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Abstract: Droughts grow concurrently in space and time; however, their spatiotemporal propaga-
tion is still not fully studied. In this study, drought propagation and spatiotemporal characteristics
were studied in northern, northeastern, and central Thailand (NNCT). The NNCT is an important
agricultural exporter worldwide, and droughts here can lead to considerable pressure on the food
supply. This study investigated meteorological drought and soil drought in northern Thailand and
identified 70 meteorological drought events and 44 soil drought events over 1948–2014. Severe
droughts (droughts with long trivariate return periods) mainly occurred after 1975 and were centered
in northern and northeastern Thailand. Meteorological drought and soil drought that occurred
during 1979–1980 had the longest trivariate return periods of 157 years and 179 years, respectively.
The drought centers were mainly located in the Chao Phraya River basin and the Mun River basin.
The mean propagation ratios of all drought parameters (duration, area, severity) were lower than
1, indicating that the underlying surface can serve as a buffer to alleviate water deficits. Most of
the probability distribution coefficients and all drought propagation ratios of the three drought
parameters were found to change significantly based on a moving-window method, indicating that
the drought parameters and propagation from meteorological drought to soil drought were non-
stationary. Significant increasing trends were detected in mean values of most drought parameters,
ranging from 2.4%/decade to 16.6%/decade. Significant decreasing trends were detected in coeffi-
cients of skewness (Cs) of all drought parameters and coefficients of variation (Cv) of most drought
parameters, ranging from −3.3 to −12.4%/decade, and from −5.5 to −19.4%/decade, respectively.
The propagation ratios of all drought parameters showed significant increasing trends, indicating
that the function of the underlying surface as a buffer has become weaker. The drought propagation
ratios were found to be positively related to two climate indices, the phase index (PI) and the climate
seasonality index (CSI). These findings will help to develop a better understanding and management
of water resources in Thailand.

Keywords: spatiotemporal variation; drought identification; drought propagation; climate change;
Thailand

1. Introduction

Drought is a catastrophic natural disaster that occurs in both wet regions and dry
regions worldwide [1]. Droughts have a complex nature, as they involve interactions
between climatological and hydrological processes. Droughts are classified into mete-
orological droughts, soil droughts, and hydrological droughts [2]. Understanding the
spatiotemporal characteristics of droughts and their propagation is important for drought
management and drought disaster mitigation.

Various studies have attempted to explore the temporal characteristics of droughts.
Sheffield et al. [3] claimed that in the future, meteorological droughts are expected to
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increase both in severity and frequency due to less regional precipitation and more evapo-
ration. Wood and Sheffield [4] found that the global soil moisture showed a wetting trend
in general in the second half of the 20th century, while in some regions, including the
Indochina Peninsula, the soil moisture showed an opposite drying trend. Nevertheless,
drought evolves simultaneously in both space and time, and drought event analysis with
fixed drought areas ignores the spatial evolution of drought. In such cases, spatiotem-
poral information is partly discarded, so the real characteristics of droughts cannot be
captured [5–7]. After the development of the severity-area-duration (SAD) drought iden-
tification algorithm [8], an increasing number of studies focused on the spatiotemporal
characteristics of droughts [5–7,9,10]. Xu et al. [5] analyzed the meteorological drought
events of monsoon China over the past 50 years and found that severe droughts are densely
centered from the Northern China Plain to the downstream of the Yangtze River, with a
significant drying trend occurring in the southwestern part of the monsoon region. Liu
et al. [6] identified soil droughts in China and the northern Indochina Peninsula during
the past four decades, finding a significant wetting trend in the wet season and a signif-
icant drying trend in the dry season. The soil drought centers have shown significant
seasonal patterns, which were probably controlled by the monsoon systems. Compared
to the meteorological droughts identified by Xu et al. [5], the soil droughts in the same
area showed different frequencies and different centers, which is partly due to the drought
propagation from meteorological droughts to soil droughts, which we herein refer to as
‘drought propagation’.

Various studies have been carried out on drought propagation at the basin scale, and
its characteristics can be determined by considering both watershed properties and regional
climate [11]. The controlling watershed properties of drought propagation vary in different
regions and can be constant properties such as elevation [12], geological properties [13],
and variable properties such as land use [14]. The controlling climate factors can be aridity
and seasonality [15]. The relevant studies all consider certain fixed basins; that is, the
extent of the drought area is regarded as constant. Such analyses at the basin scale connect
meteorological droughts to related soil moisture droughts or hydrological droughts [15,16].
However, at a regional scale, drought events still cannot be defined within certain basins.
For droughts at a regional scale, the severity-area-duration (SAD) identification method
can be applied to capture droughts. Previous studies have successfully described a certain
type of drought in a region at one time, while the relations between different types of
droughts have not been fully considered. Liu et al. [10] attempted to link meteorological
drought events and hydrological events in the Yellow River basin using the SAD identifi-
cation method and successfully quantified the change in drought parameters (duration,
area, severity) during drought propagation from meteorological droughts to hydrological
droughts. However, in tropical monsoon regions where droughts and floods are equally
frequent, the drought propagation process is still poorly understood.

