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Abstract: In this study, we investigated the impact of wildfires on meteorology and air quality (PM2.5

and O3) over the western United States during the September 2017 period. This is done by using
Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to simulate scenarios
with wildfires (base case) and without wildfires (sensitivity case). Our analysis performed during the
first half of September 2017 (when wildfire activity was more intense) reveals a reduction in modelled
daytime average shortwave surface downward radiation especially in locations close to wildfires
by up to 50 W m−2, thus resulting in the reduction of the diurnal average surface temperature by
up to 0.5 ◦C and the planetary boundary layer height by up to 50 m. These changes are mainly
attributed to aerosol-meteorology feedbacks that affect radiation and clouds. The model results also
show mostly enhancements for diurnally averaged cloud optical depth (COD) by up to 10 units in
the northern domain due to the wildfire-related air quality. These changes occur mostly in response
to aerosol–cloud interactions. Analysis of the impact of wildfires on chemical species shows large
changes in daily mean PM2.5 concentrations (exceeding by 200 µg m−3 in locations close to wildfires).
The 24 h average surface ozone mixing ratios also increase in response to wildfires by up to 15 ppbv.
The results show that the changes in PM2.5 and ozone occur not just due to wildfire emissions
directly but also in response to changes in meteorology, indicating the importance of including
aerosol-meteorology feedbacks, especially during poor air quality events.

Keywords: wildfires; meteorology; air quality; WRF-Chem

1. Introduction

Wildfires in North America degrade air quality not just at locations in the vicinity of
the fire activity but also in remote downwind regions due to long-range transport of smoke
plumes [1–4]. In addition, wildfires can also perturb meteorology through impacts of air
pollutants on meteorology such as aerosol-radiation and aerosol–cloud interactions [5].
Aerosols interact with the incoming solar radiation directly by scattering and absorbing
and thus altering Earth’s radiative balance [6,7]. Aerosols can also interact with clouds to
change their microphysical properties (and thus lifetime) by acting as cloud condensation
nuclei (CCN) [8,9].

Historically, large wildfires over western United States (US) have been shown to in-
crease in frequency and duration after the mid-1980s with the greatest changes associated
with increased spring and summer temperatures possibly caused by reduced winter pre-
cipitation together with earlier spring snowmelt [10]. The observed trend in area burned
due to wildfires in the western US has also been notably attributed to declining trends in
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summer precipitation during the past few decades [11] which has been further linked to
the declining Arctic sea-ice extent [12]. The burned area over the western US is further
projected to increase by 54% in 2046–2055 relative to 1996–2005 due to climate change [13].
Such an increase in wildfire activity can be expected to enhance impacts on air quality and
meteorology in the future.

Several research studies have reported the contribution of wildfires to different pol-
lutants like PM2.5, O3, NO2 and CO [14–21]. Mallia et al. [14] analyzed the impacts of
intense episodes during the 2007 and 2012 wildfire seasons on Salt Lake City, a downwind
urban center, using the Stochastic Time-Inverted Lagrangian Transport (STILT) model.
The study reported an enhancement of 15 µg/m3 in 24 h average PM2.5 over the city.
Lu et al. [15] used a statistical model to simulate ozone enhancements by wildfires and
found an increase of about 10–20 ppbv in summer mean MDA8 (daily maximum 8 h
average) ozone at sites in Intermountain West. Wilkins et al. [17] used the Community
Multiscale Air Quality (CMAQ) modelling system over the contiguous US and reported a
wildfire contribution of 11% to mean PM2.5 and less than 1% to mean O3 concentrations
during 2008–2012. Zhang et al. [21] analyzed the impacts of duff and peat consumption
during wildfires in the southeastern United States using a regional air quality model and
found an increase of about 61.3% over a region about 300 km within the fire location.

While the adverse impacts of wildfires on air quality and human health have been
explored in several studies for both present-day [4,22–26] and future scenarios [27], the
role of aerosols, originating from wildfire emissions particularly over the western US,
in perturbing meteorology is relatively less explored [28]. In this study, we use the
Weather Research and Forecasting model coupled with chemistry (WRF-Chem), an “online”
meteorology–chemistry coupled model [29–33], to investigate the impact of wildfire emis-
sions on meteorology and air quality (PM2.5 and O3) over the western US while considering
aerosol–cloud–radiation interactions in the model.

WRF-Chem has been used in several studies focused on wildfires or biomass burning
episodes over different regions [5,28,34,35]. Grell et al. [35] simulated the 2004 Alaskan
wildfires to show that the inclusion of wildfires in the model simulations improved in com-
parison with the soundings. The study also reported significant modifications of vertical
profiles of temperature and moisture in cloud-free areas. Jiang et al. [28] analyzed the im-
pact of wildfires over the western US on radiation, meteorology and ozone photochemistry.
The study reported a reduction in downward solar radiation reaching the surface, tempera-
ture near surface and photolysis rates by up to 50 W m−2, 2 K and 75%, respectively, along
with reductions in biogenic isoprene emissions. The study concluded that incorporating
radiative impacts of wildfire-related aerosols may reduce ozone overestimation generally
seen in the traditional photochemical models that do not consider aerosol–meteorology
feedbacks. Archer-Nicholls et al. [5] reported a net cooling (−4.08 ± 1.53 W m−2) averaged
for three 36 h biomass burning case studies over Brazil in September 2012 associated with
direct aerosol–radiation interaction due to aerosols from biomass burning.

