0.45 0.88 2.8
17/05/2021 N.D. 28 1.5 0.035 0.19 8.3 0.57 0.15 0.55 0.043 0.031 472 153 0.13 14 945 0.8 40 0.71 0.51 2.2
18/05/2021 N.D. 24 2.7 0.019 0.88 7.8 0.28 0.31 0.25 0.062 0.072 121 63 0.038 6.8 409 0.22 13 0.23 0.25 0.8
19/05/2021 20 15 1.1 0.0067 0.35 3.4 0.17 0.13 0.14 0.048 0.15 57 16 0.013 1.8 138 0.078 3.9 0.15 0.11 0.34
20/05/2021 10 58 1.2 0.015 0.72 8.6 0.40 0.35 0.3 0.052 0.044 333 101 0.069 10 604 0.56 34 0.54 0.36 0.92
21/05/2021 33 56 3.2 0.038 1.8 15 1.15 0.92 0.6 0.15 0.11 228 102 0.081 16 796 0.36 64 0.46 0.42 1.3
22/05/2021 31 14 2 0.012 0.91 12 0.11 0.35 0.31 0.45 0.083 182 88 0.046 5.5 344 0.17 10 0.39 0.51 0.71
23/05/2021 17 26 5.2 0.01 1.1 13 0.30 0.49 0.37 0.24 0.084 377 181 0.084 12 1185 0.39 36 0.62 0.65 1.3
24/05/2021 N.D. 9 2.1 0.012 0.9 8.3 0.15 0.51 0.24 0.1 0.074 127 95 0.034 5.3 335 0.13 7.1 0.34 0.24 0.56

Mean 24 26 2.3 0.019 1 9 0.37 0.5 0.36 0.12 0.11 225 123 0.064 12 783 0.3 44 0.46 0.44 1.3
Std. Dev. 7.7 16 1.1 0.01 0.43 3.1 0.29 0.24 0.14 0.1 0.085 127 107 0.04 7.5 613 0.29 47 0.25 0.24 0.72
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2.3. Oxidative Potential Measurements

The OPDCFH, OPAA, and OPDTT assays were used to assess the OP of the 20 pairs
of PM10 equivalent samples.To obtain the water-soluble OP (WSOP) and total OP (TOP,
water-soluble and insoluble PM10), the three OP assays were simultaneously applied to
the water-soluble fraction of PM10 filters obtained by following the chemical fractionation
procedure described in Section 2.2, and to the PM10 aqueous suspension retrieved by
applying the toothbrush detachment to the equivalent PM10 filters. Furthermore, the OP
of the insoluble fraction (IOP) was calculated as the difference between the TOP and the
WSOP. The average contribution percentages (%) of the two solubility fractions to the
TOPDCFH, TOPAA, and TOPDTT are shown in Figure 1. The OP analytical measurements
performed in this study followed the validated and frequently used procedures [26,42,50]
largely described below.

2.3.1. OPAA

For both the PM10 equivalent samples, the OPAA followed the method reported by
Fang et al. [21]. Phosphate buffer measuring 300 µL (0.5 mM) and 100 µL of AA reagent
(2 mM; Sigma–Aldrich, St. Louis, MO, USA) was added to 2.5 mL of sample solution. Then,
the absorbance of the reaction mixture was recorded at 265 nm wavelength at different
reaction times (0, 10, and 20 min) using UV-Vis absorption spectrometry (Varian Cary
50 Bio UV-Vis; Varian Inc., Palo Alto, CA, USA). Blanks were always measured in parallel.
OPAA was calculated as the AA depletion rate per sampled volume (nmol AA min−1·m−3)
according to Equation (1).

ơAA = −ơAbs × N0

Abs0
, OPAA =

ơAAs − ơAAb
Va
Ve
× VS

(1)

where ơAbs is the slope of the absorbance of operative blanks vs. time (min−1), Abs0 is
the initial absorbance calculated from the intercept of the linear regression of absorbance
vs. time, N0 is the number of AA moles added into the reaction mixture (200 nmol), ơAAs
and ơAAb are the rates of AA consumption for the sample and for the blank, respectively
(nmol·min−1), Ve and Va are the extraction volume and sample volume added to the
reaction mixture, respectively, and Vs is the PM sampled volume (m3).

