
����������
�������

Citation: Liu, Z.; Wang, H.; Peng, Y.;

Zhang, W.; Zhao, M. Multiple

Regression Analysis of Low Visibility

Focusing on Severe Haze-Fog

Pollution in Various Regions of

China. Atmosphere 2022, 13, 203.

https://doi.org/10.3390/

atmos13020203

Academic Editor: Jim Kelly

Received: 28 December 2021

Accepted: 25 January 2022

Published: 27 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Multiple Regression Analysis of Low Visibility Focusing on
Severe Haze-Fog Pollution in Various Regions of China
Zhaodong Liu 1,2, Hong Wang 2,*, Yue Peng 2, Wenjie Zhang 2 and Mengchu Zhao 3

1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University
of Information Science & Technology, Nanjing 210044, China; 20201103009@nuist.edu.cn

2 State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS),
CMA, Beijing 100081, China; 20181102036@nuist.edu.cn (Y.P.); 20113020027@fudan.edu.cn (W.Z.)

3 School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; dg20280031@smail.nju.edu.cn
* Correspondence: wangh@cma.gov.cn

Abstract: Visibility degradation is a pervasive environmental problem in winter in China and its
prediction accuracy is therefore important, especially in low visibility conditions. However, current
visibility parameterization algorithms tend to overestimate low visibility (<5 km) during haze–
fog events. The key point of low visibility calculation and prediction depends on a reasonable
understanding of the correlation between visibility, PM2.5 concentration, and relative humidity (RH).
Using the observations of PM2.5 concentration and meteorology from December 2016 to February
2017, under different RH levels, the relative contribution differences of PM2.5 concentrations and RH
to visibility degradation are investigated in depth. On this basis, new multiple nonlinear regressions
for low visibility are developed for eight regions of China. The results show that under relatively low
RH conditions (<80% or 85%), PM2.5 concentration plays a leading role in visibility changes in China.
With the increase in RH (80–90% or 85–95%), the PM2.5 concentration corresponding to the visibility
of 10 and 5 km decreases and the contribution of RH becomes increasingly important. When the RH
grows to >95%, a relatively low PM2.5 concentration could also lead to visibility decreasing to <5 km.
Within this range, the PM2.5 concentration corresponding to the visibility of 5 km in Central China
(CC), Sichuan Basin (SCB), and Yangtze River Delta (YRD) is approximately 50, 50, and 30 µg m−3,
and that in Beijing-Tianjin-Hebei (BTH) and Guanzhong Plain (GZP) is approximately 125 µg m−3,
respectively. Specifically, based on these contribution differences, new multiple nonlinear regression
equations of visibility, PM2.5 concentration, temperature, and dew point temperature of the eight
regions (Scheme A) are established respectively after grouping the datasets by setting different RH
levels (BTH, GZP, and North Eastern China (NEC): RH < 80%, 80 ≤ RH < 90% and RH ≥ 90%; CC,
SCB, YRD, and South China Coastal (SCC): RH < 85%, 85 ≤ RH < 95% and RH ≥ 95%; Xinjiang (XJ):
RH < 90% and RH ≥ 90%). According to the previous regression methods, we directly established
the multiple regression models between visibility and the same factors as a comparison (Scheme B).
Statistical results show that the advantage of Scheme A for 5 and 3 km evaluation is more significant
compared with Scheme B. For the five low visibility regions (BTH, GZP, CC, SCB, and YRD), RMSEs of
Scheme A under visibility <5 and 3 km are 0.77–1.01 and 0.48–0.95 km, 16–43 and 24–57% lower than
those of Scheme B, respectively. Moreover, Scheme A reproduced the winter visibility in BTH, GZP,
CC, SCB, YRD, and SCC from 2016 to 2020 well. The MAEs, MBs, and RMSEs under visibility < 5 km
are 0.44–1.41, −1.33–1.24, and 0.58–2.36 km, respectively. Overall, Scheme A is confirmed to be
reliable and applicable for low visibility prediction in many regions of China. This study provides a
new visibility parameterization algorithm for the haze–fog numerical prediction system.

Keywords: visibility; PM2.5; humidity; multiple nonlinear regressions

1. Introduction

Visibility (VIS) is an important indicator of the transmittance of the atmosphere. In
the recent 10 years, China has experienced many severe haze and fog events which are
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often accompanied by extremely low visibility and high PM2.5 concentrations due to
rapid urbanization and industrialization [1–7]. Low visibility conditions present a host
of problems of people’s daily activities and have become a major concern in air pollution
studies and climatology [8–14].

Atmospheric visibility in winter is closely related to the direct extinction of aerosols
and water vapor [15–18]. Previous studies have revealed that aerosol particles, especially
PM2.5, have a strong attenuation effect on visibility through the direct effect of absorbing
and scattering solar radiation [15,19], and the scattering of solar radiation by aerosol
particles is highly dependent on RH, as hygroscopic particles take up water with increasing
RH [20–24]. Moreover, the direct extinction of fog droplets under the near saturation
of water vapor is the other key factor of visibility degradation [21,24]. Both high PM2.5
concentration and high RH can result in the occurrence of low visibility [6,25]. The key
point of low visibility calculation and prediction depends on reasonable understanding of
the correlation between visibility, PM2.5 concentration, and RH.