Previous studies on drought characteristics have mostly treated them as stationary [9,15,16].
However, in recent decades, the changes in climate conditions and anthropogenic activities
have called for hydrological analyses under non-stationary conditions [17,18]. Some studies
have attempted to capture the response of drought characteristics to climate change. Apurv
and Cai [19] estimated the stationarity of historical droughts in the United States since
1901 and found increasing meteorological drought risks since 1901 in the southeastern
US and California. Apurv and Cai [20] supposed an unchanged trend in the near future
and estimated the corresponding trends of soil droughts, streamflow droughts, and water
supply droughts, suggesting that the southwestern US will suffer severe water deficits
in all of the drought types. However, the drought propagation is herein supposed to be
unchanged. However, as mentioned above, drought propagation can be affected by both
the climate conditions and the underlying surface conditions. Since both climate and
some watershed properties, such as land use, can change, drought propagation can also
change. The change in drought propagation under climate change has also not yet been
fully studied.
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Thailand has the largest economy of the Indochina Peninsula and has long been one
of the world’s leading exporters of rice, with half of its labor force employed in agricul-
ture [21]. Thailand is prone to hydrological extremes, within which droughts are equally
susceptible to droughts as to floods [22]. Zhang et al. [23] declared a significant increasing
soil drought risk and a significant meteorological increasing drought risk since the 1950s,
with one of the increasing centers located in Thailand. Although studies have shown
the spatiotemporal distribution of historical droughts in nearby southwestern China [6],
studies on the spatiotemporal distribution of historical droughts and drought propagation
in Thailand are scant. To the author’s knowledge, the historical drought characteristics in
Thailand are also not sufficient, let alone the change in drought propagation characteristics.
To this end, Thailand is chosen as the study area.

The major objectives of the study are to determine the drought propagation charac-
teristics and historical spatiotemporal changes in drought events in the monsoon regions
of Thailand. The work is therefore organized as follows: the first part describes the back-
ground and the objectives of the research; the second part introduces the study region and
the data used in the research; the third part describes the methods used in the research;
the fourth part describes the spatiotemporal distribution and the propagation charac-
teristics of the droughts and shows the changes in the droughts and their propagation;
the fifth part discusses the changes and drivers of drought parameter distributions and
drought propagation and their implications and the uncertainties; the sixth part draws the
final conclusions.

2. Data and Study Area
2.1. Study Area

The study region (Figure 1) is located north of the Gulf of Thailand and contains
northern Thailand, northeastern Thailand, and central Thailand based on the four-region
system. The region covers most of the agricultural districts of Thailand, with an area of
approximately 440,000 km2. Here, the study region is referred to as the NNCT (northern,
northeastern, and central Thailand). Northern Thailand and central Thailand mainly
correspond to the Chao Phraya River, and northeastern Thailand mainly corresponds to
the Mekong River. The study region has a tropical monsoon climate and receives annual
precipitation from approximately 1100 mm to 1800 mm, with more precipitation in the south.
The annual potential evaporation rate ranges from approximately 1600 mm to 2400 mm.
The region is located in a typical tropical monsoon zone. Ninety percent of the annual
precipitation falls during the wet season from May to October. Two peaks in precipitation
occur, in May and September, and are dominated by the Indian summer monsoon and
tropical cyclones, respectively [24]. The annual mean temperature is approximately 27 ◦C.
The temperature is highest from April to May and is the lowest from December to the
following January.

2.2. Data Used in the Study

The extent of NNCT is derived from the administrative divisions provided by the
Royal Irrigation Department of Thailand. The potential evaporation and soil moisture
data are from the GLDAS Noah 2.0 reanalysis dataset (available via the flowing link: https:
//disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1 (accessed on 1 January 2022),
and later referred to as GLDAS), and the precipitation data are from the Global Pre-
cipitation Climatology Center (available via the link: http://opendata.dwd.de/climate_
environment/GPCC/html/download_gate.html, and later referred to as GPCC (accessed
on 1 January 2022)). The soil moisture in the 0–10 cm layer in GLDAS serves as the soil
moisture conditions when soil moisture drought is estimated. The two products have been
used for drought description and have been proven to be capable of describing drought
both regionally [25] and globally [26]. GLDAS is capable of capturing droughts in densely
vegetated regions as a reanalysis product [25,26]. Both datasets can provide the monthly hy-

https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS&page=1
http://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html
http://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html
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drological variables of a 0.25◦ resolution from 1948 to 2014, and the hydrological variables
in the study region are then extracted for the calculation of drought indices.
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3. Methodology
3.1. Drought Indices Used in the Study

The drought index for meteorological drought used in the study is the standard
precipitation evapotranspiration index (SPEI) [27]. The difference in annual precipitation
and annual potential evaporation is used to capture the water surpluses or deficits, and
they are aggregated to obtain an aggregated surplus or deficit based on the time scale. A
three-parameter log-logistic distribution is then employed to fit the time series of each
month. A detailed introduction of the algorithm can be found in Xu et al. [5].

The drought index for soil moisture drought is the standard soil moisture index
(SSI) [28]. The SSI is calculated using the surface soil moisture of the GLDAS products.
Similar to the SPEI, the monthly precipitation series are accumulated first and are then
fitted by the gamma distribution of each month.