In this study, we investigate the impact of the September 2017 wildfires over the west-
ern US, which showed some of the most intense wildfire activity in recent years over this
region, on air quality and meteorology. The current study is arranged as follows: Section 2
presents the WRF-Chem configuration used in this study including domain information,
physics and chemistry options, initial and boundary conditions, input emissions and ob-
servation data used for model evaluation. We present the results in Section 3 by dividing
them into two subsections: (a) model evaluation against surface measurements and satellite
data, and (b) sensitivity results analysis including the impact of wildfires on radiation,
meteorology, cloud, CCN activity, surface pollutant levels and PM2.5 chemical composition.
Finally, the summary and conclusions of the study are presented in Section 4.
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2. Materials and Methods
2.1. Model Domain

We used WRF-Chem version 3.9.1.1 (https://www2.mmm.ucar.edu/wrf/users/do
wnload/get_sources.html#current; accessed on 15 January 2022) to simulate the wildfire
period during September 2017 over the western US. Figure 1a shows the model domain and
terrain height along with wildfire impacted locations during September 2017. The domain
is set using lambert projection and is centered at 38◦ N, 121◦ W with 279 grid points in both
the east-west and north-south directions. The spatial resolution is 12 km × 12 km in the
horizontal direction along with 32 vertical levels from the surface up to 50 hPa pressure
level. Moderate Resolution Imaging Spectroradiometer (MODIS) land-use dataset [36,37]
is used to define model terrain type.
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Figure 1. (a) Model domain and terrain height (in meters); wildfire locations for September 2017
are also shown in yellow markers; (b) Average PM2.5 emissions (µg m−2 s−1) from the wildfires in
September 2017.

2.2. Model Physics and Meteorological Initial and Boundary Conditions

The cloud microphysics in the model is based on the Morrison double-moment
scheme [38], and the cumulus convection is based on the Grell-Freitas scale and aerosol aware
convection scheme [39]. Rapid Radiative Transfer Model (RRTM) longwave scheme [40]
and Goddard shortwave scheme [41] were used to represent the radiative transfer in the
model. Surface physics is based on the unified Noah land surface model [42] along with
the ETA similarity option [43–45]. The planetary boundary layer (PBL) physics is based
on the Bougeault and Lacarrere (BouLac) PBL scheme [46]. The Global Forecast System
(GFS) analysis dataset (www.ncdc.noaa.gov/data-access/model-data/model-datasets/
global-forcast-system-gfs/; accessed on 31 January 2022), available at 6 h temporal and
0.5◦ horizontal resolution, was used to provide initial and lateral boundary conditions
for meteorology.

2.3. Model Chemistry and Chemical Initial and Boundary Conditions

We used Model for Ozone and Related Chemical Tracers (MOZART) gas phase chem-
istry [47] along with Model for Simulating Aerosol Interactions with Chemistry (MOSAIC)
4-bin aerosol scheme [48] in this study. The MOSAIC aerosol scheme includes a volatility ba-
sis set (VBS) for secondary organic aerosols (SOA). The photolysis rate calculations are based
on the Madronich photolysis scheme [49]. The gas dry deposition process in the model is
represented by the resistance in the series approach from Wesely [50]. Aerosol–radiation
and aerosol–cloud interactions are turned on to account for aerosol–meteorology feedbacks.
Aerosol optical properties are calculated using volume approximation. The chemical initial
and lateral boundary conditions are prepared using MOZART-4/GEOS5 output available

https://www2.mmm.ucar.edu/wrf/users/download/get_sources.html#current
https://www2.mmm.ucar.edu/wrf/users/download/get_sources.html#current
www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs/
www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs/
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at 6 h temporal resolution (https://www.acom.ucar.edu/wrf-chem/mozart.shtml; last
accessed on 31 January 2022).

2.4. Emission Inputs

Hourly anthropogenic emissions for the study were generated using the 2014 National
Emissions Inventory (NEI) (https://www.epa.gov/air-emissions-inventories/2014-natio
nal-emissions-inventory-nei-data; last accessed on 31 January 2022). The biogenic emis-
sions were prepared using the Model of Emissions of Gases and Aerosols from Nature
(MEGAN) modeling system [51]. Furthermore, hourly wildfire emissions were prepared
using the Fire Inventory from NCAR (FINN) version 1.0 [52]. Figure 1a shows the wildfire
impacted locations derived from the FINN dataset over the western US in September
2017. The intensity of these wildfires is further depicted in Figure 1b in terms of PM2.5
emissions from fire activity, which reveals that the major fires occurred in several locations
in the north-western US (in states of Washington, Idaho, Montana and Oregon) with some
incidences in other states (e.g., California). PM2.5 emission flux in some of the major fires
reached up to 15 µg m−2 s−1.

2.5. Simulation Details

Two simulations were carried out in this study: a base run with wildfire emissions
included (called ‘Fire’ simulation hereafter) and another run without wildfire emissions
(called ‘noFire’ simulation hereafter). Both simulations are run from 28 August 2017 to
1 October 2017 at a time step of 60 s with the first 4 days of the model output discarded as
spin up period. The output of the model was generated and stored every hour for analysis.

2.6. Observational Datasets for Model Evaluation

We used surface measurements from the U.S. Environmental Protection Agency
(USEPA, Washington, DC, USA) Air Quality System (AQS; https://www.epa.gov/aqs,
accessed on 14 February 2021) for meteorological variables (air temperature at 2 m and wind
speed at 10 m) and chemical species (PM2.5 and O3). The measurements for Air Quality
System (AQS) are made at locations maintained by the USEPA, state, local and tribal agen-
cies [19]. The observations are made at both urban as well as rural locations using diverse
techniques (https://aqs.epa.gov/aqsweb/documents/codetables/methods_met.html; ac-
cessed on 22 January 2022). Some of the techniques are:

(1) PM2.5—Gravimetric and beta-attenuation technique;
(2) O3—Chemiluminescence and UV Photometry;
(3) Surface temperature—Thermo Electron Model RAAS2.5-200 Audit w/VSCC and R &

P Model 2000 PM-2.5 FEM Air Sampler;
(4) Wind speed—Vaisala WS425 and Met One Sonic Anemometer Model 50.5.