In order to increase the safety and efficiency of transportation under low visibility
conditions, developing parameterization schemes of low visibility is necessary for low
visibility forecasts and numerical calculations. The parameterization methods of visibil-
ity could be roughly divided into four categories [26–29]. The empirical equation from
IMPROVE (Interagency Monitoring of Protected Visual Environments) reconstructs the
relationship between the mass concentration of chemical components of aerosol particles
and the extinction coefficient [27,30,31]. The Mie model calculates the optical parameters of
spherical particles based on the corresponding particle number size distribution and the
complex refractive index [26,28,32]. The third parameterization of light extinction is based
on visibility, RH, aerosol hygroscopic growth factors, and particle number size distribu-
tions measured during the Haze in China [33,34]. The physical meaning of this method is
relatively clear, and it has been proved to be suitable for some regions in China such as the
Beijing-Tianjin-Hebei region and the Yangtze River Delta region [26,34]. The above three
methods are developed based on the contribution of chemical characteristics of different
aerosol components to the extinction coefficient. However, because of the uncertainty of
aerosol hygroscopic growth factor under high humidity conditions, these schemes usually
overestimated low visibility below 5 km [25,26]. The spatiotemporal distribution difference
of aerosol species also limits their applicability in China. The visibility statistical algorithm
establishes a regression equation of visibility or extinction coefficient and its influencing
factors, including the concentrations of PM, such as PM10 and PM2.5, and their chemical
components, ozone gaseous pollutants, such as sulfur dioxide and nitrogen dioxide, and
meteorological conditions, such as RH, wind speed, temperature, and boundary layer
height [29,35–39]. For example, Zhou et al. [29] established a multiple regression equation
of visibility, PM2.5 concentration, 10 m wind speed, wind shear (500–850 hPa), RH, temper-
ature difference (925–1000 hPa), and potential pseudo-equivalent temperature difference
(850–925 hPa) in Yangtze River Delta (YRD). This equation predicted the visibility variations
during the winter of 2014–2015 well, with a correlation coefficient of 0.77. Jiang et al. [26]
compared the fitting visibility in Lin’an calculated by different regression methods, which
was developed based on visibility, PM2.5, PM10, and RH [35,40], and the R2 values between
observations and calculations were 0.32–0.88. However, the common problem of these
visibility parameterization schemes is their low efficiency on low visibility (VIS < 5 and
3 km) prediction in winter [25,29]. In this study, new multivariate nonlinear regression
equations of low visibility focusing on severe haze–fog pollution in eight regions of China
are proposed.

Here, using the observations from December 2016 to February 2017, the relative
contribution differences of PM2.5 concentrations and RH changes to visibility reduction
in the eight regions of China (Figure 1a) are investigated in depth. Considering these
differences, the data sets of the eight regions are grouped by different RH levels (BTH,
GZP, and NEC: RH < 80%, 80% ≤ RH < 90% and RH ≥ 90%; CC, SCB, YRD, and SCC:
RH < 85%, 85% ≤ RH < 95% and RH ≥ 95%; XJ: RH < 90% and RH ≥ 90%). Based on these
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RH groupings, new multivariate nonlinear regression equations of PM2.5 concentration
and humidity on visibility of the eight regions are established, respectively, and the low
visibility forecasting capability (VIS < 5 and 3 km) of these new equations is evaluated
based on the observations in January 2016–2020.
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2. Data and Methodology
2.1. Data

The observation data used in this study include the ground-level meteorological
factors and PM2.5 concentration and cover the January of 2016–2020, February of 2017, and
December of 2016. MICAPS meteorological data, including visibility (VIS, km), temperature
(T, ◦C), dew-point temperature (Td, ◦C) and present weather phenomena at 02:00, 05:00,
08:00, 11:00, 14:00, 17:00, 20:00, and 23:00 BJT, were obtained from the 654 sites of the China
Meteorological Information Center. The RH (%) and Temperature dew point difference
(T-Td, ◦C) values are calculated from T and Td. Hourly PM2.5 concentrations are provided
by the 1496 stations of China National Environmental Monitoring Center. Extreme weather
phenomenon, including precipitation, sand and dust could also lead to the occurrence of
low visibility events. Therefore, the observation data under extreme weather conditions
is eliminated.

Reanalysis of meteorological data, including the geopotential height (dagpm), temper-
ature (T, K) u and v (components of the wind field, m s−1) at heights of 500 and 850 hPa
were obtained from the Modern-Era Retrospective Analysis for Research and Applica-
tions, Version 2 reanalysis meteorological data [41]. These data have a spatial resolution of
0.5◦ × 0.5◦ and cover the same period as those of the observation data.

2.2. Statistical Analysis Method

This work mainly uses the regression analysis method. The regression equations
between 3-hourly visibility and PM2.5 concentrations under different RH levels during
the winter of 2016–2017 (December 2016 to February 2017) were calculated to analyze the
relationship between visibility, PM2.5 concentration, and ambient humidity. Considering
the contribution differences of changes in PM2.5 concentration and humidity to visibility
reduction, the 3-hourly data sets of the eight regions are grouped by different RH levels
(BTH, GZP, and NEC: RH < 80%, 80 ≤ RH < 90% and RH ≥ 90%; CC, SCB, YRD, and
SCC: RH < 85%, 85 ≤ RH < 95% and RH ≥ 95%; XJ: RH < 90% and RH ≥ 90%). Most
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sensors for measuring humidity have an uncertainty or systematic error. Therefore, it is
considered that ambient humidity reaches saturation when the RH increases to >95% in this
paper. Using these RH grouping methods, new multivariate nonlinear regression equations
of PM2.5 concentration and humidity (represented by T and Td) on visibility of the eight
regions are established. The calculated visibility in January 2016–2020 (except 2017), which
was calculated by these visibility regression equations, are compared with the observations
to evaluate the visibility forecasting capability of this visibility statistical algorithm.