3.2. Three-Dimensional Identification of Drought

Three-dimensional drought identification was first proposed by Andreadis [8] and
has been improved in subsequent studies [5,7]. The three-dimensional drought identifica-
tion method measures drought events from three perspectives, time, space, and severity,
corresponding to drought duration, drought area, and drought severity, respectively. The
drought events are extracted using a space-time continuum identification method based
on the drought indices, and the algorithm can be divided into two components, including
spatial identification and temporal connection, as follows: (1) For each monthly step, the
drought indices (DIs) in this month are treated as individual cross-sectional data. Grids
with drought indices lower than −1 are treated as ‘under drought’. Then, the spatial con-
nection of the grids under drought is checked, and several drought patches are identified
in each cross section. (2) The link between drought patches in two adjacent months is
determined. Any pair of drought patches between two months belong to the same drought
event if they have an overlap area larger than a predetermined threshold (defined as the
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threshold area). A detailed introduction of the algorithm can be found in Xu et al. [5]. In
the present study, SPEI3 and SSI3 (with 3 months as the time scale) are selected to capture
seasonal droughts, and a threshold value of−1 is selected to identify drought conditions [5].
Wang et al. [29] suggested that the threshold area should be set to 1.5% of the study region.
Therefore, the threshold area is set to 22 grids (approximately 16,000 km2).

3.3. Probability Distributions of Drought and Return Period

Three parameters are calculated to characterize the identified drought events. They
are defined below [5]. Drought duration (D) is the persistence time of a drought event
and represents the time length of the drought event. Drought severity (S) is a cumulative
value and represents the water shortage. It denotes the moisture deficit accumulated over
the whole drought duration and areal extent. Drought area (A) reflects the affected area
during the entire period of drought. Theoretically, drought duration should be a continuous
variable, while the drought duration estimated here is discrete. Moreover, the drought area
has its minimum value and maximum value and is not convenient for frequency analysis.
Therefore, transformations used by Xu et al. [9] are applied here:

d = D + U (1)

a = − log
(

Am − A
Am − At

)
(2)

where U is a random variable uniformly distributed between −0.5 and 0.5, d is the con-
tinuous estimate of drought duration D, Am is the total area of the study region, At is the
minimum value of the affected area (the threshold area shown in Section 3.2), and a is the
corresponding ratio of drought area whose variation is expanded to all positive values. For
consistency, drought severity is denoted by s instead of S hereinafter.

The univariate cumulative distributions of the three drought parameters are then
fitted using six distribution functions, including an exponential distribution (later referred
to as exp), a gamma distribution (later referred to as gam), a generalized extreme value
distribution (later referred to as gev), a generalized Pareto distribution (later referred
to as gpd), a logistic distribution (later referred to as lgt), and a Pearson-III distribution
(later referred to as P3). The goodness of fit is tested by the Kolmogorov–Smirnov (K-S)
test [30]. The null hypothesis is that the fitted curve and the observations are from the same
distribution, so a lower K-S statistic and a higher p-value indicate a better fit. Therefore, the
root mean square error (RMSE), K-S statistic, and p-value of fit are employed to evaluate
the goodness of fit.

Multivariate cumulative distributions of the drought parameters are fitted via marginal
distributions (the univariate cumulative distributions) and copulas. Copulas are a set
of functions mapping from an n-dimensional interval to a 1-dimensional interval as C:
[0,1]n→[0,1]. Sklar [31] showed that the CDF H of an n-dimensional random vector
(x1, x2, . . . , xn) (later referred to as x) can be expressed via copulas as C:

H(x) = C(F1(x1), F2(x2), . . . , Fn(xn)), x = (x1, x2, . . . , xn) (3)

The application of copulas requires a strong correlation between the random vari-
ables (X1, X2, . . . , Xn). Therefore, it is vital to check the correlation between the drought
parameters before estimating the multivariate joint cumulative distributions.

In the case of bivariate joint distributions, the six joint distributions are fitted separately
as duration-area joint distributions, area-severity joint distributions, and severity-duration
joint distributions for meteorological droughts and soil droughts. In the case of trivariate
joint distributions, the two joint distributions are duration-area-severity joint distributions
for meteorological droughts and soil droughts. Six 2D copula functions, the Gaussian cop-
ula, t-Student copula, Clayton copula, Gumbel copula, Frank copula, and Joe copula, serve
as candidates for the bivariate copula. The copulas are further selected based on RMSE.
All of the 2D copula functions have three-dimensional forms, and the six corresponding
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copulas serve as candidates for the trivariate copula. The copulas with the lowest RMSE are
then used to estimate the multivariate cumulative distributions of the drought parameters.

The return period is defined as ‘the average time elapsing between two successive
realizations of a prescribed event’ [32] and is under a stationary hypothesis. It is worth
noting that the return periods here are estimated based on historical drought events; here,
they are based on the climatic conditions during 1948–2014.

The return period is herein calculated in a multivariate framework proposed by
Xu et al. [9]. In the univariate setting, the return period is defined as Equation (4) [33]:

T =
Nyear

Ndrought

1
1− FX

(
xp
) (4)

where Nyear and Ndrought are the number of years and drought events, respectively. FX is
the marginal distribution of the drought parameter X, and xp is the corresponding value of
parameter X at probability p.

Multivariate return period estimation is based on the ‘and’ return period [32]. In the
bivariate case, the return period is defined as Equation (5) [34]:

T =
Nyear

Ndrought

1
1− F1(x1)− F2(x2) + C12(F1(x1), F2(x2))

(5)

where C12 denotes the bivariate copula function of drought parameter X1 and X2, F1, F2 are
the marginal distribution functions, and x1, x2 are the values of the drought parameters X1
and X2 at the corresponding probability.

