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Abstract: Using the Advanced Research Weather Research and Forecasting (WRF) model, a series of
numerical experiments are conducted to examine the sensitivity of the Typhoon Mangkhut inten-
sification simulation to different air–sea flux parameterization schemes (isftcflx option), including
option 0 (OPT0), option 1 (OPT1), and option 2 (OPT2). The results show that three schemes basically
reproduce tropical cyclone (TC) track and intensity of observation, and the simulated exchange coeffi-
cient of three schemes is consistent with theoretical results. Using the same upper limit of Cd as OPT0
and OPT2, OPT1 has much larger Ck than the other two options, which leads to larger latent heat
(and sensible heat) flux and produces stronger inflow (within boundary layer) and updrafts (around
eyewall), and thus stronger TC intensity. Meanwhile, the results that larger Ck/Cd corresponds with
stronger TC in the mature stage are consistent with Emanuel’s potential intensity theory. The fact
that Ck in OPT1 is evidently larger than the Ck from previous studies leads to produce a better TC
intensity simulation. Generally, we should use more reasonable air–sea flux parameterization based
on observation to improve TC intensity simulation.

Keywords: air–sea flux parameterization; Typhoon Mangkhut; intensification period; tropical cyclone;
isftcflx option

1. Introduction

As one of the most destructive weather systems, a tropical cyclone (TC) causes se-
vere loss of lives and property damage around the world [1]. Over the past decades,
with the development of numerical weather prediction models, TC track prediction has
steadily improved, however, TC intensity forecast, especially accurate prediction of the TC
intensification period, remains a challenge and problem [2].

The exchange of heat, moisture, and momentum at the air–sea interface is believed to
be one of the most important physical processes determining TC intensity change [3–5].
The air–sea surface flux exchanges of moist enthalpy (the sum of latent and sensible heat
fluxes) act as the primary energy source of TC, whereas the surface momentum flux is the
sink of TC development [6]. An accurate description of the air–sea interaction processes is
important to improve the forecast of TC evolution [7].

In current numerical weather prediction models, air–sea fluxes cannot be resolved
directly, and therefore must be accounted for through subgrid-scale parameterizations of
surface exchange coefficients [4,5]. The surface fluxes of momentum τ, sensible heat SH,
and latent heat LH are expressed as

τ = −ρu2
∗ = −ρCd(∆U)2, (1)

Atmosphere 2023, 13, 2133. https://doi.org/10.3390/atmos13122133 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos13122133
https://doi.org/10.3390/atmos13122133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0003-3965-3845
https://doi.org/10.3390/atmos13122133
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos13122133?type=check_update&version=2


Atmosphere 2023, 13, 2133 2 of 16

SH = −ρcpu∗θ∗ = −(ρcp)ChU∆θ, (2)

LH = −ρLνu∗q∗ = −(ρLν)CqU∆q, (3)

where ρ is the air density, cp is the specific heat capacity of air at constant pressure, Lν is
the latent heat of vaporization, u∗ is the friction velocity, and θ∗ and q∗ are the surface layer
temperature and moisture scales, respectively; ∆(U, θ, q) are the differences in wind speed,
temperature, and water vapor between a reference height zre f (often 10 m) and the bottom
of the surface layer (U = 0), respectively. Cd, Ch, and Cq are the bulk exchange coefficients
for drag, sensible heat, and latent heat, respectively.

Based on the Monin–Obukhov similarity theory and observations indicating a neu-
trally stable surface layer within the TC eyewall (e.g., [8]), u∗, θ∗, and q∗ in neutral stability
are given as follows:

u∗ =
kU

ln
( Zre f

Z0

) , (4)

θ∗ =
k∆θ

ln
( Zre f

Zt

) , (5)

q∗ =
k∆q

ln
( Zre f

Zq

) , (6)

The drag coefficient Cd, sensible heat exchange coefficient Ch, and latent heat exchange
coefficient Cq under neutral stability conditions are calculated from

Cd,n =
k2[

ln
( zre f

z0

)]2 , (7)

Ch,n =
k2

ln
( zre f

z0

)
× ln

( zre f
zt

) = C1/2
d,n × k

ln
( zre f

zt

) , (8)

Cq,n =
k2

ln
( zre f

z0

)
× ln

( zre f
zq

) = C1/2
d,n × k

ln
( zre f

zq

) , (9)

where k is the von Karman constant, zre f is the reference height (often 10 m), the subscript
n represents neutrally stable conditions, and z0, zt, and zq are the roughness lengths
for momentum, sensible heat, and latent heat (moisture), respectively. Additionally, the
enthalpy exchange coefficient Ck is defined as the combination of the latent and sensible
heat exchange [9].