2.3. Regional Division

According to China’s climate regionalization scheme [42], also considering the spatial
distribution of the PM2.5 observation stations (Figure 1b) and ground meteorology stations
(Figure 1c,d), China is divided into the following eight regions in this study (Figure 1a):
Beijing-Tianjin-Hebei and its surrounding regions (BTH, 112◦ E–120◦ E, 34◦ N–41.5◦ N),
Central China (CC, 110◦ E–117◦ E, 29◦ N–34◦ N), Guanzhong Plain (GZP, 107.5◦ E–110◦ E,
32.5◦ N–35.5◦ N), North Eastern China (NEC, 123◦ E–128◦ E, 41◦ N–48◦ N), Sichuan Basin
(SCB, 103◦ E–108◦ E, 28◦ N–32◦ N), South China Coastal (SCC, 106◦ E–115◦ E, 21.5◦ N–
24◦ N), Yangtze River Delta (YRD, 118◦ E–122◦ E, 29◦ N–34◦ N), and Xinjiang (XJ, 80◦ E–
90◦ E, 41◦ N–48◦ N). The number of meteorology sites, PM2.5 sites, and the total number of
samples used in this study are listed in Table 1.

Table 1. The number of meteorology and PM2.5 sites as well as the total number of samples of the
eight regions.

BTH CC YRD SCB SCC NEC GZP XJ

Number of meteorology sites 425 249 129 124 94 88 70 66
Number of PM2.5 sites 249 187 153 88 102 85 45 33
Total Sample Size (104) 108.5 66.5 38.5 32.8 27.3 24.9 18.2 16.5

3. Results and Discussion
3.1. Regional Distribution Differences of Winter Visibility, RH and PM2.5 Concentrations

Severe low visibility events were observed in many areas of China during the winter of
2016–2017 [20,43]. The spatial distribution of average visibility, PM2.5 concentrations, and
RH during this period is shown in Figure 1. It is clear that low visibility is mainly located in
the central and eastern parts of China, including BTH, CC, GZP, SCB, and YRD (Figure 1c).
The average visibility of the five regions ranked from low to high is SCB, CC, YRD, GZP,
and BTH, respectively (Figure 2a). The lowest visibility is found in SCB (6.8 km), which is
located in Southwest China. The counts of daily mean visibility of less than 10 and 5 km are
76 and 33 d, accounting for 84% and 37% of the study period, respectively. The average RH
of the five regions ranked from high to low is SCB (90.0%), CC (86.9%), YRD (86.7%), GZP
(80.7%), and BTH (77.3%) respectively (Figure 2b), which is consistent with the ascending
order of visibility, suggesting that the higher the RH is, the lower the visibility is. Moreover,
the mean RH under visibility <10 km in CC, SCB, and YRD is 89.6–90.9% and that under
visibility <5 km is 93.5–94.2%. Mean RH under visibility <10 km in BTH and GZP is 84.6%
and 86.8% and that under visibility <5 km is 90.0% and 90.3%, respectively. This also
suggests the close relationship between low visibility (<5 km) and high RH (>90%).
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The distribution of PM2.5 concentrations in China also has obvious regional dif-
ferences. As can be seen in Figure 2c, the highest PM2.5 concentrations are mainly ob-
served in BTH and GZP. Many stations report PM2.5 concentrations >150 µg m−3, which
represent heavy pollution according to the National Ambient Air Quality Standard in
China (NAAQS). Therefore, even though the average RH in BTH and GZP is relatively
lower, visibility <5 km is also observed because of the high aerosol loading. In addition,
mean PM2.5 concentrations under visibility <10 and 5 km in BTH, GZP, and NEC are
103.6–140.9 and 146.4–190.0 µg m−3, 31.3–67.8 % and 72.7–124.5 higher than the average
values. Mean PM2.5 concentrations under visibility <10 and 5 km in CC, SCB, and YRD are
73.9–91.2 and 84.2–108.8 µg m−3, 5.8–15.6 and 25.5–33.1% higher than the average values.
PM2.5 concentrations under low visibility conditions in BTH, GZP, and NEC are much
higher than those in CC, SCB, and YRD. When visibility decreases from 10 to 5 km, the
growth rates of PM2.5 concentration in BTH, GZP, and NEC are also far higher than that of
other regions. It suggests that the contribution of PM2.5 concentration increase to visibility
degradation in BTH, GZP, and NEC is probably higher than that of other regions.

The influence of PM2.5 concentrations and RH on visibility variations has obvious
regional differences. Consequently, the relative contribution differences of changes in PM2.5
concentrations and RH to variations in visibility of the eight regions deserves further study.

3.2. Relative Contribution Differences of PM2.5 Concentrations and RH to Visibility Degradation

The concentrations of fine particulate and atmospheric humidity are the key factors
affecting winter visibility in China [44–51]. T-Td is often used to analyze ambient humidity.
The smaller the value is, the higher the ambient humidity is. A value <5 ◦C is often
considered as the necessary humidity condition for the occurrence of fog events.