In the trivariate case, the return period is defined as [32]:

T =
Nyear

Ndrought
× 1

1− F1(x1)− F2(x2)− F3(x3) + C12(F1(x1), F2(x2)) + C23(F3(x3), F2(x2))
+C31(F1(x1), F3(x3))− C123(F1(x1), F2(x2), F3(x3))

(6)

where C23, C31 denote the bivariate copula functions, and C123 denotes the trivariate copula
function. F3 is the marginal distribution function of X3, and x3 is the value of the drought
parameter X3 at the corresponding probability.

3.4. Drought Propagation

Previous studies have attempted to capture the change in drought parameters during
the drought propagation process by comparing the cumulative distribution functions of
different types of droughts [15,16,19,20]. Apurv et al. [15] suggested that the drought
propagation process can be quantified by a ratio such as the drought propagation ratio, as
shown in Equations (7) and (8):

RD
SM,M =

(
∏j=0.1...1.0

qD
SM,j

qD
M,j

)1/10

(7)

RS
SM,M =

(
∏j=0.1...1.0

qS
SM,j

qS
M,j

)1/10

(8)

where qD
SM,j and qS

SM,j are the j-quantile values in the cumulative density curve of soil

moisture drought duration and severity, respectively. qD
M,j and qS

M,j are the j-quantile
values in the cumulative density curve of meteorological drought duration and severity,
respectively. Previous studies considered drought propagation at the basin scale, and
the drought area was considered constant. Herein, a variable drought area requires the
introduction of the drought propagation ratio of the area as Equation (9):
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RA
SM,M =

(
∏j=0.1...1.0

qA
SM,j

qA
M,j

)1/10

(9)

where qA
SM,j and qA

M,j are the j-quantile values in the cumulative density curve of soil
moisture drought duration and meteorological drought duration, respectively.

However, the drought propagation ratios above can only capture the difference in
the distribution of drought parameters, while the difference in the frequency of drought
events is not considered. To take the frequency of drought events into account, we suggest
that drought parameters with the same return period be compared instead of drought
parameters with the same quantile at the distribution curve. The calculation of drought
propagation ratios is revised using the following equations:

RD
SM,M =

∏10
j=1

qD
SM,ps,j

qD
M,pm,j

1/10

(10)

RA
SM,M =

∏10
j=1

qA
SM,ps,j

qA
M,pm,j

1/10

(11)

RS
SM,M =

∏10
j=1

qS
SM,ps,j

qS
M,pm,j

1/10

(12)

where ps,j and pm,j are the revised probabilities of soil moisture droughts and meteorologi-
cal droughts, respectively. The two parameters are calculated as follows:

1
1− ps,j

t
ns

= Tj =
1

1− p0,j
(13)

1
1− pm,j

t
nm

= Tj =
1

1− p0,j
(14)

where p0,j is 0.1× j and the original probability in the previous studies. Tj is the corre-
sponding return period, t is the total time length of the study period (67 years), ns and nm
are the numbers of soil moisture droughts and meteorological droughts, respectively.

Drought propagation ratios are regarded as constant features of basins in previous
studies and are determined by climate features and underlying properties [20]. Since
the regional climate and underlying surface might change during the study period, the
propagation ratios are also calculated by a moving-window method (see Section 3.5 for
details). Herein, the drought propagation ratios mentioned above capture the drought
propagation process of the whole study period (1948–2014) and are later referred to as the
‘mean drought propagation ratio’ to distinguish them from the drought propagation ratios
calculated from moving windows.

3.5. Temporal Analysis of Historical Droughts

Climate change and anthropogenic activities have been proven to affect the probability
distributions of hydrological variables such as rainfall [35] and streamflow [18], and they
can also affect drought propagation (as discussed in Section 1). Therefore, the changes in
drought characteristics are described by the change in drought probability distributions
and drought propagation.

Apurv and Cai [20] applied a set of 30-year moving windows to capture the potential
drought risks in the United States, with the precipitation in each moving window generated
from the rainfall series in the moving window. Here, we also use 30-year moving windows
to represent the change in drought characteristics. The probability distribution of drought



Atmosphere 2022, 13, 277 8 of 19

parameters in each window is represented by the coefficients of drought parameters in
the window (mean value, Cv, and Cs). The drought propagation ratios are also calculated
individually from each moving window and are later referred to as the ‘moving drought
propagation ratio’. The changes in the coefficients of drought parameter distributions and
drought propagation can reflect the change in drought characteristics.

The study period is from 1948 to 2014. Therefore, 38 30-year moving windows are
used to capture droughts under changing conditions. The Mann-Kendall test [36,37] was
employed to identify the change in drought characteristics in the study period, and the
significance level was set to 0.05.

4. Result
4.1. A Description of Historical Soil and Meteorological Droughts
4.1.1. Drought Events and the Return Period from 1948 to 2014

Based on the SPEI3 and SSI3 series, historical droughts with durations no less than the
time scale of drought indices (3 months, see Sections 3.1 and 3.2 for details) are identified.
From 1948 to 2014, 70 meteorological drought events and 44 soil drought events were
identified. Kendall’s rank correlation coefficients between D-A, D-S, and A-S are 0.61, 0.74,
and 0.90, respectively, and are all significant at the 0.01 level. Therefore, it is appropriate to
use copulas to estimate the return periods of drought events.

