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Abstract: Extreme weather events have increased significantly in the past decades due to global
warming. As a robust forecast and monitoring tool of extreme weather events, regional climate
models have been widely applied on local scales. This study presented a simulation of an extreme
precipitation event in the Southeastern Coastal Region of China (SEC), where floods, typhoons,
and mountain torrents occur frequently using the Weather Research and Forecast model (WRF)
driven by GEFS (The Global Ensemble Forecast System) ensemble members (one control run and
20 ensemble members) from 01 UTC 14 June to 18 UTC 16 June 2010. The observations of hourly
precipitation records from 68 meteorological stations in the SEC were applied to validate the WRF
ensemble simulations with respect to 3-hourly cumulative precipitation (3hP), 6-hourly cumulative
precipitation (6hP) and total cumulative precipitation (TCP). The results showed that all WRF
20 ensemble outputs could capture the extreme precipitation events fairly well with the Pearson
correlation coefficient ranging from 0.01 to 0.82 and 0.16 to 0.89 for 3 and 6hP, respectively. The
normalized root mean square error was comparable between the control run and 20 ensembles for
3hP (0.67 vs. 0.63) and 6hP (0.51 vs. 0.53). In general, WRF underestimated the observations for TCP.
The control run (En00) modeled 28.1% less precipitation, while the 20 ensembles modeled 3.9% to
55.5% less precipitation than observations. The ensemble member 12 (En12) showed the best TCP
simulation with the smallest bias. The average of 20 ensembles simulated 31.7% less precipitation
than observations. The total precipitation was not captured by WRF with a significant bias that
ranged from −203.1 to 112.3 mm. The storm centers were generally not captured by WRF in this
case study. WRF ensembles underestimated the observation in the central Fujian Province while
overestimated in the northern and southern Fujian Province. Although the average of ensembles can
reduce the uncertainty to a certain extent, the individual ensemble (e.g., En12) may be more reliable
on local scales.

Keywords: WRF; ensemble; cumulative precipitation; extreme precipitation event; southeastern
coastal region of China

1. Introduction

Extreme precipitation tends to trigger natural hazards such as floods, landslides, and
debris flows that cause large human and economic losses [1]. The global increase in the
frequency and intensity of extreme precipitation events has been observed in numerous
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studies [2–5]. Many previous studies showed that China experiences a significant increase
in extreme precipitation, in particular northwestern and southeastern China, during the
rainy season from April to September [6–9]. Fujian Province, located in the Southeast-
ern Coastal Region of China (SEC), has a typical subtropical monsoon climate. It is an
economically developed area with a high population density and a high concentration of
wealth. However, natural disasters, such as floods, typhoons, and mountain torrents, often
occur in this region. Based on preliminary statistics, more than 182 extreme precipitation
events occurred in the Fujian Province, which caused more than 2000 deaths from 1950 to
2000 [10].

Quantitative precipitation forecast (QPF) has played a significant role in the prevention
of floods and rainstorms. Numerical weather forecasts have been commonly used to
provide QPF products in recent years. However, the global numerical weather forecast
models cannot meet the requirement of high spatial and temporal resolution of a specific
region with complicated topography due to the limitation of computer resources [11]. Many
regional numerical weather forecast models—such as the Regional Atmospheric Modeling
System (RAMS), the Pennsylvania State University–National Center for Atmospheric
Research (PSU/NCAR) mesoscale model (MM5) and the Weather Research and Forecast
model (WRF)—have been developed as dynamic downscaling tools to generate higher
spatial and temporal resolution QPF products on the basis of global numerical weather
forecasts. Numerous studies have indicated that regional numerical weather forecast
models were more capable of predicting precipitation in complicated topography than
global models, as higher resolution helped to reveal local circulations and orographic
forcing [11,12].

As the next-generation mesoscale numerical weather prediction system, the WRF
model designed for both atmospheric research and operational forecasting needs has been
widely used by more than 150 countries [11–15]. For researchers, WRF can produce sim-
ulations based on actual atmospheric conditions (i.e., from observations and analysis) or
idealized conditions. WRF offered operational forecasting a flexible and computationally-
efficient platform while reflecting recent advances in physics, numeric, and data assimila-
tion contributed by developers from the expansive research community [14].