Figure 3 shows the scatter distributions of visibility, PM2.5 concentrations, and T-Td in
the eight regions. It can be seen that the fitting relationships of PM2.5 concentrations and
visibility are significantly different with the increase in RH levels. Also considering the
regional difference in RH distribution (Figure 2b), the data groups of regions with relatively
low RH (BTH, GZP, and NEC) are divided into three groups: RH < 80%, 80 ≤ RH < 90%
and RH ≥ 90%, the data groups of regions with high RH (CC, SCB, SCC, and YRD) are
divided into RH < 85%, 85 ≤ RH < 95% and RH ≥ 95%, respectively, and data groups of XJ
are divided into RH < 90% and RH ≥ 90%. The relative contribution differences of changes
in PM2.5 concentration and RH to visibility decrease as well as their regional differences
are investigated based on these RH grouping methods.
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For BTH (Figure 3(a1)) and GZP (Figure 3(a2)), when the RH is <80% and PM2.5
concentration is lower than <125 and 90 µg m−3, respectively, the visibility in the two
regions is usually >10 km. Within this range, the visibility decreases logarithmically with
the PM2.5 concentration increase. PM2.5 concentration dominates the visibility changes
while variation in RH contributes less. Both the continuous increase in PM2.5 concentrations
and RH lead to a further decrease in visibility to 10–5 km. With the RH increase to >80%, the
correlation between PM2.5 concentrations and visibility is weakened, and the contribution
of RH becomes increasingly important. When the ambient RH increases to 80–90% and
PM2.5 concentration rises to >180 µg m−3, the visibility of the two regions further drops to
< 5 km. It is worth noting that as the RH further increases to >90%, PM2.5 concentration
>125 µg m−3 could also result in visibility decreasing to <5 km, which is mainly caused
by the strong hygroscopic growth of some aerosol particles with high water absorption
(sulfate, nitrate, ammonium salt, and some soluble organic aerosols) [22–24,51–56]. When
the water vapor in the air is nearly saturated (RH > 95%), the visibility degradation is
mainly caused by the direct extinction of fog droplets [21,22].

Similarly, for CC (Figure 3(a3)), SCB (Figure 3(a4)), and YRD (Figure 3(a5)), the PM2.5
concentration that corresponds to a visibility of 10 and 5 km varies from region to region.
Under relatively low RH conditions (<85%), when PM2.5 concentration in CC, SCB, and
YRD rises to >75, 60, and 60 µg m−3, respectively, the visibility of the three middle regions
decreases to <10–5 km. As the RH rises to 85–95%, PM2.5 concentration increasing to >110,
100 and 85 µg m−3 respectively could lead to visibility decreasing to <5 km. When the
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saturation water vapor in the air reaches the saturation state (RH > 95%), an extremely low
PM2.5 concentration (>50, 50, and 30 µg m−3, respectively) could also result in the visibility
of CC, SCB, and YRD decreasing to <5 km.

For NEC (Figure 3(a6)), SCC (Figure 3(a7)), and XJ (Figure 3(a8)), the visibility under
relatively low humidity conditions (RH < 80 %) is usually >10 km. The further decrease in
visibility (<10 km) is due to the combined effect of increase in humidity (RH > 80%, 85%,
and 90%, respectively) and PM2.5 concentration (> 85, 60, and 90 µg m−3, respectively).

Figure 3b shows the relationship between visibility and T-Td. In general, the higher
the visibility is and the greater the T-Td is, the greater the dispersion of the two parameters
is, indicating that atmospheric humidity contributes less to visibility reduction under low
humidity conditions. However, when the visibility decreases to <10 km and the T-Td drops
to <5 ◦C, the dispersion of the two parameters decreases significantly with the decrease in
T-Td, indicating the great contribution of high humidity to visibility reduction.

Overall, the PM2.5 concentration dominates the visibility changes under relatively
low RH conditions. As the RH increases, the PM2.5 concentration that corresponds to the
visibility of 10 and 5 km gradually decreases, suggesting that the contribution of changes in
PM2.5 concentration to visibility reduction gradually decreases while the contribution of RH
becomes increasingly important. When the RH grows to >95%, the visibility degradation is
mainly caused by the direct extinction of fog droplets, and a low PM2.5 concentration could
also lead to the visibility decreasing to <5 km. The PM2.5 concentration corresponding to
visibility of 5 km in CC, SCB, and YRD is approximately 50, 50, and 30 µg m−3 while that
in BTH and GZP is 125 µg m−3, respectively. Moreover, at a constant RH level, the PM2.5
concentration that corresponds to a visibility of 10 or 5 km in BTH and GZP is always
higher than that in other regions. It indicates that, compared with other regions, changes
in PM2.5 concentration may have a stronger contribution to visibility reduction in BTH
and GZP.

3.3. Multivariate Nonlinear Regression Equations of Visibility with PM2.5 Concentrations
and Humidity

Under different RH levels, the fitting relationships between visibility and PM2.5 con-
centrations are significantly distinct. Therefore, using the same RH grouping methods as
in Section 3.2, the multiple nonlinear regression equations of visibility, PM2.5 concentra-
tion, and ambient humidity (represented by T and Td) of the eight regions are established
respectively and this method is defined as Scheme A. As the comparisons, according to
the previous regression methods (the datasets are not grouped by setting RH levels), we
directly established the multivariate nonlinear regressions of visibility and the same factors
(Scheme B). The fitted visibility calculated by the two schemes is recorded as CALa and
CALb, respectively.