2.3.2. OPDTT

To perform OPDTT, the solution of PM10 equivalent samples was split into three
aliquots of 0.7 mL each (2.1 mL in total), then incubated at 37 ◦C with 0.1 mL of DTT (1 mM;
Sigma–Aldrich, USA) and 0.2 mL of potassium phosphate buffer (1 M). Then, 1 mL of
trichloroacetic acid (10% TCA; Sigma–Aldrich, USA) was added to the mixture at different
reaction times (0, 10, and 20 min) to stop the DTT reaction. An aliquot of the reaction
mixture (1 mL) was taken and mixed with 2 mL of tris-buffer (0.08 M, containing EDTA
4 mM) and with 50 µL of 5,5-dithiobis-2-nitrobenzoic acid (DTNB; Sigma–Aldrich, USA) to
form 2-nitro-5-mercaptobenzoic acid (TNB) for a colorimetric reaction with the residual
DTT. The obtained solution was then measured at 412 nm using the UV-Vis spectrometer.
Furthermore, blanks were measured in parallel to samples. OPDTT was expressed as DTT
consumption rate per sampled PM volume (nmol DTT min−1·m−3), according to Equation (2).

ơDTT = −ơAbs × N0

Abs0
, OPDTT =

ơDTTs − ơDTTb
Va
Ve
× Vs

(2)

where ơAbs is the slope of the absorbance of operative blanks vs. time (min−1), Abs0 is the
initial absorbance calculated from the intercept of the linear regression of absorbance vs.
time, N0 is the number of DTT moles added in the reaction mixture (100 nmol), ơDTTs and
ơDTTb are the rates of DTT consumption for the sample and for the blank, respectively
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(nmol·min−1), Ve and Va are the extraction volume and sample volume added to the
reaction mixture, respectively, and Vs is the PM sampled volume (m3).

2.3.3. OPDCFH

DCFH solution was prepared by dissolving 4.873 mg of the 2′,7′-dichlorofluorescein
diacetate (DCFH-DA; Sigma–Aldrich, USA) in 5 mL of ethanol (EtOH, 96%) in the dark.
Then, 20 mL NaOH 0.01 M were added to favor the de-acetalization reaction. The obtained
solution was kept in the dark at room temperature for at least 30 min before use. DCFH
reagent measuring 125 µL (5 µM) and 5 mL of HRP (0.5 units mL−1) dissolved in a sodium
phosphate buffer (pH 7.4; 25 mM) were added to 1.5 mL of the solution of PM10 equiv-
alent samples. The reaction mixture was placed in the thermostatically controlled water
bath at 37 ◦C for 5 min. The DCFH became fluorescent dichlorofluorescein (DCF) upon
reaction with ROS. Hence, the concentration of DCF was measured using fluorescent spec-
troscopy (Jasco FP-920; excitation at 427 nm, emission at 530 nm). Standard H2O2 solutions
(5 × 10−8, 1 × 10−7, 2 × 10−7, 5 × 10−7, and 1 × 10−6 M) were used to obtain a calibration
curve to convert the fluorescence intensity into H2O2 equivalents, which were used as indi-
cators of the reactive species reactivity, thus obtaining OPDCFH values (nmol H2O2 m−3).

2.4. Data Analysis

The paired sample t-test was used to observe the significance of the differences between
WSOP and TOP results obtained by each OP method applied to the 20 couples of equivalent
PM10 samples in order to evaluate the significance of the contribution of insoluble particles
to the generation of the TOP. A p-value less than 0.05 was considered statistically significant.