The drought parameters of the drought events in the whole study period are then
fitted by the seven considered distributions. The best fit is shown to be a generalized Pareto
distribution for all of the parameters of both soil drought and meteorological droughts
(see Figure 2 and Table 1 for the goodness of fit results). The goodness of fit results with
the copulas are shown in Figure 3 and Table 2. For the bivariate cases, the best copulas of
the soil droughts are all Joe copulas, and the best copulas of the meteorological droughts
are Frank copulas and Gumbel copulas. For the trivariate cases, the best copula of the soil
droughts is the Student’s t-copula, and the best copula of the meteorological droughts is
the Gumbel copula. Therefore, the univariate return periods, bivariate return periods, and
trivariate return periods of the drought events can be estimated with copulas.
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0.61, 0.74, and 0.90, respectively, and are all significant at the 0.01 level. Therefore, it is 
appropriate to use copulas to estimate the return periods of drought events. 

The drought parameters of the drought events in the whole study period are then 
fitted by the seven considered distributions. The best fit is shown to be a generalized Pa-
reto distribution for all of the parameters of both soil drought and meteorological 
droughts (see Figure 2 and Table 1 for the goodness of fit results). The goodness of fit 
results with the copulas are shown in Figure 3 and Table 2. For the bivariate cases, the best 
copulas of the soil droughts are all Joe copulas, and the best copulas of the meteorological 
droughts are Frank copulas and Gumbel copulas. For the trivariate cases, the best copula 
of the soil droughts is the Student’s t-copula, and the best copula of the meteorological 
droughts is the Gumbel copula. Therefore, the univariate return periods, bivariate return 
periods, and trivariate return periods of the drought events can be estimated with copulas. 
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Figure 2. The fitting results of the drought parameters. (a) refers to the fit result of meteorological
droughts, and (b) refers to the fit result of soil droughts. The x-axis is the cumulative probability
estimated by the distribution functions, and the y-axis is the cumulative probability estimated by
empirical functions.
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Table 1. The goodness of fits in the distributions of drought parameters.

(1) p-value

Exp Gam Gev Gpd Lgt P3
Soil Drought Duration 0.962 0.416 0.854 0.979 0.714 0.974

Meteorological Drought Duration 0.574 0.119 0.704 0.924 0.625 0.510
Soil Drought Area 0.029 0.035 0.969 0.999 0.948 0.124

Meteorological Drought Area 0.002 0.013 0.818 0.974 0.741 0.033
Soil Drought Severity 0.000 0.000 0.861 0.982 0.875 0.001

Meteorological Drought Severity 0.001 0.002 0.557 0.955 0.520 0.040
(2) RMSE

Exp Gam Gev Gpd Lgt P3
Soil Drought Duration 0.023 0.056 0.036 0.022 0.042 0.022

Meteorological Drought Duration 0.031 0.072 0.030 0.019 0.035 0.029
Soil Drought Area 0.092 0.083 0.029 0.021 0.030 0.074

Meteorological Drought Area 0.098 0.079 0.032 0.022 0.035 0.074
Soil Drought Severity 0.158 0.153 0.025 0.027 0.026 0.147

Meteorological Drought Severity 0.093 0.082 0.037 0.022 0.038 0.059

Note: Exp refers to exponential distribution; Gam refers to gamma distribution; Gev refers to generalized extreme
value distribution; Gpd refers to generalized Pareto distribution; Lgt refers to logistic distribution; P3 refers to
Pearson III distribution. The bold values refer to the best fits and are employed in the study.
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distribution functions, and the y-axis is the cumulative probability estimated by empirical functions.

The meteorological drought event with the longest trivariate return period (the 31st
meteorological drought, later referred to as MNo. 31 in Table 3) started in June 1979 and
ended in March 1980, lasted for 10 months, and covered 99.8% of the study area. For soil
droughts, the soil drought event with the longest trivariate return period (the 18th soil
drought, later referred to as SNo. 18 in Table 4) occurred from November 1979 to June 1980,
lasted for 8 months, and affected 98.3% of the study area.
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Table 2. The goodness of fits in the copulas.

(1) RMSE of Meteorological droughts

Normal t Clayton Frank Gumbel Joe
Duration-Area 0.030 0.030 0.037 0.027 0.028 0.028
Area-Severity 0.017 0.017 0.021 0.017 0.016 0.017

Severity-Duration 0.028 0.029 0.038 0.026 0.026 0.027
Duration-Area-Severity 0.030 0.030 0.036 0.022 0.021 0.023

(2) RMSE of Soil droughts

Normal t Clayton Frank Gumbel Joe
Duration-Area 0.029 0.029 0.034 0.030 0.027 0.027
Area-Severity 0.023 0.023 0.030 0.023 0.021 0.020

Severity-Duration 0.033 0.032 0.039 0.034 0.029 0.027
Duration-Area-Severity 0.032 0.031 0.055 0.045 0.039 0.041

Note: the bold values refer to the best fits and are employed in the study.

Table 3. The return period of the ten strongest historical meteorological droughts (unit: year).