Figure 4 shows the calculated visibility from the two schemes and the actual ob-
servations. It is clear that CALa of the eight regions (except XJ) are closer to the actual
observations compared with CALb. Especially, Scheme A has greatly improved the cal-
culation capability of low visibility. For example, a continuous low visibility event was
observed in BTH from January 1 to 9, 2017 and the minimum visibility was only 2.9 km
(orange box in Figure 4a). Compared with observed visibility, the mean bias of CALa is
0.8 km while that of CALb is 2.3 km. A low visibility event with the minimum value of
2.5 km occurred in SCB from December 12 to 18, 2016 (orange box in Figure 4d). The mean
bias of CALa during this event is 1.2 km while that of CALb is 3.3 km. However, both the
error of CALa and CALb in XJ is much larger than that in other regions. The R2 of Scheme A
and B in XJ is only 0.18–0.64 and 0.75 (Figure 4h), while those in other regions are 0.70–0.93
and 0.77–0.91, respectively. The insufficient number of samples may be the major reason
for the poorest visibility fitting in Xinjiang (Table 1).
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CALb (blue lines) from December 2016 to February 2017.

Figure 5 compares the calculated visibility with the observed visibility under different
RH conditions. It is obvious that compared with CALb, CALa under all RH levels is closer
to the observations. Especially under high humidity (RH > 90%) conditions, the calculation
accuracy of CALa is clearly higher than that of CALb. According to the coefficient of
determination (R2), both CALa and CALb of NEC, GZP, and XJ have worse fitting precision
compared with other regions, which may be related to sample sizes, density of meteorology
sites, and PM2.5 sites (Table 1).

In order to further compare the low visibility fitting accuracy of the two schemes, the
statistics of calculations under visibility <5 and 3 km are given in Table 2. It can be seen
that the advantage of CALa for 5 and 3 km calculation is clearly more significant than
CALb. CALa only slightly overestimates the low visibility of China (except SCC). For the
five low visibility regions (BTH, GZP, CC, SCB, and YRD), the MB and MAE values under
visibility <5 km are 0.16–0.40 and 0.61–1.06 km, 27–62% and 18–46% lower than those of
CALb, respectively. The MBs and MAEs of CALa under visibility <3 km are −0.03–0.26 and
0.44–0.78 km, 26–93% and 22–52% lower than those of CALb, respectively. RMSEs of CALa
in the five regions under visibility <5 and 3 km are 0.77–1.01 and 0.48–0.95 km, 16–43% and
24–57% lower than those of CALb, respectively. It suggests that the low visibility (<5 and
3 km) forecast accuracy of Scheme A has been improved by 16–57%.
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Table 2. Mean OBS, Mean CAL, MB, MAE, and RMSE under visibility <5 and 3 km (the percentage
changes in the statistic results of Scheme A compared with those of Scheme B).

Region Scheme

VIS < 5 km VIS < 3 km

Mean OBS
(km)

Mean CAL
(km)

MB
(km)

MAE
(km)

RMSE
(km)

Mean OBS
(km)

Mean CAL
(km)

MB
(km)

MAE
(km)

RMSE
(km)

BTH
A

3.83
4.09 0.25 (−62%) 0.69 (−39%) 0.87 (−40%)

2.40
2.67 0.26 (+30%) 0.60 (−32%) 0.88 (−30%)

B 4.50 0.66 1.13 1.46 2.60 0.20 0.88 1.26

GZP
A

4.03
4.42 0.40 (−27%) 1.06 (−18%) 1.30 (−16%)

2.20
2.44 0.25 (−26%) 0.40 (−22%) 0.48 (−24%)

B 4.57 0.55 1.30 1.54 2.53 0.34 0.51 0.63

CC
A

3.85
4.18 0.33 (−58%) 0.70 (−29%) 0.87 (−44%)

2.44
2.40 −0.03 (−93%) 0.48 (−32%) 0.58 (−37%)

B 4.60 0.76 0.98 1.18 2.89 0.46 0.71 0.92

SCB
A

3.76
3.91 0.16 (0%) 0.61 (−31%) 0.77 (−31%)

2.66
2.86 0.20 (−46%) 0.44 (−48%) 0.52 (−53%)

B 3.91 0.16 0.89 1.12 3.02 0.37 0.85 1.10

YRD
A

3.41
3.70 0.29 (−62%) 0.80 (−46%) 1.01 (−48%)

2.29
2.45 0.15 (−84%) 0.78 (−52%) 0.95 (−57%)

B 4.18 0.77 1.48 1.96 3.20 0.91 1.64 2.21

NEC
A

4.33
4.90 0.60 (−45%) 0.93 (−31%) 1.28 (−25%) \B 5.40 1.10 1.34 1.71

SCC
A

4.20
3.35 −0.86

(+186%) 1.02 (−38%) 1.47 (−29%) \
B 4.50 0.30 1.65 2.07

Mean OBS: average observed values; Mean CAL: average calculated values; MB: mean bias; MAE: mean absolute
error; RMSE: root-mean-square error.

The datasets of CC, SCB, and YRD use the same RH grouping method in Scheme A.
Moreover, the fitting relationships between the visibility, PM2.5 concentration, and humidity
of the three regions are relatively similar. At a constant RH level, the PM2.5 concentrations
that correspond to the visibility of 10 and 5 km are very close. Therefore, to test whether all
the three equations can calculate the visibility in CC, SCB, and YRD well, the visibility is
calculated by different equations of Scheme A respectively (Figure 6). It is clear that all three
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equations can well estimate the visibility >5 km in CC, SCB, and YRD. However, the fitting
accuracy of different equations under lower visibility conditions is obviously different. For
instance, fitting visibility of YRD calculated by CC and SCB’s equations is far lower than
the actual observations. Similarly, Figure S1 (Supplementary Materials) shows the fitting
visibility of BTH and GZP calculated by BTH and GZP’s equations respectively. As can be
seen, BTH’s equations overestimate the low visibility in GZP, and GZP’s equations slightly
underestimate the low visibility in BTH. Thus, it is reasonable to calculate the calculated
visibility of the eight regions with respective visibility multivariate nonlinear equations. It
also shows that the regional division in this paper is reliable to a certain extent.