It is well-known that the occurrence and development of heavy rain is not only related
to large-scale weather conditions and sufficient water vapor transport but also to non-
uniform underlying surface processes [13,16]. The land surface scheme is a basic physical
and chemical process in the atmospheric circulation system, which affects the atmospheric
circulation and climate change modeling [15,17]. Over the past several decades, many
studies have shown that land–surface processes play an important role in climate models,
atmospheric circulation models, and mesoscale numerical prediction models [17]. Land
surface schemes such as CLM4, Noah and Noah-MP in WRF could enhance the ability of
precipitation prediction [17].

However, numerical prediction models such as WRF were not perfect because of the
measurement errors, analysis errors and model bias. The atmospheric variables cannot be
measured to an infinite degree of accuracy or precision [14,15,17]. The models’ initial state
never matches the real atmosphere. Initial condition errors grew with model integration
time, most rapidly at smaller scales [17,18]. The model equations did not fully represent
all of the processes in the atmosphere. Thus, in order to overcome these disadvantages,
ensemble technology was developed. Normally, the single forecast (control/deterministic
run) from one forecast model or method used a single set of initial conditions. However, an
ensemble collection of “member” forecasts were verified at the same time, created from
different but equally viable initial conditions or different forecasting methods that (ideally)
statistically represented nearly all forecast possibilities [18]. Although deterministic runs
usually have more skill than any individual ensemble member due to superior resolution,
the ensemble mean usually has at least as much skill as an equal-resolution control run.
Normally, the ensemble mean can be more skillful than a higher-resolution deterministic
run, especially beyond 3 days [15,17,18].
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Until now, few studies have been carried out for extreme precipitation events in the
Southeastern Coastal Region of China (SEC), especially based on the WRF-ensemble ap-
proach. It is necessary to evaluate the reliability of WRF in extreme precipitation prediction
for the disaster reduction in the SEC. Meanwhile, the performance of an ensemble-based
model is also of great importance to investigate for a short range (1–3 days) precipitation
forecast. Thus, the objectives of the present study included (1) whether the WRF and
ensembles can capture the spatiotemporal characteristics of extreme precipitation in the
SEC, (2) which is more reliable between the WRF control run and ensemble simulations,
and (3) can ensemble-based WRF be used as a short range forecasting tool in the SEC? This
study provides a good reference for further improving the ability of weather and flood
forecast in China, especially for the SEC, where typhoons and floods often occur.

2. Materials and Methods
2.1. Observation

The observations from 68 meteorological stations (mainly in Fujian Province) were
provided by the Fujian Climate Center (Figure 1, Table 1). These stations are evenly
distributed with the elevation ranging from 7 (No. 32 Lianjiang) to 900 m (No. 10 Zhouning).
Generally, these stations could represent the weather characteristics of cities, valleys, and
hills. The hourly precipitation records over three days (14 to 16 June 2010) were extracted
for this case study. During these days, the entire of Fujian Province experienced a heavy
storm, which led to a serious flood in the Jingjiang River basin and an urban waterlogging
in Nanping City. This storm was triggered by the frontal system and lasted almost two
weeks. The peak discharge of the Jinjiang River basin on 15 June 2010 was three times more
than the long-term average runoff.

Figure 1. Location of meteorological stations (black dots) and topography in the study area.
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Table 1. Information of the meteorological stations.

ID Name Latitude Longitude Elevation ID Name Latitude Longitude Elevation

1 Guangze 27.52 117.30 264 35 Wuping 25.15 116.07 267
2 Shaowu 27.33 117.47 192 36 Shagnhang 25.05 116.42 199
3 Wuyishan 27.77 118.03 221 37 Yongan 25.97 117.35 206
4 Pucheng 27.92 118.53 275 38 Datian 25.70 117.83 401
5 Jianyang 27.33 118.12 196 39 Zhangping 25.30 117.40 203
6 Songxi 27.52 118.80 201 40 Longyan 25.10 117.03 342
7 Zhenghe 27.37 118.82 221 41 Huaan 25.02 117.53 161
8 Jian’ou 27.05 118.32 156 42 Anxi 25.07 118.15 89
9 Shouning 27.53 119.42 826 43 Yongtai 25.87 118.93 86