A principal component analysis (PCA) was carried out on the matrix of the data
(580 data points) composed of 20 PM10 samples and 29 variables: OPDCFH, OPAA and OPDTT

for the water-soluble OP (WSOPAA, WSOPDTT and WSOPDCFH), insoluble OP (IOPAA,
IOPDTT and IOPDCFH) and total OP (TOPAA, TOPDTT and TOPDCFH), and 10 elements in
the water-soluble (Al_ws, Cr_ws, Cs_ws, Cu_ws, Fe_ws, Li_ws, Ni_ws, Rb_ws, Sb_ws,
Sn_ws) and insoluble fraction (Al_i, Cr_i, Cs_i, Cu_i, Fe_i, Li_i, Ni_i, Rb_i, Sb_i, Sn_i) of the
PM10 samples. The matrix of the data was transformed by column mean centering and row
and column autoscaling to correct variations in the different scaling of the variables before
performing the PCA [55,56]. The principal component analysis was performed using the
statistical software CAT (Chemometric Agile Tool) based on the R-project for statistical
computing, Ver. 3.0, 32-bit.

3. Results and Discussion
3.1. WSOP vs. TOP

The contribution of the PM10 insoluble fraction to the TOP was assessed comparing the
results obtained by the OPDCFH, OPAA, and OPDTT assays performed on the water-soluble
fraction of PM10 (WSOP) to the results achieved by applying the three assays to the aqueous
suspension of intact PM10 (water-soluble and insoluble PM10; TOP). WSOP, TOP, and IOP
(insoluble OP obtained from the difference between TOP and WSOP) obtained results are
shown in Figure 2 and reported in Table 2 along with the percentage of the contribution of
IOP to TOP.

TOP values were found to be significantly higher with respect to those of the WSOP
for all the three OP assays. In detail, for the OPDCFH, OPAA, and OPDTT assays, the p-value
between the TOP and the WSOP is 0.00016, 0.00096, and 0.0022, respectively, confirm-
ing a significant contribution of the PM insoluble fraction to the redox properties of the
20 PM10 samples.

OPAA (Figure 2b) showed higher values for both the WSOP and the TOP on 7, 10,
11, 21, and 23 May, when the highest concentrations of water-soluble Cu were recorded
(Table 1), to which the OPAA is well-known to be selectively responsive [21,57,58].
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Table 2. WSOP, TOP, and IOP values for the OPDCFH, OPAA, and OPDTT assays applied to the
20 PM10 samples collected at PR.