Atmosphere 2022, 13, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 6. Time series of 3-hourly observations (dashed lines, km) and calculated visibility (solid 
lines, km) of (a) CC, (b) SCB, and (c) YRD calculated by different fitting equations. 

3.4. Reasons Analysis on Poor Fitting Accuracy in NEC, GZP and XJ 
Section 3.4 shows that CALa of NEC, GZP, and XJ have worse fitting precision com-

pared with other regions. As can be seen in Figure 1 and Table 1, both PM2.5 and meteor-
ology sites in NEC, GZP, and XJ are far less than those of other regions. For example, the 
number of PM2.5 sites in GZP and XJ are only 45 and 33 respectively. Accordingly, the total 
samples used to establish the visibility fitting equations are also the least. The insufficient 
samples are probably one of the main reasons for the poor fitting accuracy of calculated 
visibility in the three regions.  

As can be seen in Figure 4f, Scheme A well predicts the low visibility event in NEC 
during 17–25 December 2016 (Episode 1), but does not well predict the low visibility dur-
ing 18–26 January 2017 (Episode 2). Figure 7 shows the observed visibility, CALa, PM2.5 

concentrations, and surface meteorological factors in NEC during the two episodes. It can 
be noted that observed visibility at 08:00 (LT) in Episode 2 is much lower than that at other 
times. Compared with Episode 1, low visibility at 08:00 in Episode 2 is seriously overesti-
mated. According to the present weather phenomenon, regional fogs were observed at 
08:00 (LT) every day of Episode 2. However, the calculated RH values at 08:00 during 
Episode 2 are lower than 90%, with a maximum of 89.2% and a minimum of 83.1%. It can 
be seen that there are probably some errors and uncertainties of the RH calculation in NEC, 
which may be due to the insufficient samples caused by the lack of meteorology stations. 
As can be seen in Figure 1, the NEC covers an area of about 450,000 km2, with 88 meteor-
ology sites distributed. But its density is only 1.95 per 10,000 km2. By comparison, the 
density of meteorology sites in BTH and YRD is 7.10 and 6.56 per 10,000 km2, respectively, 
far higher than that in NEC. Therefore, the insufficient samples of meteorology may be 

Figure 6. Time series of 3-hourly observations (dashed lines, km) and calculated visibility (solid lines,
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3.4. Reasons Analysis on Poor Fitting Accuracy in NEC, GZP and XJ

Section 3.4 shows that CALa of NEC, GZP, and XJ have worse fitting precision com-
pared with other regions. As can be seen in Figure 1 and Table 1, both PM2.5 and meteo-
rology sites in NEC, GZP, and XJ are far less than those of other regions. For example, the
number of PM2.5 sites in GZP and XJ are only 45 and 33 respectively. Accordingly, the total
samples used to establish the visibility fitting equations are also the least. The insufficient
samples are probably one of the main reasons for the poor fitting accuracy of calculated
visibility in the three regions.

As can be seen in Figure 4f, Scheme A well predicts the low visibility event in NEC
during 17–25 December 2016 (Episode 1), but does not well predict the low visibility
during 18–26 January 2017 (Episode 2). Figure 7 shows the observed visibility, CALa, PM2.5
concentrations, and surface meteorological factors in NEC during the two episodes. It
can be noted that observed visibility at 08:00 (LT) in Episode 2 is much lower than that
at other times. Compared with Episode 1, low visibility at 08:00 in Episode 2 is seriously
overestimated. According to the present weather phenomenon, regional fogs were observed
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at 08:00 (LT) every day of Episode 2. However, the calculated RH values at 08:00 during
Episode 2 are lower than 90%, with a maximum of 89.2% and a minimum of 83.1%. It can
be seen that there are probably some errors and uncertainties of the RH calculation in NEC,
which may be due to the insufficient samples caused by the lack of meteorology stations. As
can be seen in Figure 1, the NEC covers an area of about 450,000 km2, with 88 meteorology
sites distributed. But its density is only 1.95 per 10,000 km2. By comparison, the density
of meteorology sites in BTH and YRD is 7.10 and 6.56 per 10,000 km2, respectively, far
higher than that in NEC. Therefore, the insufficient samples of meteorology may be one of
the major reasons for the mismatch between the fog phenomenon and the calculated RH
at Episode 2.
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Figure 7. Time series of observed visibility (km), CALa (km), PM2.5 concentration (µg m−3), RH (%),
temperature (◦C), and wind speed (m s−1) in NEC during (a) Episode 1 and (b) Episode 2.

3.5. Test of Visibility Forecast Ability of Scheme A

To examine the applicability of Scheme A, the visibility of the eight regions in January
of 2016–2020 (except 2017) is calculated by Scheme A, and the results are compared with
the actual observation (Figures 8 and S2). The statistics of the calculations under visibility
<5 km are shown in Tables 3 and S1.