10 Zhouning 27.15 119.35 900 44 Pinnan 26.92 118.98 871
11 Fuan 27.10 119.65 46 45 Yongchun 25.33 118.27 170
12 Zherong 27.25 119.90 670 46 Dehua 25.48 118.23 517
13 Fuding 27.33 120.20 38 47 Xianyou 25.37 118.70 77
14 Ninghua 26.23 116.63 359 48 Xiuyu 25.23 118.98 23
15 Qingliu 26.20 116.85 310 49 Fujiao 26.08 119.33 26
16 Taining 26.90 117.17 345 50 Change 25.97 119.50 8
17 Jiangle 26.73 117.47 154 51 Fuqing 25.72 119.38 38
18 Jianning 26.83 116.85 342 52 Pingtan 25.52 119.78 31
19 Shunchang 26.80 117.80 174 53 Putian 25.43 119.00 29
20 Mingxi 26.40 117.15 319 54 Yongding 24.72 116.72 222
21 Shaxian 26.40 117.80 120 55 Changtai 24.62 117.75 42
22 Sanming 26.27 117.62 213 56 Nanjing 24.52 117.37 28
23 Nanping 26.65 118.17 128 57 Pinghe 24.37 117.32 37
24 Gutian 26.58 118.73 356 58 Zhangzhou 24.50 117.65 29
25 Youxi 26.17 118.15 127 59 Longhair 24.45 117.82 8
26 Minqing 26.23 118.85 40 60 Zhangpu 24.13 117.60 51
27 Xiapu 26.88 120.00 13 61 Tongan 24.72 118.13 15
28 Minhou 26.15 119.15 50 62 Nanan 24.97 118.37 45
29 Luoyuan 26.50 119.53 57 63 Chongwu 24.90 118.92 23
30 Ningde 26.33 119.53 33 64 Xiamen 24.48 118.07 138
31 Fuzhou 26.08 119.28 85 65 Jinjiang 24.82 118.57 55
32 Lianjiang 26.20 119.53 7 66 Zhaoan 23.77 117.13 20
33 Changting 25.85 116.37 311 67 Dongshan 23.78 117.50 54
34 Liancheng 25.68 116.75 382 68 Yunxiao 23.98 117.37 20

2.2. GEFS Ensembles

In this study, the ensembles were derived from the Global Ensemble Forecast Sys-
tem (GEFS, https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-
ensemble-forecast-system-gefs, 22 December 2021), which was previously known as the
GFS Global ENSemble (GENS). GEFS is a weather forecast model made up of 21 separate
forecasts (one control and 20 ensemble members). The National Centers for Environmental
Prediction (NCEP) started the GEFS to address the nature of uncertainty in weather ob-
servations, which was used to initialize weather forecast models. The GEFS attempted to
quantify the amount of uncertainty in a forecast by generating an ensemble of multiple
forecasts, each minutely different, or perturbed, from the original observations. The Global
Forecast System (GFS) model 2015 version was used as the initial condition for the GEFS
control run. The ensemble Kalman filter (EnKF) was applied to generate the initial pertur-
bations for ensemble members by adding the 6-hourly EnKF forecast perturbations to the
GFS 2015 version analysis [19–21]. The gridded GEFS-003 version ensemble was applied for
model initialization. GEFS-003 included one control run (labeled as En00) and 20 ensemble
members (labeled as En01 to En20 in order) with a grid of 1-degree latitude-longitude and
6-hourly time steps (00, 06, 12, and 18 UTC). The same time period (14 to 16 June 2010) with
observations was collected for the WRF simulation.

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-system-gefs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-system-gefs
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2.3. WRF Model Setup

The WRF was continuously updated, and the latest version was 4.2.1 released in 2020.
The version 3.8.1 of WRF was utilized in this study. Three domains with a grid spacing of
27 (d01), 9 (d02), and 3 km (d03) and domain sizes of 288 × 165, 211 × 208, and 220 × 232,
respectively, were configured for the WRF simulation (Figure 2).

Figure 2. Three domains with resolutions of 27 (d01), 9 (d02), and 3 km (d03) in the WRF.