DCFH AA DTT

WSOP TOP IOP IOP/TOP WSOP TOP IOP IOP/TOP WSOP TOP IOP IOP/TOP

UoM nmol H2O2 m−3 % nmol AA min−1·m−3 % nmol DTT min−1·m−3 %

MDL 1.1 × 10−10 0.0096 0.0058
05/05/2021 1.1 × 10−8 2.2 × 10−8 1.1 × 10−8 49 0.37 0.42 0.051 12 0.32 0.49 0.17 35
06/05/2021 6.8 × 10−9 1.9 × 10−8 1.2 × 10−8 63 0.25 1.2 0.99 80 0.077 0.79 0.71 90
07/05/2021 1.1 × 10−8 2.2 × 10−8 1.1 × 10−8 51 1.6 2.1 0.36 18 0.43 0.82 0.39 48
08/05/2021 1.8 × 10−8 1.9 × 10−8 4.7 × 10−10 2 0.16 0.94 0.78 83 0.63 0.97 0.34 35
09/05/2021 1.7 × 10−8 2.1 × 10−8 3.9 × 10−9 18 0.67 1.4 0.69 51 0.75 0.89 0.14 15
10/05/2021 1.1 × 10−8 1.2 × 10−8 8.7 × 10−10 8 0.69 1.9 1.2 64 0.86 0.86 0.0015 0.17
11/05/2021 3.4 × 10−8 4.1 × 10−8 6.6 × 10−9 16 0.28 1.6 1.3 82 0.61 1.4 0.83 58
12/05/2021 8.2 × 10−9 2.1 × 10−8 1.2 × 10−8 59 1.5 1.7 0.25 15 0.19 0.22 0.02 9
13/05/2021 6.9 × 10−9 1.2 × 10−8 5.2 × 10−9 43 0.69 1.5 0.84 55 0.52 0.71 0.19 27
14/05/2021 1.9 × 10−8 1.9 × 10−8 4.4 × 10−10 2 0.46 1.5 1.1 69 0.46 0.84 0.38 45
15/05/2021 1.5 × 10−9 2.4 × 10−8 2.3 × 10−8 94 0.62 1.5 0.89 59 0.51 1.1 0.49 49
16/05/2021 9.3 × 10−9 9.9 × 10−9 6.3 × 10−10 6 0.04 0.89 0.86 96 0.26 0.59 0.33 56
17/05/2021 7.4 × 10−9 1.9 × 10−8 1.2 × 10−8 62 0.47 0.91 0.44 48 0.11 1.1 0.96 90
18/05/2021 1.5 × 10−8 3.1 × 10−8 1.5 × 10−8 50 1.1 1.2 0.18 15 0.39 0.78 0.39 50
19/05/2021 1.4 × 10−8 1.8 × 10−8 4.3 × 10−9 23 0.33 0.92 0.59 64 0.0011 0.72 0.72 99
20/05/2021 1.9 × 10−8 1.9 × 10−8 1.1 × 10−9 5 0.14 0.58 0.44 76 0.079 0.11 0.021 21
21/05/2021 2.2 × 10−8 3.3 × 10−8 1.6 × 10−8 42 0.96 1.6 0.65 41 1.19 1.2 0.022 1.8
22/05/2021 1.9 × 10−8 2.9 × 10−8 9.8 × 10−9 33 0.42 0.62 0.21 33 0.056 0.81 0.75 93
23/05/2021 1.8 × 10−8 1.8 × 10−8 8.1 × 10−10 4 0.59 3.9 3.3 85 0.41 0.51 0.11 22
24/05/2021 1.5 × 10−8 2.4 × 10−8 8.9 × 10−9 37 0.59 1.9 1.3 69 0.04 0.31 0.27 86

Mean 1.4 × 10−8 2.2 × 10−8 7.6 × 10−9 35 0.59 1.4 0.82 58 0.39 0.76 0.36 48
Std. Dev. 7.1 × 10−9 7.7 × 10−9 6.2 × 10−9 81 0.42 0.74 0.69 93 0.31 0.32 0.3 91

On 23 May, TOPAA was significantly higher than WSOPAA (3.9 and 0.59, respectively).
This was probably due to the higher contribution of crustal dust to PM10. In fact, on that day,
much higher concentrations of all the elements released in the insoluble fraction of PM10
by resuspension of coarse mineral dust [59–61], such as Al, Cs, Fe, Li e Rb (Table 1), were
recorded. It is well-known that OPAA predominantly responds to coarse particles [26,62],
and it is assumed that a relevant contribution to the TOP was due to a higher contribution
of soil dust on this day.

OPDCFH and OPDTT showed higher TOP with respect to WSOP on 21 and 17 May,
respectively, when the highest concentrations of crustal dust elements were recorded,
which therefore confirms a significant contribution of soil dust to the TOP. Both the assays
exhibited the highest WSOP and TOP on 11 and 21 May, when higher concentrations of Fe,
Cr, and Ni from the steel plant [49,63], and Cu, Sb, and Sn from traffic [64–66] were released
in water-soluble PM10. Although the insoluble fraction of these elements (especially Fe, to
which the DTT was highly sensitive) [67] presented significantly higher concentrations, the
OP assays appeared to be predominantly responsive to their water-soluble fraction, which
therefore plays a crucial role in the generation of the TOP.