MNo TDuration TArea TSeverity TA-S TS-D TD-A TD-A-S

31 76 133 58 133 76 133 157
2 51 47 72 51 72 72 112
3 10 38 43 38 43 43 75
48 58 2 3 59 59 3 67
55 7 32 22 37 24 33 66
56 8 15 15 21 19 18 42
4 3 17 14 17 14 17 28
42 2 16 14 16 14 16 26
27 15 6 12 15 15 12 19
25 2 13 4 13 4 13 16

Note: MNo refers to the code of meteorological droughts. The first meteorological drought is coded as MNo. 1,
while the last meteorological drought is coded as MNo. 70.

Table 4. The return period of the ten strongest historical soil droughts (unit: year).

SNo TDuration TArea TSeverity TA-S TS-D TD-A TD-A-S

18 97 129 135 129 135 136 179
38 44 136 87 136 87 136 144
37 44 22 24 44 44 24 50
25 5 20 26 20 26 26 30
3 10 19 23 19 23 23 29
1 21 10 7 21 21 10 27
30 17 5 9 17 17 9 23
17 6 14 12 14 12 14 17
19 4 10 12 10 12 12 15
36 2 9 5 9 5 9 12

Note: SNo refers to the code of soil droughts. The first soil drought is coded as SNo. 1, while the last soil drought
is coded as SNo. 44.

The 10 strongest soil droughts and meteorological droughts are shown in Tables 3 and 4.
Clearly, the trivariate return periods are longer than the bivariate return periods, and the
bivariate return periods are longer than the corresponding univariate return periods. The
reason is that the ‘and’ return period requires that all of the variables in the exceeding
probability region of a set of observations be larger than the corresponding values of
observations. Therefore, the exceeding probability region of a trivariate copula should
be smaller than the corresponding bivariate copulas, leading to a longer trivariate return
period compared to the corresponding bivariate return periods. A similar relationship also
exists between bivariate return periods and the corresponding univariate return periods.

The trivariate return periods of the 2 meteorological drought events exceeded 100 years,
which were 157 years (MNo. 31) and 112 years (MNo. 2). Three other meteorological
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drought events had trivariate return periods exceeding 50 years: 75 years (MNo. 3), 67 years
(MNo. 48), and 66 years (MNo. 55). The trivariate return periods of the 2 soil drought
events exceeded 100 years, which were 179 years (SNo. 18) and 144 years (SNo. 38). The
trivariate return period of one other soil drought event (MNo. 37) reached 50 years.

4.1.2. Spatiotemporal Patterns of Historical Droughts

The spatiotemporal distribution of historical droughts is shown in Figure 4. The green
base map shows the distribution of irrigated fields [38], and the stream network is generated
from the Shuttle Elevation Derivatives at Multiple Scales (HydroSHEDS) database [39]
from the United States Geological Survey (USGS). The circles show the centers of historical
droughts, with different colors referring to the different time periods of historical droughts
and the radius of the circles referring to the corresponding trivariate return periods.
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droughts are shown in Figure 5. Both meteorological droughts and soil droughts are more 
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Figure 4. The spatial distribution of historical droughts over the past 67 years. The spatiotemporal
distribution of historical droughts. Droughts are drawn at their center, and droughts with larger
circles have longer trivariate return periods. The year 1950 refers to the period 1948–1954, 1960
refers to the period 1955–1964, and 1970 refers to the period 1965–1974, et cetera. (a,b) show the
spatiotemporal distributions of the centers of meteorological droughts and soil droughts, respectively.
The region inside the green line is the Chao Phraya River basin, while the region inside the orange
line is the Mun River basin.

Historical meteorological droughts were mostly centered in the Chao Phraya River
basin and the Mun River basin, while historical soil droughts in the two basins were mostly
centered along the irrigated regions. The temporal distributions of historical droughts are
shown in Figure 5. Both meteorological droughts and soil droughts are more widespread,
more long-lasting, and more severe near 1950, 1980, and 2010. The meteorological droughts
near 1950 did not lead to such strong soil droughts having a similar magnitude in drought
parameters or trivariate return period as the meteorological droughts, while the meteo-
rological droughts near 1980 and 2010 did lead to strong soil droughts having a similar
magnitude in drought parameters and trivariate return period.
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Figure 5. The temporal distribution of historical droughts in the past 67 years. (a) shows the drought
duration of historical droughts; (b) shows the drought area of historical droughts; (c) shows the
drought severity of historical droughts; (d) shows the trivariate return period of historical droughts.

4.1.3. Drought Propagation

Mean drought propagation ratios are employed to compare the historical meteoro-
logical droughts and the historical soil moisture droughts of NNCT. The mean drought
propagation ratios of the drought parameters are all below 1, indicating that the drought
parameters are all attenuated after the drought propagation process. Among the three
drought parameters, the attenuation of drought duration is the mildest, as the mean drought
propagation ratio of the area is 0.94 during the study period. The attenuation effects of
duration and severity are relatively strong, as the mean drought propagation ratios of area
and severity have lower values of 0.83 and 0.82, respectively. The attenuation effects show
the function of the underlying surface as a buffer to alleviate the moisture deficit.