The innermost domain was centered on Nanping City of Fujian Province, where the
flood happened on 15 June 2010. Fifty levels were set in the vertical section. The land
use/land cover and topography driven data from the U.S. Geological Survey (USGS) were
set at 2 min spatial resolution for d01 and d02, but 30 s for d03. The simulations of the three
domains were all initiated at 00 UTC 14 June 2010 with an integration time span of 6 h and
the model spin-up time of about 3 h (d01) and 1 h (d02 and d03).

The time step in the WRF was 90 s. The lateral boundary condition for the outermost
domain (d01) also used these 6 h interval data, whereas the lateral boundary conditions
of the two inner domains (d02 and d03) were provided by the model output of their
respective outer domains (d01 and d02). The main physical parameterization schemes for
the simulations were listed in Table 2 according to previous studies [15,17]. It should be
noted that the time series from 00 UTC to 24 UTC 14 June was for the WRF warm-up. Thus,
the outputs from 01 UTC 15 June to 18 UTC 16 June were analyzed for the model evaluation.

Table 2. Main physical parameterization schemes in the WRF.

d01 d02 d03

Microphysics WSM6 WSM6 WSM6
Radiation physics RRTMG RRTMG RRTMG

Surface layer physics Monin-Obukho Monin-Obukho Monin-Obukho
Land surface physics Noah Noah Noah

Planetary boundary layer physics YSU YSU YSU
Cumulus parameterization Kain-Frisc Kain-Frisc -

In order to validate the WRF output total cumulative precipitation (TCP), 68 observa-
tions were used to validate the WRF simulations. Because the spatial resolution of d03 was
3 km, 9 WRF grids surrounding each meteorological station were averaged. Four statistical
criteria (NRMSE, CSI and PCC) were used to evaluate the performance of 3-hourly and
6-hourly cumulative precipitation simulations (3hP and 6hP). The definition, formula and
optimal value for the indices are listed in Table 3.
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Table 3. Evaluation criteria.

Index Name Formula Optimal Value

NRMSE Normalized Root
Mean Square Error

1
O

√
1
n ∑n

i=1(Ei − Oi)
2 0

PCC Pearson Correlation
Coefficient

∑n
i=1(Ei−E)(Oi−O)√

∑n
i=1(Ei−E)

2
√

∑n
i=1(Oi−O)

2
1

CSI Critical Success Index n11
n11+n12+n21

1

Notes: n is the number of samples; E (O) is the mean value of simulations (observations); Ei (Oi) are the simulations
(observations). The n11 represents the ratio of accurate simulation, n12 represents the ratio of fake simulation, and
n21 represents the ratio of missing simulation.

3. Results
3.1. The 3-Hourly and 6-Hourly Cumulative Precipitation Simulations by WRF Ensembles

Table 4 shows the performance of 3-hourly and 6-hourly cumulative precipitation
simulations (3hP and 6hP) over the whole region by WRF ensembles. For 3hP, the control
run (En00) has a 0.67 NRMSE and low PCC with a value of 0.28. The CSI was 0.56 both for
En00 and Enmean. The performances of ensembles were different. The NRMSE ranged
from 0.49 to 0.81 with an average value of 0.63, which was slightly better than En00. The
PCC ranged from 0.01 to 0.82 with a much better average (0.43) than En00 (0.28). En06 had
the smallest NRMSE (0.49). En07, En12 and En19 had large NRMSEs and weak PCCs. En03,
En04, and En13 showed the best performances on PCC with a value higher than 0.7.

Table 4. Evaluation of 3hP and 6hP for all WRF ensembles.

3hP 6hP

NRMSE PCC CSI NRMSE PCC CSI

En00 0.67 0.28 0.55 0.51 0.52 0.72
En01 0.57 0.45 0.56 0.46 0.55 0.72
En02 0.74 0.16 0.59 0.51 0.43 0.74
En03 0.65 0.82 0.53 0.62 0.79 0.69
En04 0.54 0.77 0.56 0.47 0.89 0.71
En05 0.58 0.38 0.58 0.41 0.67 0.74
En06 0.49 0.63 0.59 0.42 0.72 0.73
En07 0.80 0.07 0.54 0.63 0.29 0.72
En08 0.58 0.49 0.50 0.49 0.64 0.67
En09 0.63 0.74 0.52 0.60 0.79 0.71
En10 0.61 0.37 0.56 0.48 0.56 0.73
En11 0.61 0.34 0.59 0.53 0.44 0.73
En12 0.73 0.01 0.61 0.55 0.21 0.75
En13 0.58 0.79 0.52 0.54 0.85 0.70
En14 0.62 0.53 0.48 0.51 0.68 0.69
En15 0.66 0.29 0.60 0.47 0.54 0.76
En16 0.63 0.34 0.58 0.53 0.47 0.74
En17 0.62 0.65 0.50 0.56 0.74 0.70
En18 0.67 0.33 0.55 0.56 0.42 0.73
En19 0.81 0.02 0.61 0.69 0.16 0.75
En20 0.58 0.52 0.52 0.47 0.70 0.69