The data are quality-assured before being sent to EPA AQS (https://aqs.epa.gov/
aqsweb/documents/about_aqs_data.html; last accessed on 22 January 2022). Data from
Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA’s Terra satel-
lite [53] are also used in this study to evaluate the model output for variables such as
monthly average shortwave surface downward radiation (SSDR), outgoing longwave
radiation (OLR) at the top of the atmosphere (TOA), cloud fraction and cloud optical
depth (COD): the data were obtained from https://neo.sci.gsfc.nasa.gov (accessed on
14 February 2021). The spatial resolution of the MODIS data used in this study was 0.5◦.
WRF-Chem data were compared with MODIS data at approximate overpass time of Terra
satellite (1900 UTC) and with Modern-Era Retrospective analysis for Research and Applica-
tions, version 2 (MERRA-2) model [54] data (diurnal average) over the western US during
September 2017. AOD data for the Terra satellite and MERRA-2 model were obtained from
https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 14 February 2021).

https://www.acom.ucar.edu/wrf-chem/mozart.shtml
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/aqs
https://aqs.epa.gov/aqsweb/documents/codetables/methods_met.html
https://aqs.epa.gov/aqsweb/documents/about_aqs_data.html
https://aqs.epa.gov/aqsweb/documents/about_aqs_data.html
https://neo.sci.gsfc.nasa.gov
https://giovanni.gsfc.nasa.gov/giovanni/
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3. Results and Discussion
3.1. Evaluation of the Base run
3.1.1. Evaluation against Surface Measurements

Figure 2 shows model performance for hourly outputs when evaluated against AQS
measurements available over the domain for the month of September 2017 using soc-
cer plots (https://www.epa.gov/cmaq/atmospheric-model-evaluation-tool; accessed on
14 February 2021). The soccer plots summarize the model performance by depicting goals
and criteria lines. We follow benchmarks adopted in Zhang et al. [55] for 2 m temperature
(Mean bias within ±1.0 K and gross error < 3 K) and 10 m wind speed (Mean bias within
±0.5 m s−1 and root mean square error < 2 m s−1). For PM2.5 and ozone, we follow the
benchmark used in Morris et al. [56], although only for PM2.5 constituents, with plots
depicting model performance based on the mean fractional bias (MFB in %) and mean
fractional error (MFE in %) values at the available measurement stations. The model per-
formance is categorized as excellent (|MFB| ≤ 15%, MFE ≤ 35%), good (|MFB| ≤ 30%,
MFE≤ 50%), average (|MFB| ≤ 60%, MFE ≤ 75%) and needing improvement (|MFB|≥ 60%,
MFE ≥ 75%) [57]. Figure 2 also shows correlation coefficient (r) values on color scale from
0 to 1.
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Figure 2. Soccer plots showing model performance against AQS measurements for (a) 2 m tempera-
ture; (b) 10 m wind speed; (c) surface PM2.5 concentration and (d) surface ozone mixing ratios. The
color scale represents the correlation coefficient (r) value. The goal lines are shown as dotted lines.
The percentage of data points lying within each goal line is shown in the figure (within goal lines).
Furthermore, the percentage of data points having an ‘r’ value greater than 0.5 and 0.7 are shown on
the top left of each figure.

Figure 2a shows the model performance for 2 m temperature (◦C). The model performs
within recommended performance criteria at 89% of stations. The correlation coefficient

https://www.epa.gov/cmaq/atmospheric-model-evaluation-tool
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value is greater than 0.5 (0.7) at 99% (98%) of stations, establishing the model’s ability to
capture hourly variations in near-surface temperature quite well. For 10 m wind speed
(m/s) in Figure 2b, the model performs within the recommended performance criteria
at 67% of stations. The poor performance for wind speed at several stations is possibly
due to the model’s inability to adequately resolve topography even at 12 km resolution.
The correlation coefficient value for wind speed is greater than 0.5 (0.7) at 77% (30%) of
the stations.

For surface PM2.5 concentration (µg m−3) shown in Figure 2c, the model’s performance
is excellent at only 3% of stations, good at 24% of stations, average at 59% of stations and
poor at the remaining 14% of stations. The poor performance at some stations may be
attributed to several factors including model resolution and uncertainty in emissions. The
correlation coefficient value for PM2.5 is greater than 0.5 (0.7) at 62% (26%) of stations.
Finally, Figure 2d shows the model performance for surface O3 mixing ratios (ppbv). Model
performance is excellent at 60% of stations, good at 31% of stations, average at 7% of stations
and poor at only 2% of stations. The correlation coefficient value for O3 is greater than 0.5
(0.7) at 95% (64%) of stations, indicating an overall reasonably good model performance
for O3 over the domain. We also show the spatial distribution of the model’s performance
(r and MB/NMB) for PM2.5 and O3 in Figure 3. Stations exhibiting noticeable positive bias
for PM2.5 (MB ≥ 5 µg m−3; NMB ≥ 15%) lie in western Washington, the coastal boundary
of Oregon and California and a station in western Montana (Figure 3a,c), locations which
lie in the vicinity of wildfire impacted regions, indicating possible uncertainty in wildfire
emissions and the vertical plume distribution in the model. The model seems to compensate
for the overestimation at the above-mentioned locations by underestimating PM2.5 at
other stations in the vicinity of wildfire impacted locations (e.g., eastern Washington).
The model also overestimates PM2.5 in some coastal locations in California (though MB
is within ±5 µg m−3) and a few stations inland (e.g., some locations in Arizona, Utah
and Nevada). At the remaining stations, the model mostly tends to underpredict the
PM2.5 concentrations possibly due to several reasons including uncertainty in wildfire and
anthropogenic emissions and due to the fact that the NEI inventory used in this study is
representative of the year 2014. The anthropogenic emissions of most criteria pollutants
in 2017 were less than those in 2014 (https://www.epa.gov/sites/production/files/202
0-04/documents/nei2017_tsd_full_30apr2020.pdf; last accessed on 31 January 2022). For
ground-level ozone, the model generally overpredicts in the vicinity of the wildfires with
NMB > 30% at some of the locations (Figure 3b, d). At the other locations throughout the
domain, NMB is mostly within ±30%.

3.1.2. Evaluation against Satellite Measurements

We evaluated key variables, which are used for sensitivity analyses later in this study,
against satellite measurements. Figure 4 shows the comparison of SSDR and OLR from
WRF-Chem ‘Fire’ run and MODIS data. The model captures the spatial distribution of
averaged SSDR and OLR for satellite overpass times quite well with higher SSDR/OLR
in the southern regions compared to northern regions. The spatial correlation coefficient
between the model and MODIS for SSDR is 0.92 with a mean bias of −0.65 W m−2 (NMB of
~−0.3%) over the domain. Similarly, the spatial correlation coefficient between the model
and MODIS for OLR is 0.96 with a mean bias of 4.7 W m−2 (NMB of ~1.8%).