In general, the calculated and observed visibility of BTH, GZP, CC, SCB, YRD, and SCC
have similar trends. Numerically, Scheme A slightly overestimates the visibility from 2016
to 2020. The correlation coefficient between the observed and fitted visibility is 0.88–0.96,
which all pass the significance t-test at the 0.01 level. Especially, MAE, MB, and RMSE under
low visibility (<5 km) conditions are 0.44–1.41, −1.33–1.24, and 0.58–2.36 km, respectively.
It suggests that Scheme A can well predict the low visibility in middle and eastern China.
The correlation coefficient between the observed and calculated visibility of NEC and XJ is
only 0.59–0.85, far lower than that in other regions. The worse visibility forecast ability in
NEC and XJ may be due to the poorer fitting accuracy of their visibility fitting equations.

We also compare the fitting visibility calculated by Scheme A with the results of
previous visibility (extinction coefficient) regression parameterization schemes. Zhou et al.
(2016) established a multiple regression equation of visibility in YRD, and the R2 was
0.816. This equation predicted the visibility in the winter of 2014–2015 well, with the
correlation coefficient of 0.77. Fan et al. (2016) established multiple regression equations
of visibility, PM2.5 concentration, and RH in Hangzhou, Ningbo, and Wenzhou. Jiang
et al. (2018) compared the fitting visibility in Lin’an calculated by different visibility
regression equations (Lin et al., 2009; Chen 2013; Shen, 2016). The four cities are all located
in YRD. The R2 of these equations was 0.32–0.88, and the calculation accuracy under low
visibility conditions was relatively low. As comparisons, the R2 values of the visibility
regression equations for YRD in this study are 0.80–0.91 and the correlation coefficients
between observations and calculations from 2016–2020 are 0.90–0.96, all higher than those
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of previous regression methods. Besides, Scheme A greatly improves the prediction ability
of low visibility forecast in YRD, with the RMSEs under visibility <5 km of 0.88–1.03 km.
Chen et al., 2012 established the regression equations of extinction coefficient, RH, aerosol
volume concentration, and coarse to fine volume ratio in the North China Plain. The R2

was 0.89–0.92 while that of Scheme A is 0.92. Overall, compared with previous regression
methods, Scheme A in this study can well predict the variations in winter visibility in
China. Especially, Scheme A is confirmed to be reliable and applicable for the low visibility
prediction (<5 km). This study provides a new visibility parameterization for the haze–fog
numerical prediction system.
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Figure 8. Time series of 3-hourly observed and calculated visibility (km) in (a) BTH, (b) CC, (c) SCB
and (d) SCC in January, 2016–2020 (except 2017).

Comparing the visibility forecast accuracy between different years, it is clear that
the calculated visibility of BTH, NEC, and XJ in 2019 and 2020 had higher fitness than
that in 2016 and 2018, while the calculated visibility in CC, SCB, YRD, and SCC from
2016 to 2020 all had good fitting degrees. Previous studies have shown that the upper air
circulation patterns affecting northern and central China in the winter of 2016 and 2018
were obviously different from those in 2017 and 2019 (Liu et al., 2019). To investigate
whether the differences in upper air circulation patterns result in the poorer fitting degrees
of visibility in BTH, GZP, and NEC in 2016 and 2018, Figure 9 shows the average circulation
situations at heights of 500 and 850 hPa during the winter of 2016–2017, January 2016 and
January 2019 (weather situations in January 2018 and January 2020 are similar to those in
2016 and 2019 respectively, so they are not shown here).
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Table 3. Evaluation for calculated visibility under observed visibility <5 km.

Region Year Mean OBS
(km)

Mean CAL
(km)

MAE
(km)

MB
(km) NMB RMSE

(km)

BTH

2016 5.10 3.81 1.41 −1.33 −0.26 1.91
2018 \
2019 4.31 4.77 0.99 0.46 0.11 1.22
2020 3.07 4.30 1.24 1.24 0.40 1.41

GZP

2016 3.68 3.71 0.87 0.03 0.01 1.06
2018 5.00 3.79 1.51 −1.21 −0.24 2.18
2019 5.10 3.42 1.82 −1.68 −0.33 2.36
2020 5.22 4.03 1.35 −1.20 −0.23 1.81

CC

2016 3.91 3.76 0.62 −0.15 0.04 0.77
2018 3.85 3.74 0.52 −0.11 −0.03 0.63
2019 3.12 3.86 0.77 0.73 0.24 0.92
2020 4.27 4.00 0.71 −0.27 −0.06 0.95

SCB

2016 3.48 3.62 0.44 0.13 0.04 0.56
2018 4.08 4.13 0.47 0.05 0.01 0.58
2019 4.14 4.24 0.65 0.11 0.03 0.78
2020 5.62 4.42 1.19 −1.19 −0.21 1.38

NMB: normalized mean bias.
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January 2019.

As it can be seen, during the winter of 2016–2017, the synoptic situations at heights of
500 and 850 hPa are dominated by the distinct zonal circulation, suggesting weak winds and
stable atmospheric conditions in BTH, GZP, and NEC. The upper-level circulation situations
in 2019 and 2020 are basically similar to those in the winter of 2016–2017. Accordingly, the
calculated visibility in 2019 and 2020 calculated by Scheme A, which is based on data of
winter 2016–2017, have good fitting degrees. However, there are large changes in synoptic
situations in 2016 and 2018. The circulation patterns in the mid-troposphere in the two
years are dominated by distinct meridional circulation, suggesting strong cold air activity
and high wind speeds (Figure 9b) affecting northern and middle China. Correspondingly,
the visibility in BTH, GZP, and NEC has not been well predicted in the two years. The
strong meridional circulation has relatively smaller influences on the southern and eastern
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regions such as CC, SCB, YRD, and SCC. Thus the fitting degree of visibility in the four
regions in 2016 and 2018 have no significant difference compared with that in 2019 and
2020. The results show that Scheme A performs better under similar circulation situations
with the winter of 2016–2017. And this may be the main reason for the better visibility
fitting degree in BTH, GZP, and NEC in 2019 and 2020.