Emanuel’s well-known potential intensity (PI) theory states that the potential intensity
for a steady-state (or mature) TC is proportional to the ratio of surface bulk transfer
coefficients for enthalpy and momentum, Ck/Cd, and suggested the ratio Ck/Cd in real
hurricanes lies in the range 0.75–1.5 [10,11]. Clearly, the ratio Ck/Cd is an important factor
in the TC intensity of a mature storm.

Using numerical simulations, many studies have shown that TC intensity simulation
is affected by the choice of air–sea flux (or surface roughness) parameterization schemes.
Green and Zhang [5] examined the impact of surface flux on the intensity and structure
of tropical cyclones using different air–sea flux parameterization schemes available in
Weather Research and Forecasting (WRF) version 3.4 through simulations of Hurricane
Katrina (2005). Chen et al. [12] focused on Hurricane Katrina (2005) through a coupled
atmosphere–ocean modeling system and examined the combined impacts of air–sea flux
parameterizations and ocean cooling on TC evolution. Additionally, Kueh et al. [6] investi-
gated the effects of horizontal resolution and surface flux formulas on typhoon intensity and
structure simulations through the case study of Super Typhoon Haiyan (2013). Additionally,
Greeshma et al. [13] and Alimohammadi et al. [14] investigated the impact of air–sea flux
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parametrization schemes on the simulation of TC over the North Indian Ocean and the
Arabian Sea, respectively. Furthermore, Green and Zhang [5] and Nystrom et al. [15,16]
focused on the impact of surface exchange coefficient uncertainty on TC simulation through
varying parameters in the surface exchange coefficient formulas.

Based on previous studies and the update of the air–sea flux parameterization scheme
in the numerical model, in this study, we further evaluate and analyze the difference of
air–sea flux parameterization schemes and their impacts on TC intensification simulation
with WRF version 4.0 in order to understand the impact of air–sea flux on TC intensifica-
tion, which can be beneficial to improve TC intensity forecast. This study takes Typhoon
Mangkhut in 2018 as an example and compares different air–sea flux parameterization
schemes. Their different TC simulation results are analyzed, and the associated mechanisms
are investigated.

The rest of the paper is organized as follows. Section 2 introduces Typhoon Mangkhut,
the model setup, and the experimental design. Section 3 presents the simulation results
and analyzes the mechanism. The summary and conclusions are provided in Section 4.

2. Numerical Simulations of Typhoon Mangkhut
2.1. Overview of Typhoon Mangkhut

Mangkhut was the 22nd named Tropical Cyclone of the 2018 Pacific typhoon sea-
son [17]. It was an extremely powerful and catastrophic tropical cyclone that caused
extensive damage [18].

Mangkhut formed over the western North Pacific about 2330 km east of Guam on
7 September, moved westwards quickly, and intensified gradually in the following few
days [17,19]. Mangkhut developed into a super typhoon on 11 September. It turned to the
northwest on 14 September, reaching its peak intensity before making landfall over Luzon
with an estimated maximum sustained wind of 250 km h−1 near the center. Mangkhut
weakened after crossing the northern part of Luzon and continued to track northwestwards
quickly across the northern part of the South China Sea towards the coast of Guangdong.
Mangkhut weakened into a severe typhoon on the morning of 16 September and made
landfall in the vicinity of Taishan in Guangdong before dusk. It then moved into the western
part of Guangdong and weakened further. Mangkhut degenerated into an area of low
pressure over Guangxi the next night. In this study, we focus on the intensification period:
from 0000 UTC (Universal Time Coordinated) 7 September to 0000 UTC 13 September 2018,
and the track and intensity in this period can be found in Figure 1.
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Figure 1. The location of model-simulated domains and the best track of Mangkhut from JTWC
during the simulated period from 0000 UTC 7 to 0000 UTC 13 September 2018. Colored dots are the
TC track, and colors indicate the categories of TC intensity (DB: disturbance; TD: tropical depression;
TS: tropical storm; TY: typhoon; ST: super typhoon).
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2.2. Experimental Design

The Advanced Research WRF model version 4.0 developed by the US National Center
of Atmospheric Research (NCAR) was used for Typhoon Mangkhut simulation. A two-way
interactive, three-level nested grid configuration with a track-following moving-nest option
was employed. Figure 1 shows the setting of model domains.