Next, we show the model comparison for cloud fraction and cloud optical depth
(COD) in Figure 5. The model cloud fraction is in good agreement qualitatively with the
MODIS cloud fraction, although the model underpredicts especially over the ocean region.
The spatial correlation coefficient between the model and MODIS for cloud fraction is 0.70
with a mean bias of −0.10 (NMB of ~−18%) over the domain. The negative bias is primarily
attributed to the underprediction of cloud cover over the ocean region. The model captures
COD reasonably well in north and eastern regions but tends to underpredict in other areas
(south-west) over the western US. This is possibly due to missing satellite data for COD in

https://www.epa.gov/sites/production/files/2020-04/documents/nei2017_tsd_full_30apr2020.pdf
https://www.epa.gov/sites/production/files/2020-04/documents/nei2017_tsd_full_30apr2020.pdf
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some regions on several days for the analysis period as seen in daily satellite outputs (not
shown here), and hence model statistics are not presented for COD.
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correlation coefficient (r) value. Additionally shown are NMB (%) values (on colorscale) for PM2.5 in
(c) and for ozone in (d).

We also present a comparison of WRF-Chem AOD with MODIS and MERRA-2 global
model AOD in Figure 6. AOD comparison between WRF-Chem and MODIS in Figure 6a,b
reveals noticeable differences. For example, WRF-Chem shows high AOD as compared
to MODIS AOD in south-west Oregon and north-west California regions. Both model
and MODIS AODs are elevated in some regions like eastern Washington, most of Idaho
and western Montana, but the model AOD is generally much smaller than the MODIS
AOD in these regions. The reason for the AOD mismatch between model and MODIS can
be attributed to several reasons including uncertainty in wildfire emissions and vertical
plume distribution in the model. Nevertheless, the model evaluation statistics are found
to be reasonable (r = 0.72; MB = −0.04; NMB = −20%). We also present the WRF-Chem
evaluation with MERRA-2 global model data (Figure 6d,e). Both WRF-Chem and MERRA-2
models agree qualitatively with a similar spatial variation of AOD in the locations lying in
the vicinity of the wildfires (e.g., south-west Oregon and north-west California). However,
compared to MERRA-2, WRF-Chem shows higher AOD over south-west Oregon, north-
west California and over marine regions and lower AOD over other wildfire impacted
locations inland (e.g., western Montana). The differences in AOD between the WRF-
Chem and MERRA-2 models might arise due to several reasons including relatively coarse
resolution of the latter (0.5◦ × 0.625◦) and differences in the fire inventory used. The
MERRA-2 model uses Quick Fire Emissions Dataset (QFED) for biomass burning emissions
of carbonaceous and sulfate aerosols [57]. Statistically, WRF-Chem performs reasonably
well when compared to MERRA-2 AOD (r = 0.85; MB = 0.01; NMB = 3%).
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Figure 4. Shortwave downward surface radiation (in W m−2) (a) for MODIS, (b) for WRF-
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model and MODIS with respect to MODIS.
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3.2. Sensitivity Analysis: Impact of Wildfires
3.2.1. Impact on Surface Shortwave Radiation and Meteorology

Given the reasonable model performance against surface observations and satellite
measurements, here we present the impact of wildfires by comparing ‘Fire’ and ‘noFire’
simulations. The following comparison is carried out only for first the half of September
2017 during which fire activity was relatively intense. Figure 7 shows the impact of wildfires
on daytime average (0600-1700 IST) SSDR during the first half of September 2017. Figure 7a
shows the daytime average radiation in the ‘Fire’ simulation whereas Figure 7b shows the
differences between the daytime average radiation from ‘Fire’ and ‘noFire’ simulations. The
average shortwave radiation reduces in the north and over the coastal regions because of
aerosol–radiation–cloud interactions due to the wildfires. The reduction is up to 50 W m−2

in some locations in the vicinity of the wildfires. Analysis of maximum change over
the diurnal scale reveals the reduction of more than 100 Wm−2 over the same regions
(not shown).

Figure 8 shows the change in 2 m temperature due to wildfires. The average 2 m
temperature (◦C) from the ‘Fire’ simulation is shown in Figure 8a along with changes due
to wildfires (Fire-noFire) in Figure 8b. The average 2 m temperature reduces in the northern
regions due to a reduction in downward shortwave radiation. The reduction is up to 0.5 ◦C
in some locations in the vicinity of wildfires. On the diurnal scale, the temperature reduces
by up to 1 ◦C in these locations (not shown). In the south, the effects are mixed with some
locations even experiencing a warming effect on average. The changes in southern regions
are mostly attributed to rapid changes in cloud cover/ cloud optical depth, resulting in
cloud radiative effects [58,59] as shown later.
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Figure 7. Spatial distribution of daytime average (a) shortwave downward surface radiation in
W m−2 from ‘Fire’ simulation and (b) difference between ‘Fire’ and ‘noFire’ simulations for the first
half of September 2017.

Figure 9 shows the impact of wildfires on planetary boundary layer height (PBLH).
The average PBLH from the ‘Fire’ run is shown in Figure 9a whereas Figure 9b shows
the difference between ‘Fire’ and ‘noFire’ simulations. The north regions show reduced
PBLH on average with reductions by up to 50 m in some locations. These reductions occur
because of reduced atmospheric turbulence due to cooling near the surface as seen in
Figure 8. Analysis of PBLH changes on the diurnal scale (not shown) reveals a reduction in
PBLH by up to 400 m. Several previous studies have also reported shallower PBLH during
wildfire events or due to increased aerosol concentrations (e.g., [35,60–65]). Reductions in
PBLH can lead to reduced vertical mixing of the pollutants (e.g., PM2.5 and O3 precursors
like CO, NOx) thus leading to further enhancements of the pollutant concentrations near
the surface in addition to a direct contribution from the wildfires (e.g., [61–65]). The mixed
changes in PBLH in southern regions, quite similar to changes in surface temperature,
occur in response to changes in cloud cover/cloud optical depth.
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3.2.2. Impact on Clouds, Droplet Number Concentration and Precipitation