Enmean 0.63 0.43 0.55 0.53 0.58 0.72

For 6hP, the evaluation criteria enhanced compared to 3hP. The Enmean of NRMSE
was slightly worse than En00 but with a tiny disparity. The Enmean was much better than
En00 in PCC. The prediction accuracy on the rainy possibility was equal for both Enmean
and En00. The NRMSE ranged from 0.41 to 0.69 while PCC ranged from 0.16 to 0.89. Seven
ensembles have a PCC higher than 0.7, especially En04 and En13.

In general, ensembles could reduce the bias compared to En00. There were 16 ensemble
members better than En00 in NRMSE for 3hP. However, only eight members were better
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than En00 in NRMSE for 6hP. It was interesting that CSI certainly enhanced from 3 to 6hP,
but the NRMSE of Enmean was slightly worse than En00.

Figure 3 shows the total cumulative precipitation (all 42 h) of WRF ensembles at 68
stations. The performances of sites varied significantly whether for the same ensemble or
among different ensembles. For example, En05, En07 and En12 had comparable ranges (25%
to 75% inner quartile) with observations. En03, En13 and En17 had smaller ranges. En00
and all ensembles had many outliers and underestimated the median values compared
to observations. However, the bias between En12 and observations was the smallest with
respect to the average value. En05 and En12 had a similar whole range with observation.
Eight ensembles of median value were greater than Enmean. It can be clearly found that
the Enmean was not optimal, although ensemble estimations can reduce the uncertainty
in general. In terms of the bias for the total accumulative precipitation, En12 was the best
performer. The performances of TCP, 3hP and 6hPwere also very different. This showed
that the WRF model’s ability to simulate storms varies greatly in different regions.

Figure 3. Total cumulative precipitation of all stations as well as the associated WRF ensembles.
Thick horizontal lines in boxes showed the median values. Boxes indicated the inner-quartile (25%
to 75%) and the whiskers showed the full range of the values. The hollow rectangles presented the
mean values, and the solid diamonds presented the outliers.

3.2. Temporal Validation of WRF Ensemble Simulations

Figure 4 shows the temporal features of total cumulative precipitation by averaging
68 stations (red line), the GEFS ensemble control run (green line), and 20 ensemble members
(thin lines), as well as the mean of ensembles (black line). For observation, the maximum
TCP occurred at 11 UTC 15 June 2010 with a value of 294.3 mm. The minimum TCP was
found at 18 UTC 16 June with only 11.6 mm. For WRF simulations, between 01 UTC to 21
UTC 15 June, the simulations were underestimated, especially the observed maximum TCP.
The Enmean and the control run (En00) overestimated the TCP from 22 UTC 15 June to 03
UTC 16 June. The simulations fitted the observations quite well after 03 UTC 16 June.

In general, the performances were significantly different among 20 ensemble members.
For example, the En13 modeled the minimum TCP with only 2.2 mm at 17 UTC 15 June
while En12 modeled the minimum TCP with a value of 10.8 mm at 15 UTC 15 June. For
the maximum TCP, the greatest was found for En02 with 387.0 mm at 01 UTC 15 June.
Although the values of En00, En02, En07, En15, and En19 were higher than observation
(294.3 mm) at different time points, the others were much smaller. Thus, in general, the TCP
of WRF runs were less than observations. In terms of bias, the control run (En00) modeled
28.1% less precipitation than observation. The 20 ensemble members modeled around 3.9%
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to 55.3% less precipitation than observation. The En12 modeled the best TCP compared to
observation (−3.9%). The performance of En03 was the worst (−55.3%). In addition, the
En00 (−28.1%) was a little better than Enmean (−31.7%).