The domains have 27, 9, and 3 km horizontal resolution and 342 × 153, 856 × 292, and
433 × 424 grid points, respectively. A total of 33 vertical levels were configured, and the
pressure at the uppermost layer was 50 hPa. The initial and lateral boundary conditions
were obtained from the fifth-generation European Centre for Medium-Range Weather Fore-
casts (ECMWF) atmospheric reanalysis of the global climate (ERA5) dataset at a resolution
of 0.25◦ × 0.25◦. ERA5 is a widely used dataset for the initial and boundary condition in
numerical simulation because of its high resolution of 0.25◦ × 0.25◦, which can provide
ideal initial and boundary conditions for numerical simulations [20–22]. Additionally,
ERA5’s 0.25◦ resolution is close to the 27 km resolution of the outermost domain in our
simulation, which minimizes the error during the reguiding of the initial and boundary
condition preparation. Therefore, ERA5 is used in this study. The ERA5 reanalysis data of
wind, specific humidity, temperature, and surface flux were also used to assess the model
performance. The TC best track from the Joint Typhoon Warning Center (JTWC) was used
for evaluating the simulated TC track and intensity.

All the experiments started at 0000 UTC 7 September and ended at 0000 UTC 13
September 2018, covering the intensification period of Typhoon Mangkhut. The first 6 h of
integration (i.e., from 0000 UTC to 0006 UTC 7th September 2018) served as the spin-up
period, and the results in this period are not investigated.

The model’s physics options were the same for all three domains, except that cumulus
parameterization was only used in the 27 km horizontal resolution domain. Physical param-
eterization options included the Eta (Ferrier) microphysics scheme [23] and the Kain–Fritsch
cumulus parameterization scheme [24], the Unified Noah land surface model [25], the Rapid
Radiative Transfer longwave radiation scheme (RRTM) [26], the Dudhia shortwave radia-
tion scheme [27], the Mellor–Yamada–Nakanishi–Niino Level 2.5 (MYNN2) [28,29], and
the Revised MM5 surface layer scheme [30].

It is noted that the choice of the planetary boundary layer (PBL) and surface layer
parameterization scheme is based on our recent work (Ye et al., in preparation), where we
found that among the 7 most widely used PBL parameterization schemes, the MYNN2
produced better simulation for the distribution and variation of PBL eddy diffusivity, which
is closer to observation, and here, the MYNN2 PBL scheme is coupled to the Revised MM5
surface layer scheme.

2.3. Description of Air–Sea Flux Parameterization in WRF Version 4.0

In Advanced Research WRF, it allows users to change air–sea fluxes formulation
through the “namelist” option isftcflx. The revised MM5 surface layer scheme in WRF
version 4.0 uses three options for calculating the roughness lengths and air–sea flux. In
this study, we conducted a series of sensitivity experiments with 3 different air–sea flux
parameterization schemes, respectively. The description is considered comprehensively in
WRF version 4.0 code and detailed description is in Green and Zhang [4], Kueh et al. [6],
and Alimohammadi et al. [14].

2.3.1. Option 0 (Isftcflx = 0)

Option 0 (isftcflx = 0) is the default option for air–sea flux (or surface roughness)
parameterization in WRF Version 4.0. In this option, the momentum roughness length over
water is based upon Charnock [31] and adds an upper limit, as in option 1 and 2.

z0 = min
(

α
u2
∗

g
+

0.11 × 1.5 × 10−5

u∗
, 2.85 × 10−3

)
, (10)
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where α = 0.0185 is the Charnock coefficient, u∗ is the frictional velocity, and g is the
gravitational acceleration. Additionally, the constant value of 1.5 × 10−5 is used for the
kinematic viscosity of air. The Charnock expression relates the aerodynamic roughness
length to friction velocity for describing the gross effect of wavy sea surface induced
by wind stress, and the viscous term describes roughness behavior under smooth flow
conditions [6]. In the case of the momentum roughness length monotonic increasing with
wind speed, option 0 adds an upper limit as in options 1 and 2 from WRF version 3.9.