Aerosols generated from wildfires are known to impact cloud cover and cloud prop-
erties [35,66,67]. Figure 10 shows the changes in cloud cover over the western US due
to wildfires. The average cloud cover from the ‘Fire’ simulation is shown in Figure 10a.
The difference between the ‘Fire’ and ‘noFire’ simulations, shown in Figure 10b, reveals
relatively higher changes in the southern regions including over the ocean. The changes in
cloud cover even exceed 20% in some locations (e.g., over south-west marine region). Next,
we show changes in cloud optical depth (COD) due to wildfires in Figure 11. The average
COD from the ‘Fire’ simulation is shown in Figure 11a along with differences between
the ‘Fire’ and ‘noFire’ simulations in Figure 11b. The differences reveal mostly positive
changes over Montana, central and eastern Idaho, western Washington and Oregon and
over the ocean region. The differences are up to 10 units in some areas of these regions.
These changes occur mostly in response to aerosol–cloud interactions in which the aerosol
particles act as cloud condensation nuclei to form cloud droplets. Interestingly, the impact
of wildfires on COD is quite noticeable in these regions in the north as opposed to cloud
cover, which does not change much there. On the other hand, the changes in COD in south
regions are mixed with enhancements seen in several locations and reductions seen in the
others. Such a mixed response of change in cloud cover and COD in south regions are re-
sponsible for similar changes observed for other meteorological variables like near-surface
(2 m) temperature and PBLH as discussed earlier.

To analyze aerosol–cloud interaction further, we also look at vertically integrated
droplet number concentration and cloud water in Figure 12. Figure 12a shows the droplet
number concentration from the ‘Fire’ simulation. There is a strong spatial heterogeneity
observed, with the number concentration even exceeding 2 × 1010 number/m2 in sev-
eral locations in the domain. The difference between the ‘Fire’ and ‘noFire’ simulation
(Figure 12b) reveals mostly enhancements in the northern regions and over the ocean. The
enhancements in some locations close to wildfires are more than 1 × 1010 number/m2

(>200%). Figure 12c shows the spatial distribution of cloud water in the vertical column.
Cloud water is high (>25 g m−2) in some regions that also exhibit a high droplet number
concentration. The changes in cloud water resulting from wildfires reveal enhancements
over western Washington and Oregon, most of the Montana state and over the ocean
(Figure 12d). The enhancement is up to 10 g m−2 in some of these locations. The areas
showing an increased droplet number concentration accompanied with increased cloud
water also exhibit increased cloud optical depth (seen in Figure 11). Some regions (espe-
cially in the south) also reveal competing effects of droplet number concentrations and
cloud water thus contributing to mixed changes in COD in these regions.
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Next, we analyze the impact of wildfires on accumulated precipitation in Figure 13.
The precipitation from the ‘Fire’ simulation is more pronounced in the southern regions
(Figure 13a) with some locations even receiving precipitation in excess of 200 mm (e.g., in
south Colorado). The difference between the ‘Fire’ and ‘noFire’ simulations reveals modifi-
cation in the spatial distribution of rain in southern regions with accumulated precipitation
changing by up to 20 mm in several locations (Figure 13b). The results so far indicate that
the impacts of wildfires are not localized but can extend to far regions in form of altered
radiation, meteorology, cloud properties and/or precipitation.



Atmosphere 2022, 13, 262 13 of 23

Atmosphere 2022, 13, x FOR PEER REVIEW 13 of 25 
 

 

south) also reveal competing effects of droplet number concentrations and cloud water 

thus contributing to mixed changes in COD in these regions. 

 
Figure 12. Spatial distribution of average (a) vertically integrated droplet number concentration in 

number/m2 from ‘Fire’ simulation, (b) difference in vertically integrated droplet number concentra-

tion in number/m2 between the ‘Fire’ and ‘noFire’ simulations, (c) vertically integrated cloud water 

concentration in g/m2 from the ‘Fire’ simulation and (d) difference in vertically integrated cloud 

water concentration in g/m2 between the ‘Fire’ and ‘noFire’ simulations for the first half of Septem-

ber 2017. 

Next, we analyze the impact of wildfires on accumulated precipitation in Figure 13. 

The precipitation from the ‘Fire’ simulation is more pronounced in the southern regions 

(Figure 13a) with some locations even receiving precipitation in excess of 200 mm (e.g., in 

south Colorado). The difference between the ‘Fire’ and ‘noFire’ simulations reveals mod-

ification in the spatial distribution of rain in southern regions with accumulated precipi-

tation changing by up to 20 mm in several locations (Figure 13b). The results so far indicate 

that the impacts of wildfires are not localized but can extend to far regions in form of 

altered radiation, meteorology, cloud properties and/or precipitation. 

Figure 12. Spatial distribution of average (a) vertically integrated droplet number concentration in
number/m2 from ‘Fire’ simulation, (b) difference in vertically integrated droplet number concen-
tration in number/m2 between the ‘Fire’ and ‘noFire’ simulations, (c) vertically integrated cloud
water concentration in g/m2 from the ‘Fire’ simulation and (d) difference in vertically integrated
cloud water concentration in g/m2 between the ‘Fire’ and ‘noFire’ simulations for the first half of
September 2017.

Atmosphere 2022, 13, x FOR PEER REVIEW 14 of 25 
 

 

 
Figure 13. Spatial distribution of accumulated (a) precipitation in mm from the ‘Fire’ simulation, 

and (b) difference in precipitation in mm between the ‘Fire’ and ‘noFire’ simulations for the first 

half of September 2017. 

3.2.3. Impact on Cloud Condensation Nuclei (CCN) Activity 

We now analyze the sensitivity of potential CCN concentration to supersaturated 

humidity levels (at supersaturation, S = 0.05% and 0.5%) and wildfire activity. The critical 

dry diameter for activation is not available from our WRF-Chem output, so we estimated 

the dry diameter at 0.05% and 0.5% supersaturation, using the equations in Petters et al. 

[68]. For simplicity, we assume hygroscopicity parameter (𝜅) value of 0.3 for all types of 

aerosols (background, anthropogenic and wildfires). Based on this, we get dry diameter 

values of ~262 nm and 57 nm at supersaturation levels of 0.05% and 0.5 %, respectively. 