The original drought propagation ratios proposed by Apurv et al. [15] compare the
drought parameters corresponding to the same probability in distribution and are appro-
priate in cases when the numbers of soil moisture droughts and meteorological droughts
are close. Liu et al. [10] suggested that meteorological droughts and hydrological droughts
can have more complex relationships than single pair mapping relationships. Therefore,
the number of meteorological droughts is not exactly equal to that of the soil droughts.
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We herein identified 70 meteorological droughts and 44 soil droughts in the past 67 years.
If the original evaluation methods of the mean drought propagation ratio are used, the
soil moisture droughts with longer return periods are compared with the meteorologi-
cal droughts with shorter return periods, leading to the overestimation of mean drought
propagation ratios. If calculated by the original method, the mean drought propagation
ratios are all very close to 1, with those of area and severity both slightly larger than 1 in
the whole study period (see Table S1 in the Supplementary Material for the difference),
indicating that drought area and severity are amplified after drought propagation, which is
a different result.

4.2. The Change in Drought Characteristics during 1948–2014
4.2.1. Change of the Drought Probability Distribution

The changes in drought distributions are captured by the changes in their probability
distribution coefficients, including the mean value, coefficient of variation (Cv), and coeffi-
cient of skewness (Cs). Significant trends are detected in most of the probability distribution
coefficients (here, considering the series from the first moving window to the last moving
window). The changes in drought parameter distributions are shown in Figures 6–8, and
the slope herein is estimated by Thiel-Sen’s slope [40]. The relative slopes are employed
here to compare the trends between different parameters.
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Figure 8. The change in the drought severity distribution.

Significant increasing trends were detected in the mean value series of all meteoro-
logical droughts and all soil droughts except the soil drought duration. The slope of the
meteorological drought duration mean is +2.4% per decade, and the trends of the drought
area mean and drought severity mean are much larger, ranging from +9.4% to +16.6% per
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decade. Significant decreasing trends are detected in the Cv series of meteorological drought
duration and meteorological drought severity together with those of all soil drought pa-
rameters, with the trend ranging from −3.3% to −12.4% per decade. Significant decreasing
trends were also detected in the Cs series of all meteorological drought parameters and all
soil drought parameters, with the trend ranging from −5.0% to −19.4% per decade.

The overall increasing trend in the mean value series of drought parameter distribu-
tions is consistent with a previous study showing that droughts in Thailand have become
more frequent and widespread [23]. The increasing trends of the mean value series suggest
that the magnitudes of drought parameters increased. The decreasing trends of the Cv
series and Cs series together suggest that the magnitudes of drought parameters between
drought events became closer. Overall, the trends suggest that drought events in the NNCT
became longer, wider, and more severe.

4.2.2. Change in Drought Propagation

Significant increasing trends are found in the drought propagation ratios of all drought
parameters. The changes in the propagation ratios are shown in Figure 9. The moving
drought propagation ratios are seldom higher than 1, indicating that the drought parame-
ters of soil droughts are generally alleviated compared to meteorological droughts. In the
windows near their peaks, the drought propagation ratios are higher than 1, indicating that
soil droughts are amplified during drought propagation. Overall, the increasing trends
suggest that the alleviation effect is becoming weaker; that is, the soil drought parameters
that correspond to a fixed meteorological drought parameter magnitude are generally
increasing. Therefore, the magnitude of soil drought under the same meteorological deficit
conditions has increased.
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Figure 9. The moving propagation ratios of the drought parameters. the x-axis refers to the end of the
corresponding moving window, as 1977 refers to the propagation ratio calculated from 1948 to 1977.
The dashed blue lines are the constant propagation ratios calculated in Section 4.1, and the red lines
are the moving propagation ratios in the corresponding moving windows as introduced in Section 4.2.
The dashed black lines show the position of 1. (a) shows the propagation ratio of drought duration;
(b) shows the propagation ratio of drought area; (c) shows the propagation ratio of drought severity.

5. Discussion
5.1. The Impacts of Climate Change on Drought Propagation

Climate change can be partly due to anthropogenic activities [41], such as global
warming, and deforestation has been shown to decrease local rainfall in the Indochina
Peninsula [42]. However, such changes in local climate are not distinguished from cli-
mate change. Therefore, meteorological droughts were affected by climate change, as
meteorological drought events are identified from the SPEI series and determined by local
climatic conditions. The soil droughts here are identified from the GLDAS 2.0 product,
which is a reanalysis product without considering anthropogenic activities such as land-use
change and irrigation. Therefore, historical soil moisture droughts were merely affected by
climate change.
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Previous studies have found that drought propagation from meteorological droughts
to hydrological droughts can be affected by both climatic conditions and catchment prop-
erties due to groundwater recharge and groundwater storage, respectively [12]. Apurv
et al. [15] applied three climate factors, the aridity index, phase index, and seasonality index,
to capture the climatic conditions that affect the hydrological drought propagation process.
In the case of low seasonality and an out-of-phase climate with a sufficient water supply,
the deficits in groundwater can be alleviated in time, so the corresponding hydrological
droughts are not long-lasting. When these three indices change to reduce groundwater
recharge until the replenishment of groundwater is suppressed, hydrological droughts
become more long-lasting. Although the hydrological processes at the soil surface are
not as complex as those of groundwater, there is also soil water retention, which serves
as long-term water persistence [43]. Herein, we employ two climate indices to capture
the drought propagation ratio during propagation from meteorological droughts to soil
droughts as the phase index (PI) [44] and the climate seasonality index (CSI) [45].

Stepwise regression is applied to explore the impacts of the three climate indices on the
drought parameters (see the Supplementary Material for the details of these impacts). All
of the drought parameters are found to be positively correlated with PI and CSI. Thailand is
a highly seasonal region and has an in-phase climate (corresponding to high CSI and high
PI), and the natural replenishment of soil retention relies highly on precipitation during the
wet season. Therefore, in the cases with higher PI and CSI, the soil retention is more likely
to be suppressed, leading to a stronger soil drought and a larger propagation ratio.