The discussed findings partially agree with the findings of Frezzini et al. [42], which
revealed that the insoluble fraction of PM provided a significant contribution to the TOPAA

and left open questions regarding the TOPDCFH and TOPDTT, forwhich the insoluble
fraction did not seem to contribute significantly to the TOP, probably due to issues related
to the experimental procedure. In detail, the OPAA values were significantly influenced by
the PM insoluble fraction, probably due to the higher sensitivity of this assay to the coarser
insoluble particles [26,50]. These particles may have moved from the PTFE filters immersed
in the aqueous solution during the extraction procedure, and reacted with the solutions
used for the OPAA assay. Conversely, the insoluble fraction did not determine a significantly
higher OPDCFH and OPDTT. This might be explained by the higher sensitivity of these
two assays through the fine PM particles [67,68], which are almost predominantly soluble
in water [61] and, accordingly, contributed more to WSOP rather than to TOP. Another
possible explanation is that particles were probably fixed too deeply in the immersed
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PTFE filter to fully react with the reagents of the OPDCFH and OPDTT assays to generate
significantly higher TOP with respect to WSOP.

The application of the TOP assays directly to the aqueous suspension of intact particles
detached from PM10 filters overcame the operative limits of performing OP assays directly
on solutions containing the immersed PM filter. In fact, the described method allowed the
authors to detach and carry in suspension a high fraction of the particles sampled on the
filter, approximatively 70% in reference to the recovery of the elements [46].

These results revealed the non-negligible contribution of the insoluble particles to
the TOPDCFH and TOPDTT, in agreement with previous findings that demonstrated the
relevance of the PM insoluble fraction to the total OP of PM [27,28,45].

3.2. Principal Component Analysis

To identify tracers of emission sources that can determine the above-discussed OP
results, explorative PCA was performed on the WSOP, TOP, and IOP values for OPAA,
OPDTT, and OPDCFH, and the element concentrations in the water-soluble and insoluble
fraction of the 20 PM10 samples. Five significant components accounting for 78.4% were
obtained from the PCA. The variance explained by each component is of 29.7%, 17.6%,
13.3%, 9.1% and 8.5%, respectively.

The biplot of PC1/PC2 is reported in Supplementary Materials (Figure S1), along with
the scores and loadings obtained from the PCA (Table S1). The first component (PC1),
which represents 29.7% of the total variance, separates out the samples (scores) in which
the highest element concentrations (loadings) were recorded, and largely explains the
data variability due to daily variations in atmospheric conditions. However, PC1 only
distinguishes samples in which the highest concentrations of all the considered variables
were found, as distinct from those characterized by the lowest concentrations. On the
contrary, PC2, and PC3, which represent, respectively, 17.6% and 13.3% of the total variance,
separate the variables depending on their concentration variability among the sampling
days. PC2/PC3 are graphically summarized in the biplot of Figure 3.

PC2 and PC3 account for 31.1% of the total variance. In the biplot, the variables are
grouped in 4 main clusters, each one containing tracers of a specific emission source. The
cluster on the lower-left part of the biplot includes the insoluble elements typically released
by the steel plant and by non-exhaust traffic, such as brake abrasion (Cu_i, Cr_i, Fe_i, Ni_i,
Sb_i, and Sn_i) [64–66,69,70]. The cluster on the upper-left part of the biplot contains the
same elemental tracers of the group described above in their water-soluble fraction (Cu_ws,
Cr_ws, Fe_ws, Ni_ws, Sb_ws, and Sn_ws). The group on the upper-right part of the biplot
contains the water-soluble elements mainly released by biomass burning emission sources
(Cs_ws, Li_ws, and Rb_ws) [66,71–73]. Lastly, the cluster on the lower-right part of the
biplot includes insoluble elements considered as tracers of mineral dust (Al_i, Cs_i, Li_i,
and Rb_i) [50,74,75].