Figure 4. Time series of total cumulative precipitation (mm) over all stations (red line), control run
(green line), and 20 ensemble members (thin lines) as well as Enmean (black line) from 01 UTC
15 June to 18 UTC 16 June 2010.

3.3. Spatial Validation of WRF Ensemble Simulations

The spatial distributions of interpolated total cumulative precipitation from 68 stations
as well as 21 WRF runs are presented in Figure 5. The TCP ranged from 3.7 to 186.6 mm.
The storm center (high value area) was located in the middle of Fujian Province, especially
the mountain areas (Daiyun Mountains) and Jinjiang River basin. The areas with less TCP
were mainly distributed in the northern and southern Fujian (Figure 5a). The WRF-modeled
TCP ranged from 0 to 302.1 mm, which was much higher than observations (Figure 5b).
However, the distribution pattern was quite different from observations. The areas a high
value of TCP were mainly located in the southeast of Fujian Province. The storm center
of observation was not captured by En00. Figure 5c shows the spatial distribution of
Enmean. The TCP ranged from 0 to 121.1 mm, which was much less than observations. The
distribution pattern was also different from the observation. The areas with a simulated
storm center (high TP) were mainly located in the southern Fujian Province. In contrast,
less precipitation was found in the northwestern inland areas.

Figure 5d shows the bias distribution of interpolated Enmean compared to the obser-
vations (here Enmean minus observation). Thus, the negative value indicates that WRF
underestimated observation, and the positive value represents an overestimation. The bias
ranged from −203.1 to 112.3 mm. The largest underestimation was found in the central
part of the province (Sanming City and Nanping City, which are in the Daiyun Mountains).
The northern and southern Fujian Province was overestimated by WRF ensembles. The
central part of Fujian Province was underestimated because of the complex terrains.

All distribution figures of interpolated TP (Figure S1) are provided in Supplementary
Materials. Except for En08, the simulated ensembles show consistent characteristics with
low value. A high-value center was found in the southern Fujian for most ensembles, which
was contrary to observation.
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The locations of the best models are inconsistent. For example, stations Nos. 1, 2, 15,
24, 34, 42 and 45 performed quite well. Among them, Nos. 42 and 45 are located in the
Jinjiang River basin. This suggests that WRF worked well in the basin, where an extreme
runoff occurred at 06 UTC 15 June 2010. In short, the WRF model has a large potential for
improvement in the ability to capture the rainstorm centers.

Figure 5. Spatial distribution of TCP from 01 UTC 15 June to 18 UTC 16 June 2010: (a) Distribution of
interpolated TCP from observation; (b) distribution of interpolated TCP from En00; (c) distribution of
interpolated TP from Enmean; (d) bias distribution of interpolated Enmean compared to observation
(Enmean minus observation). The black dots represent the meteorological stations.
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4. Discussion

Although extreme precipitation event simulations and forecasts were hot spots in
recent decades, there was no uniform definition of an extreme precipitation event. Ac-
cording to the regulations of the China Meteorological Administration, a rainstorm can be
identified when the daily precipitation exceeds 50 mm or the precipitation exceeds 25 mm
within 12 h. However, many different definitions have been applied to local studies. For
example, many studies defined an extreme precipitation event when the daily precipitation
exceeded the 90th or 95th percentile of a long-term precipitation series (e.g., [22,23]). Some
studies preferred to use the series of climate indices provided by the Expert Team on
Climate Change Detection Monitoring and Indices (ETCCDMI) (e.g., [24]). The present
study selected the typical extreme precipitation event that leads to a serious flood disaster.
This was a representative extreme precipitation event caused by a frontal system in the
first-flood season in this region. In terms of the precipitation amount, the total cumulative
precipitation in the study area reached the rainstorm level (the average daily precipitation
was around 90 mm).