Figure 14a shows the vertically integrated CCN concentration at S = 0.05% (CCN0.05 

in number/m2) from the ‘Fire’ simulation. High CCN0.05 concentration (>3 × 1011 num-

ber/m2) is seen in areas with intense wildfire activity. The differences between ‘Fire’ and 

‘noFire’ simulations (Figure 14b,c) show clear enhancements in CCN0.05 concentration in 

the northern regions. The differences exceed 5 × 1011 number/m2 (>400%) in some locations 

close to wildfires. Similarly, Figure 14d shows vertically integrated CCN concentration at 

S = 0.5% (CCN0.5 in number/m2) from the ‘Fire’ simulation. There is a clear increase in CCN 

activity at higher supersaturation throughout the domain. High CCN0.5 concentration (>2 

× 1013 number/m2) is seen not just at wildfire locations but also in remote regions over the 

ocean. The difference between the ‘Fire’ and ‘noFire’ simulations (Figure 14e) reveals qual-

itatively similar but quantitatively enhanced absolute changes (by about an order of mag-

nitude more) compared to CCN0.05 (as seen in Figure 14b). The differences are mostly seen 

over northern US regions with increased CCN0.5 concentration (>1 × 1013 number/m2) over 

wildfire locations (Figure 14e). Contrary to the absolute changes, the percentage changes 

in CCN0.5 (Figure 14f) between the ‘Fire’ and ‘noFire’ simulations with respect to the ‘no-

Fire’ simulation are smaller (<60%) compared to percentage changes in CCN0.05 (Figure 

14c), possibly suggesting an already significant CCN activity in the ‘noFire’ simulation at 

higher supersaturation. 

Figure 13. Spatial distribution of accumulated (a) precipitation in mm from the ‘Fire’ simulation, and
(b) difference in precipitation in mm between the ‘Fire’ and ‘noFire’ simulations for the first half of
September 2017.



Atmosphere 2022, 13, 262 14 of 23

3.2.3. Impact on Cloud Condensation Nuclei (CCN) Activity

We now analyze the sensitivity of potential CCN concentration to supersaturated
humidity levels (at supersaturation, S = 0.05% and 0.5%) and wildfire activity. The critical
dry diameter for activation is not available from our WRF-Chem output, so we estimated
the dry diameter at 0.05% and 0.5% supersaturation, using the equations in Petters et al. [68].
For simplicity, we assume hygroscopicity parameter (κ) value of 0.3 for all types of aerosols
(background, anthropogenic and wildfires). Based on this, we get dry diameter values of
~262 nm and 57 nm at supersaturation levels of 0.05% and 0.5 %, respectively.

Figure 14a shows the vertically integrated CCN concentration at S = 0.05% (CCN0.05 in
number/m2) from the ‘Fire’ simulation. High CCN0.05 concentration (>3 × 1011 number/m2)
is seen in areas with intense wildfire activity. The differences between ‘Fire’ and ‘noFire’
simulations (Figure 14b,c) show clear enhancements in CCN0.05 concentration in the north-
ern regions. The differences exceed 5 × 1011 number/m2 (>400%) in some locations
close to wildfires. Similarly, Figure 14d shows vertically integrated CCN concentration at
S = 0.5% (CCN0.5 in number/m2) from the ‘Fire’ simulation. There is a clear increase in
CCN activity at higher supersaturation throughout the domain. High CCN0.5 concentration
(>2 × 1013 number/m2) is seen not just at wildfire locations but also in remote regions over
the ocean. The difference between the ‘Fire’ and ‘noFire’ simulations (Figure 14e) reveals
qualitatively similar but quantitatively enhanced absolute changes (by about an order of
magnitude more) compared to CCN0.05 (as seen in Figure 14b). The differences are mostly
seen over northern US regions with increased CCN0.5 concentration (>1 × 1013 number/m2)
over wildfire locations (Figure 14e). Contrary to the absolute changes, the percentage
changes in CCN0.5 (Figure 14f) between the ‘Fire’ and ‘noFire’ simulations with respect
to the ‘noFire’ simulation are smaller (<60%) compared to percentage changes in CCN0.05
(Figure 14c), possibly suggesting an already significant CCN activity in the ‘noFire’ simula-
tion at higher supersaturation.
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Figure 14. Spatial distribution of average (a) vertically integrated cloud condensation nuclei (CCN)
concentration in number/m2 at supersaturation S = 0.05% from the ‘Fire’ simulation (also referred
to as CCN0.05 in text) and (b) difference in CCN0.05 in number/m2 between the ‘Fire’ and ‘noFire’
simulations, (c) percentage difference in CCN0.05 in number/m2 between the ‘Fire’ and ‘noFire’
simulations relative to the ‘noFire’ simulation, (d) vertically integrated cloud condensation nuclei
(CCN) concentration in number/m2 at supersaturation S = 0.5% from the ‘Fire’ simulation (also
referred to as CCN0.5 in text) and (e) difference in CCN0.5 in number/m2 between the ‘Fire’ and
‘noFire’ simulations, (f) percentage difference in CCN0.5 in number/m2 between the ‘Fire’ and ‘noFire’
simulations relative to the ‘noFire’ simulation for the first half of September 2017.
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The percentage changes in CCN concentration at two supersaturation levels potentially
reveals some information on the relative size distribution of wildfire aerosol particles with
respect to anthropogenic/background aerosol particles. Greater percentage changes in
CCN concentration at lower supersaturation, S = 0.05% suggest a high proportion of
relatively coarse particles (size > 262 nm) originating from wildfires which can activate into
CCN compared to anthropogenic/background aerosol particles. Comparatively, the lower
percentage changes in CCN concentration at higher supersaturation, S = 0.5% suggest a
high proportion of fine anthropogenic/background aerosol particles in the size range of
57–262 nm which can activate into CCN compared to wildfire aerosol particles.