4. Conclusions

With rapid urbanization and increasing pollutant emission, low visibility has become
a pervasive and urgent environmental problem in China and its prediction accuracy is
therefore important, especially for low visibility conditions. However, current visibility
parameterizations tend to overestimate the low visibility during haze–fog events. The key
point of low visibility calculation and prediction depends on a reasonable understanding of
the correlation between visibility, PM2.5 concentration, and relative humidity (RH). Using
the winter observations of PM2.5 concentration and meteorology from 2016 to 2017, under
different RH levels, the relative contribution differences of changes in PM2.5 concentration
and humidity to visibility decrease in the eight regions of China as well as their regional dif-
ferences are discussed. Based on these contribution differences, new visibility multivariate
nonlinear equations applicable to eight regions of China are established and evaluated.

Low visibility in winter always occurs during periods with severe PM2.5 air pollution
and high humidity. Because of the regional distribution differences of PM2.5 concentration
and RH, their contribution to visibility reduction also has obvious regional differences.
Under different RH levels, the fitting relationships of visibility with PM2.5 concentration
and RH are also distinct. Considering these differences, the data groups of BTH, GZP, and
NEC are divided into 3 groups: RH < 80 %, 80 ≤ RH < 90 % and RH ≥ 90 %, data groups
of CC, SCB, SCC, and YRD are divided into RH < 85%, 85 ≤ RH < 95 % and RH ≥ 95
%, and data groups of XJ are divided into RH < 90% and RH ≥ 90 %, respectively, and
the relative contribution differences of PM2.5 concentration and RH changes to visibility
decrease are investigated.

Under relatively low RH conditions (<80% or 85%), the visibility in China (except XJ)
is usually >10 km (NEC and SCC) or 5 km (BTH, GZP, CC, SCB, and YRD) and the PM2.5
concentration dominates the visibility changes within this range. As the RH increases, the
PM2.5 concentration that corresponds to the visibility of 10 and 5 km gradually decreases,
suggesting that the contribution of PM2.5 concentration to visibility reduction gradually
decreases, while the contribution of RH becomes increasingly important. When the water
vapor in the air reaches the saturation state (RH > 95%), the visibility degradation is mainly
caused by the direct extinction of fog droplets, a very low PM2.5 concentration could lead
to visibility <5 km. The PM2.5 concentration corresponding to the visibility of 5 km in CC,
SCB, and YRD is approximately 30, 50, and 50 µg m−3 respectively, while that in BTH
and GZP is 125 µg m−3. Moreover, at a constant RH level, the PM2.5 concentration that
corresponds to the visibility of 10 and 5 km in BTH and GZP is always higher than that
in other regions, indicating a higher contribution of PM2.5 to visibility variations in the
two regions.

Based on these contribution differences, using the same RH grouping methods, the
multiple nonlinear regression equations of visibility, PM2.5 concentration, T, and Td of the
eight regions are established respectively (Scheme A). According to the previous regression
methods, the multiple regression equations of visibility and the same factors are established
directly as the comparisons (Scheme B). The calculated visibility from the two schemes is
recorded as CALa and CALb. The statistical results show that CALa of the eight regions
(except XJ) is closer to the actual observations. Especially, the advantage of Scheme A
for 5 and 3 km evaluation under high humidity conditions is more significant compared
with CALb. For the five low visibility regions (BTH, GZP, CC, SCB, and YRD), MAEs of
CALa under visibility <5 and 3 km are 0.61–1.06 and 0.44–0.78 km, 18–46% and 21–52%
lower than that of CALb, respectively. RMSEs of CALa under visibility <5 and 3 km
are 0.77–1.01 and 0.48–0.95 km, 16–43% and 24–57% lower than those of CALb respectively,
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suggesting that the low visibility forecast accuracy of Scheme A is improved by 16–57%.
Moreover, Scheme A can well predict the variations in winter visibility in BTH, GZP, CC,
SCB, YRD, and SCC from 2016 to 2020. The correlation coefficient between the observed
and fitted visibility is 0.88–0.96, which all pass the significance t-test at the 0.01 level. The
MAEs, MBs, and RMSEs under low visibility (<5 km) conditions are 0.44–1.41, −1.33–1.24,
and 0.58–2.36 km, respectively. Overall, Scheme A is confirmed to be reliable and applicable
for the visibility prediction in many regions of China (except XJ).

This study provides a new visibility parameterization algorithm for the haze–fog
numerical prediction system. The physical meaning of this algorithm is relatively clear, and
it is proven to be applicable to many areas of China, with simple calculations, high time
resolution, and relatively high forecast accuracy of low visibility. However, this method
has some limitations and uncertainties. This method has been proved to be suitable for
winter, but in spring, summer, and autumn, some weather phenomena such as dust and
precipitation could also lead to the occurrence of low visibility, so it may be not applicable
to those three seasons. Moreover, its visibility forecasting effect is greatly affected by
the number of samples of the study region. The uncertainty of RH calculation could
also affect the accuracy of visibility multiple regressions. These limitations deserve to be
further studied.
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different fitting equations; Figure S2: Time series of 3-hourly observed and calculated visibility (km)
in (a) YRD, (b) NEC, (c) SCC and (d) XJ in January, 2016–2020 (except 2017); Table S1: Evaluation for
calculated visibility under observed visibility <5 km.
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