Results show that all the three OP assays for the WSOP and TOP are included in
the group of traffic and steel plant water-soluble tracers and in the same direction of
biomass burning elemental tracers along PC2. On the other hand, WSOP and TOP assays
do not seem to respond to the insoluble fraction of the elements released by traffic and
the steel plant. This constitutes a first indication that the total OP is dominated by the
water-soluble species present in the solution (Figure 1). Although it is known that WSOPAA

and WSOPDTT respond predominantly to transition metals, such as Cu and Fe [62,67,76],
the TOP, when using both the assays, was found to be sensitive mainly to the water-
soluble fraction of these elements, even if Cu and Fe, as well as the other non-exhaust
traffic and steel plant elemental tracers, were almost exclusively in their insoluble fraction
(Figure 1). Moreover, the predominant dependence of OPDCFH and OPDTT on traffic, steel
plant, and biomass burning water-soluble particles and the higher sensitivity of OPAA to
non-exhaust traffic is confirmed [50,77–79]. The response of the OPDCFH and OPDTT assays
to biomass burning tracers confirms previous findings [21,50,80,81] and highlights the



Atmosphere 2022, 13, 349 11 of 16

central role of the water-soluble species in determining PM redox properties, even when
TOP is considered.
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This represents a key finding, since it gives strength to the reliability of the OP results,
even if performed only on the water-soluble fraction of PM10. Overall, the application
of the OP assays to the intact particles detached from PM10 filters (water-soluble and
insoluble fraction) reveals that water-soluble PM10 released by traffic, steel plant, and
biomass burning was primarily responsible for the generation of the TOP.

Finally, it is worth noting that IOPDTT and IOPDCFH are clustered with the insoluble
Al, Cs, Li, and Rb, tracers of mineral dust, thus showing that considering only the insoluble
fraction of PM10, OPDTT, and OPDCFH are mainly responsive to soil particles [26,50,82,83].
The results obtained in this study are compared and tabulated with the findings of existing
works in the literature in Supplementary Materials (Table S2).

4. Conclusions

It is well known that the different PM components are responsible for several ef-
fects that can trigger harmful oxidative reactions and inflammation on living organisms,
contributing to genotoxicity and cytotoxic mechanisms responsible for cell damage. How-
ever, most of the studies conducted so far have exclusively evaluated the toxicity of the
water-soluble fraction of PM, which is considered more bioavailable and is more easily
extractable. Since it has been shown that insoluble species can contribute significantly to the
toxicological potential of PM, the evaluation of the OP of both PM fractions (water-soluble
and insoluble) is essential for the assessment of the total health risk induced by PM.

The application of an innovative method for the detachment and suspension in water
of intact PM10 (water-soluble and insoluble species) from the sampled filters allowed us to
evaluate the total OP of PM10 collected at a highly polluted industrial site, and to identify
specifically the contribution to the OP of every single fraction (water-soluble and insoluble).
By performing explorative PCA, it was possible to evaluate the response of the OPDCFH,
OPAA, and OPDTT assays to the various elemental fractions, and to identify the different
emission sources responsible for the WSOP, TOP, and IOP.

The results confirmed the different sensitivity of the three OP assays to the various
PM10 components. In particular, the dependence of OPDCFH and OPDTT on traffic, steel
plant, and biomass burning water-soluble particles, and the sensitivity of OPAA to non-
exhaust traffic, was reinforced.

Moreover, the application of the OP assays to the intact particles detached from PM10
filters (water-soluble and insoluble fraction) reveals that water-soluble PM10 released by
traffic, steel plant, and biomass burning is primarily responsible for the generation of the
TOP. This represents a key finding since it gives strength to the reliability of the OP results,
even if performed only on the water-soluble fraction of PM10. In addition, the insoluble
fraction of PM10 was found to be able to contribute to the IOPDCFH and IOPDTT, which
seem to respond to mineral particles.

Further studies will have to be carried out to verify these results and to confirm the
representativeness of the WSOP and TOP assays by comparison with biological endpoints.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos13020349/s1, Figure S1. Biplot of PC1/PC2 from the PCA performed on the WSOP, TOP
and IOP values for OPAA, OPDTT and OPDCFH, and element concentrations in the water-soluble
(_ws) and insoluble (_i) fraction of the 20 PM10 samples; Table S1. Scores and loadings of the five
significant components obtained by performing the PCA on the matrix of the data (580 data points)
composed of 20 PM10 samples and 29 variables; Table S2. Results of this study compared with other
findings available in the literature.
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