3.2.4. Impact on Air Quality: PM2.5 and Ozone

Next, we analyze the impact of wildfires on air quality. Figure 15 shows the average
surface PM2.5 concentrations from the ‘Fire’ simulation (Figure 15a) and the difference
between the ‘Fire’ and ‘noFire’ simulations (Figure 15b). As expected, surface PM2.5 levels
increase primarily in northern regions. Large changes (even >200 µg m−3) are seen in areas
close to wildfires. These enhancements occur not just due to wildfire emissions directly but
also in response to changes in meteorology (e.g., suppression of PBLH).
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Figure 15. Spatial distribution of average (a) surface PM2.5 concentration in µg/m3 from the ‘Fire’
simulation, and (b) difference in surface PM2.5 concentration in µg/m3 between the ‘Fire’ and ‘noFire’
simulations for the first half of September 2017.

We also show changes in the concentration of surface PM2.5 chemical components in
Figure 16. The changes are high for primary organic carbon (POC) concentrations with
differences even exceeding 100 µg m−3 in locations close to wildfire activity (Figure 16a).
The POC changes in the vicinity of the wildfires contribute to about 35% or more of the PM2.5
enhancements due to wildfires (Figure 16a; rightmost column). In the rest of the northern
regions also (except some areas in western Washington and Oregon), POC contributes
to more than 30% of PM2.5 enhancement due to wildfires. Secondary organic aerosols
(SOA) contribute to more than 15 µg m−3 of PM2.5 changes in locations close to wildfires
in south Oregon and north California (Figure 16b; middle column). The contribution of
SOA differences to PM2.5 changes in wildfire locations is mostly less than 10% (Figure 16b;
rightmost column). The contribution of SOA to PM2.5 enhancement increases away from
wildfires although the absolute changes in SOA reduce (Figure 16b) as seen for other
chemical species and total PM2.5. The contribution of species like Ammonium (NH4

+),
Nitrate (NO3

−), Sulfate (SO4
2−) and Black Carbon (BC) to PM2.5 enhancements over land

regions is generally less than 5% each. The remaining increase in surface PM2.5 levels
due to wildfires is due to changes in the concentration of other inorganics (mineral dust)
(not shown).
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Figure 16. Spatial distribution of average surface concentration (µg/m3) for PM2.5 chemical species
((a) primary organic carbon, (b) secondary organic aerosol, (c) ammonium, (d) nitrate, (e) sulphate,
and (f) black carbon) from the ‘Fire’ simulation (leftmost column); the difference in average surface
concentration (µg/m3) for PM2.5 chemical species between ‘Fire’ and ‘noFire’ simulations (middle
column); and relative to the ‘noFire’ simulation; and percentage contribution of difference in average
surface concentration (µg/m3) for PM2.5 chemical species to the difference in average surface concen-
tration (µg/m3) for total PM2.5 (as seen in Figure 14b) between the ‘Fire’ and ‘noFire’ simulations
(rightmost column). All results are for the first half of September 2017.
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Next, we show the changes in surface ozone mixing ratios due to wildfires in
Figure 17. The average mixing ratio during this period is more than 35 ppbv over most
of the western US (Figure 17a). The surface mixing ratios increase due to wildfires in the
entire north and some south regions (Figure 17b). The enhancements are up to 15 ppbv
in areas close to wildfires. Again, these enhancements are not just attributed to wildfire
emissions but also the feedback of these emissions on meteorology (e.g., suppressed PBLH
potentially causing an increase in ozone precursor concentrations). Considering the impor-
tance of the dry deposition process as an important sink for tropospheric ozone [69–72],
we also analyze the contribution of dry deposition processes to surface ozone levels in
Figure 18. The average dry deposition flux from the ‘Fire’ run (Figure 18a) is greater than
4 nmol m−2 s−1 over most of the western US whereas it is mostly under 2 nmol m−2 s−1

over ocean regions. The flux increases due to wildfires over the north regions (Figure 18b)
and over some areas in the south including over the ocean. The flux enhancements are
higher by 50% in locations close to wildfires. Such enhancements in ozone dry deposition
flux to the terrestrial surface might be significant in modulating the surface ozone mixing
ratios during wildfire episodes, although it can potentially cause damage to the vegetation
and reduction in agricultural productivity [73–77].
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Figure 18. Spatial distribution of average (a) surface ozone dry deposition flux in nmol/m2/s from
the ‘Fire’ simulation and (b) percentage difference in surface ozone dry deposition flux between the
‘Fire’ and ‘noFire’ simulations relative to the ‘noFire’ simulation for the first half of September 2017.

4. Conclusions

In this study, we analyze the impact of wildfire emissions on meteorology and air
quality over the western US while considering the aerosol–cloud–radiation interactions
in meteorology–chemistry coupled with the WRF-Chem model for wildfire episodes in
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September 2017. WRF-Chem performed reasonably well when evaluated against AQS
measurements (2 m temperature, 10 m wind speed, surface PM2.5 concentrations and
surface ozone mixing ratios). The model shows good performance for 2 m temperature with
results at 89% AQS locations within recommended performance criteria (corresponding to
mean bias value within ±1 K together with gross error value < 3 K) and 98% of locations
showing a correlation coefficient (r) value greater than 0.7. For 10 m wind speed, the model’s
performance is reasonable with 67% locations within the recommended performance criteria
(corresponding to mean bias value within ±0.5 m s−1 together with RMSE value < 2 m s−1)
and 77% of locations having an r value greater than 0.5. Weak model performance for wind
speed at several locations could be due to coarse model resolution (12 km × 12 km) which
might not be enough to adequately resolve topography. For PM2.5, the model shows a
moderate performance with 86% of locations within the recommended performance criteria
(corresponding to normalized mean error values within 0–75% together with normalized
mean bias values within ±60%) and 62% of locations having an r value greater than 0.5. The
model exhibits a high positive bias for PM2.5 (MB ≥ 5 µg m−3; NMB ≥ 15%) at some stations
in the vicinity of the wildfires (e.g., western Washington) while compensating at other
stations in the vicinity of the wildfires (e.g., eastern Washington) by underestimating PM2.5
indicating possible uncertainty in wildfire emissions and the vertical plume distribution
in the model. The model also overestimates PM2.5 in some coastal locations in California
(though MB is within ±5 µg m−3) and a few stations inland. At the remaining stations,
the model tends to underpredict the PM2.5 concentrations, which could be associated with
wildfire and anthropogenic emissions (e.g., uncertainties in emissions and the fact that the
NEI inventory used in this study is representative of the year 2014). Finally, the model
performs reasonably well for surface ozone with 98% of locations within the recommended
performance criteria and 95% of locations having an r value greater than 0.5. The model’s
mean bias for ozone is within ±30% at most of the stations.