Many simulations of extreme precipitation events or storms in South China have
been carried out based on the WRF and ensemble approaches. Compared with previous
studies, the current study had not only similarities but also significant differences. Li
and Tang [25] simulated the precipitation from 9 May to 24 June 2010 in southeastern
China using an WRF ensemble model. They found that the WRF model had a fairly good
precipitation forecasting ability, which was consistent with our findings. However, they
claimed that the mean of all ensembles was always better than a single ensemble member,
which was different from the present study. Zhang et al. [26] found that the GEFS ensemble
could reduce the uncertainty of the control forecast in the first-flood season of southern
China. They also found that the WRF ensembles tended to underestimate the storms,
which was consistent with this study. However, the forecast skill was dominated by the
initial conditions and multi-physical schemes. Huang and Gao [27] compared different
driven conditions for the WRF model, and they found ERA-Interim was much better than
the National Centers for Environmental Prediction (NCEP) Global Final Analysis (FNL)
in precipitation simulation in China. More studies focused on the impacts of different
physical processes on the precipitation simulation. Yang et al. [15] and Dai et al. [28]
evaluated the performances of different WRF physics on catchment scales. The cumulus
parameterizations, planetary boundary layer physics and land surface physics were the
most sensitive processes for storm simulation [15,25,26,28]. Although this study adopted
the fixed physical parameterization schemes, these were basically consistent with the best
physical schemes in previous studies [15,26–28].

5. Conclusions

An extreme precipitation event (00 UTC 14 June to 18 UTC 16 June 2010) in the
Southeastern Coastal Region of China (SEC) was simulated based on an WRF model driven
by GEFS ensemble members. The GEFS data provided a control run and 20 ensemble
members. The 21 simulation results showed dissimilar spatial patterns of total cumulative
precipitation over the SEC in general, except for a few ensemble members. The amounts
of TCP and the storm centers were also significantly different. The 20 ensemble members
showed different distributions for different TCP levels. The control run had a similar
pattern and amount range with the ensemble mean averaged from 20 members (Enmean).

The TCP of 21 ensemble runs was validated by 68 meteorological stations over the
SEC in time series and spatial patterns. For 3hP, the NRMSE for 20 ensembles ranged from
0.49 to 0.81 with an average value of 0.63, which was better than the control run (En00,
0.67). The CSI was equal (0.56) both for En00 and Enmean. The PCC ranged from 0.01 to
0.82 with a much better average (0.43) for Enmean than En00 (0.28). For 6hP, Enmean was
much better than En00 in PCC but with a worse NRMSE. Although the CSI was enhanced
from 3 to 6hP, the NRMSE of Enmean could possibly be worse than the control run (En00).
For TCP, En00 and Enmean, as well as all ensembles, underestimated the observation in
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general. However, the performance of TCP was even worse than 3 and 6hP in different
regions, which indicated the ability differences of WRF simulation on local scales. En12
had the smallest bias among all ensembles with respect to TCP.

All WRF ensembles underestimated the observations with respect to TCP except from
22 UTC 15 June to 03 UTC 16 June 2010. The performances were significantly different
among 20 ensemble members. The spatial comparison showed that the pattern of TCP
was not captured by WRF runs with respect to observations. The spatial bias ranged
from −203.1 to 112.3 mm. WRF ensembles underestimated the observation in the central
Fujian Province (especially Sanming City and Nanping City with complex terrains) while
overestimating them in the northern and southern Fujian Province. The southwest and
northeast parts were overestimated by WRF. On local scales, WRF worked well, for example,
the Jinjiang River basin, where an extreme runoff occurred at 06 UTC 15 June 2010.

In terms of temporal and spatial comparison, all ensembles behaved differently. The
average of ensembles (Enmean) can reduce the uncertainty to a certain extent. However, it
must be carefully judged since sometimes the individual run (e.g., En12 has the smallest
TCP simulation bias) was more indicative for forecast according to actual needs. Ensemble-
based WRF may be more reliable than a single driven forecast for long range (beyond
3 days) precipitation forecasts.

However, 20 ensemble members were used to drive the WRF, as we know that the
precipitation process was very complex. Under different driving conditions, different
domain scales and different terrains, the influence mechanisms of the physical parameteri-
zation schemes were significantly different. Therefore, in practical forecast applications,
the physical parameterization schemes need to be optimized. More simulations using
different physical schemes and different ensemble-driven conditions should be extended
to reduce the uncertainty of WRF in future. The sensitivity of parameterizations should
also be explored for more accurate forecasting of extreme weather events on local scales,
especially in complex terrains.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos13020194/s1, Figure S1: Spatial distribution of TCP from 01 UTC 15 June to 18 UTC 16
June 2010 for all WRF model outputs and observations.
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