5.2. The Implications of Change in Historical Drought Characteristics

Previous studies have shown the intensification of the hydrological cycle under climate
change [46,47], possibly including more frequent and intense hydrological extremes [47].
The droughts in Thailand show consistent trends. The significant trends in the distribution
of drought parameters suggest that drought events are non-stationary under the definition
of ‘weak stationarity’ [18]. The consistent significant increasing trends in the drought
parameters of meteorological droughts and soil droughts show that the nonstationarity of
soil droughts comes from mainly the climatic conditions.

The droughts are mainly centered in dense agricultural areas, such as the Chao Phraya
River basin and the Mun River basin. As shown in Figure 4, irrigation facilities have
been developed in these areas, so the stress brought by potential soil moisture droughts
may have been undertaken by local water resources rather than local agriculture. Water
shortages have led to increasing groundwater demand in many parts of the world [15,48].
Groundwater abstraction has also become an important complementary water source in
Thailand, and the water table has been found to decrease in several regions of the Younger
Aquifer in the Upper Central Plain of the Chao Phraya River of Thailand [49].

In most of the windows during the study period, the drought propagation ratios were
below 1, indicating that the drought parameters were alleviated after drought propaga-
tion. Under meteorological droughts, soil water is still consumed by evapotranspiration
but may not be replenished in time. Therefore, the propagation from meteorological
droughts to soil droughts meets a trade-off between soil water persistence as soil retention
and consumption by evapotranspiration. At the end of the study period, the drought
propagation ratios of drought area and drought severity exceeded 1. Since the effects
of anthropogenic activities are not considered, the difference should be mainly due to
consumption by evapotranspiration.

Additionally, the propagation ratio compares the distributions of meteorological
drought parameters and soil drought parameters, and the drought parameters of a soil
drought may not be definitively lower than those of the corresponding soil droughts.
Propagation ratios less than 1 can only indicate that the soil drought parameters are
generally lower than the corresponding meteorological drought parameters, while for
severe droughts and mild droughts (droughts with short trivariate return periods), the
relationship may differ. Furthermore, the propagation ratio compares the distributions by
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comparing drought parameters of drought events with the same trivariate return period.
As a meteorological drought and the corresponding soil drought may not have the same
trivariate return period, the drought parameters of soil droughts may not be definitively
lower than those of meteorological droughts when the propagation ratio is lower than 1.

5.3. Uncertainties and Limitations

Uncertainties can arise from the length of the hydrological variable series. An es-
timation of drought parameters based on 67-year hydrological series may not meet the
requirements of second-order statistic stationarity [18], while for the change in mean value,
the samples are sufficient.

Uncertainties can also arise from meteorological and hydrological data. The meteo-
rological and hydrological data used in this research are from GPCC and GLDAS. GPCC
data are generated from the global observation system and fit the local rainfall observa-
tions of Thailand quite well. Therefore, the data uncertainty comes mainly from GLDAS.
Liu et al. [26] suggested that reanalysis products such as GLDAS give better descriptions of
soil droughts than remote sensing data such as the ESA CCA product in densely vegetated
regions. However, the current work cannot provide a precise description of anthropogenic
activities such as irrigation.

6. Conclusions

In this study, the NNCT is employed as a typical tropical monsoon region to analyze
the spatiotemporal characteristics of droughts and their propagation. According to the
results, the following conclusions are made:

(1) In the NNCT, 70 meteorological droughts and 44 soil moisture droughts were
identified from 1948 to 2014 based on three-dimensional drought identification. Both the
meteorological drought and the soil drought that occurred from 1979 to 1980 had the
longest trivariate return period. The drought centers are mainly located in the Chao Phraya
River basin and the Mun River basin, and the severe droughts occurred mainly near 1950,
1980, and 2010. The mean propagation ratios of all drought parameters are less than 1,
showing the function of the underlying surface as a buffer to alleviate the moisture deficits.

(2) Most of the probability distribution coefficients and all drought propagation ratios
of the three drought parameters were found to change significantly based on a moving-
window method, indicating that the drought parameters and their propagation from
meteorological droughts to soil droughts are non-stationary. The mean value of drought
parameters mostly showed significant increasing trends, and the Cs series and Cv series
of drought parameters mostly showed significant decreasing trends. The trends indicated
that the drought events in the NNCT became longer in duration, larger in area, and more
severe in dryness. The propagation ratios of all drought parameters showed significant
increasing trends, indicating that the function of the underlying surface as a buffer has
become weaker.

(3) The change in drought propagation ratios can be attributed to climate change. The
drought propagation ratios are found to be positively related to two climate indices, PI and
CSI. The stronger droughts may not only bring stress to local soil moisture but also to the
local groundwater indirectly by irrigation.

These findings will help develop a better understanding of water resource manage-
ment in Thailand, and the methods used in this study can be applied to other basins
to obtain a better understanding of the spatiotemporal characteristics of droughts and
their propagation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13020277/s1, Table S1: Drought propagation ratios in the
study period; Table S2: The historical meteorological droughts in the study period; Table S3: The
historical soil droughts in the study period; Figure S1: Regression result.
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