The model also performs well when evaluated against MODIS satellite data (shortwave
surface downward radiation, outgoing longwave radiation, cloud fraction and cloud optical
depth). The spatial correlation coefficient between the model and MODIS for shortwave
surface downward radiation (SSDR) is 0.92 with a mean bias of −0.65 W m−2 (NMB of
~−0.3%) and 0.96 for outgoing longwave radiation with a mean bias of 4.7 W m−2 (NMB
of ~1.8%). Similarly, the spatial correlation coefficient between the model and MODIS for
cloud fraction is 0.70 with a mean bias of −0.10 (~−18%) over the domain. The model’s
underprediction is primarily attributed to the underprediction of cloud cover over the
ocean region. The model performs reasonably well for cloud optical depth in north and
eastern regions but tends to underpredict in other areas (south-west) over the western
US. This is possibly due to missing satellite data for cloud optical depth in some regions
on several days for the analysis period as seen in daily satellite outputs. Nevertheless,
considering the model’s acceptable performance for other variables and its ability to capture
cloud cover we further examine the impact of wildfires on meteorology and air quality for
the first half of September 2017 when fire activity was relatively intense.

The model showed a reduction in daytime shortwave downward radiation in the
north and over the coastal regions due to aerosol–cloud–radiation interaction. The average
reduction in some locations close to wildfires is up to 50 W m−2. This results in the
reduction of average surface temperature (by up to 0.5 ◦C) in the northern regions. In the
south, the effects are mixed with some locations even experiencing a warming effect on
average, which is mostly attributed to rapid changes in cloud cover/cloud optical depth,
resulting in cloud radiative effects. The cooling near the surface in north regions led to
reduced atmospheric turbulence and hence resulted in suppressed planetary boundary
layer height (PBLH) by up to 50 m in some locations. The reductions in PBLH can lead
to reduced vertical mixing of the pollutants (PM2.5 and O3 precursors), thus leading to
further enhancements of the pollutant concentrations near the surface in addition to a direct
contribution from the wildfires.
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The model shows changes in cloud cover by more than 20% in some locations in the
south domain including over the ocean. Furthermore, the model reveals quite noticeable
and mostly positive changes in cloud optical depth (COD) in several areas in the north.
The changes exceed 10 units in some areas in these regions. These changes occur mostly
in response to aerosol–cloud interactions. Further analyses of results for aerosol–cloud
interactions reveal enhancements in vertically integrated droplet number concentration
(by greater than 200%) and cloud water (by upto 10 g m−2) in locations showing positive
changes in COD. Some regions (especially in the south) also reveal competing effects of
droplet number concentration and cloud water thus contributing to mixed changes in
COD in these regions. The model also showed modification in the spatial distribution
of rain in southern regions with accumulated precipitation changing by up to 20 mm in
several locations.

We further investigated the sensitivity of potential CCN concentration to supersatu-
rated humidity levels (at supersaturation, S = 0.05% and 0.5%) and wildfire activity. The
CCN concentration increases due to wildfires at both supersaturation levels primarily in
the northern regions. The enhancement in CCN concentration due to wildfires at lower
supersaturation level, S = 0.05%, is found to be more than 400% in some locations close
to wildfires. Comparatively, the enhancement in CCN concentration due to wildfires at a
higher supersaturation level, S = 0.5%, is found to be up to 60%. In contrast to percentage
changes, the absolute changes are higher at higher supersaturation (S = 0.5%) compared to
that at lower supersaturation (S = 0.05%) by about an order of magnitude. The contrast
between percentage changes and absolute changes at the two supersaturation levels reveals
a higher proportion of relatively coarse particles (size > 262 nm) and a lower proportion
of fine particles (size range 57–262 nm) originating from wildfires that activate into CCN
compared to anthropogenic/background aerosol particles.

Next, we analyze the impact of wildfires on air quality. Large changes in average PM2.5
concentrations (>200 µg m−3) are seen in areas close to wildfires. These enhancements occur
not just due to wildfire emissions directly but also in response to changes in meteorology
(e.g., suppression of PBLH). A significant proportion of these enhancements in PM2.5 is
due to primary organic carbon (>30%) from wildfires. The contribution of secondary
organic aerosols to PM2.5 enhancements is less than 10% in wildfire locations species like
ammonium, nitrate, sulphate and black carbon, which contribute less than 5% each to
PM2.5 enhancements over land regions. The remaining increase in surface PM2.5 levels due
to wildfires is due to changes in concentration of other inorganics (mineral dust). Surface
ozone mixing ratios increase due to wildfires in the entire north and some south regions
with enhancements up to 15 ppbv in areas close to wildfires. Again, these changes are not
just attributed to wildfire emissions but also the feedback of these emissions on meteorology
(e.g., suppressed PBLH potentially causing an increase in precursor concentrations).

The results in this study are applicable to only September 2017 wildfires over the
western US but may present a general idea of the impacts that the wildfires can have in this
part of the world. The model setup in the study is beneficial for the modeling community
for other applications related to meteorology and/or air quality over this region (e.g.,
assessing air quality-related health impacts of wildfire emissions). Such a model setup can
also be used to examine the future impacts of wildfires by making use of future wildfire
projections [13]. The limitations in this study arise from several factors like uncertainties
in fire emissions [52,78] and computational costs associated with conducting simulations
at further high resolution (<12 km spatial resolution) in order to resolve topography to a
greater degree. Moreover, a study by Carter et al. [79] revealed large differences between
various fire emission inventories, with the FINN inventory underestimating fires over
North America. Such underestimation of fires in the FINN inventory would possibly
lead to conservative estimates in our study. Nevertheless, the results in this study show
that the impacts of wildfires are not localized but can extend to far regions in the form
of altered radiation, meteorology, cloud properties and/or precipitation and change in
air quality. Such impacts (although possibly short-lived) are likely to intensify with an
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increase in wildfire intensity and duration in the future [13], thus calling for possible
adaptation strategies.
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