The heat and moisture roughness lengths for option 0 over water are based upon
Fairall et al. [32] and expressed as a function of the roughness Reynolds number, with a
lower limit of 2.0 × 10−9 and an upper limit of 1.0 × 10−4:

zt = zq = max
[
2.0 × 10−9, min

(
1.0 × 10−4, 5.5 × 10−5 × Re−0.6

∗

)]
, (11)

where Re∗ = z0u∗/ν is the roughness Reynolds number, and ν is the kinematic viscosity of
air as a function of air temperature for the Re∗ calculation [6]. The heat roughness length
zt is set to equal to moisture roughness length zq. The upper limit of 1.0 × 10−4 keeps the
heat and moisture roughness length constant at extreme wind speeds, whereas the lower
limit of 2.0 × 10−9 is implemented to prevent the model from blowing up.

2.3.2. Option 1 (Isftcflx = 1)

Recent field observations and laboratory experiments showed that Cd is saturated at
hurricane wind speed [8,33]. For option 1 (isftcflx = 1), the momentum roughness length is
given by a blend of two roughness length formulas [4]:

z0 = max
{

1.27 × 10−7, min
[
zwz2 + (1 − zw)z1, 2.85 × 10−3

]}
, (12)

zw = min
[

1.0,
( u∗

1.06

)0.3
]

, (13)

z1 = 0.011 × u2
∗

g
+

0.11 × 1.5 × 10−5

u∗
, (14)

z2 =
10

exp (9.5u−1/3
∗ )

+
0.11 × 1.5 × 10−5

max(u∗, 0.01)
, (15)

where z1 is again the Charnock [31] expression plus a viscous term, with Charnock coeffi-
cient α = 0.011. z2 is the exponential expression from Davis et al. [9] plus a viscous term,
with a constant kinematic viscosity ν = 1.5 × 10−5. The two roughness length formulas are
combined using a weight function zw, with a lower limit of 2.0 × 10−9 and an upper limit
of 1.0 × 10−4 on z0. The lower and upper limits on z0 are adapted from Davis et al. [9],
with a slightly different value of the lower limit. The upper limit is used to prevent a
monotonic increase in z0 and Cd at high wind conditions. Additionally, leveling-off of Cd at
high wind speed suggests a decline in the efficiency of the exchange of momentum across
the air–sea interface.

For the heat and moisture roughness lengths, based on Large and Pond [34], option 1
sets zt and zq as constants of 10−4 m for all wind speeds, as:

zt = zq = 10−4, (16)

2.3.3. Option 2 (Isftcflx = 2)

For the momentum roughness length, option 2 (isftcflx = 2) uses the same formulation
as option 1. Additionally, the heat and moisture roughness lengths are expressed based on
the formula proposed by Brutsaert [35]:

zt = z0 exp
[
−k
(

7.3Re1/4
∗ Pr1/2 − 5

)]
, (17)
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zq = z0 exp
[
−k
(

7.3Re1/4
∗ Sc1/2 − 5

)]
, (18)

where Re∗ = z0u∗/ν is the roughness Reynolds number, and ν is the kinematic viscosity of
air. k is the von Karman constant, Pr is the Prandtl number, and Sc is the Schmidt number,
and Garratt [36] is used with values of k = 0.40, Pr = 0.71, and Sc = 0.60.

A brief description of the sensitivity experiments is in Table 1, and the relationship
between roughness length (or exchange coefficient) and wind speed for different options is
in Figure 2. Additionally, these 3 air–sea flux parameterization schemes in revised MM5
stay unchanged from WRF version 3.9 to 4.3, released in 2022.
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Figure 2. Plots as functions of 10 m wind speed of (a) roughness lengths z0 (thick solid), zt (thin
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Air–sea flux schemes option 0, option 1, and option 2, colored red, green, and blue, respectively. As
stated in the text, some curves are identical: for option 0, zt = zq and Ch = Cq; for option 1, zt = zq

and Ch = Cq; and between option 1 and option 2, z0 (and thus Cd) is the same.
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Table 1. Brief description of the sensitivity numerical experiments.

Experiment
Name

Surface Layer
Scheme

Air–Sea Flux
Scheme Cd Ck

OPT0 Revised MM5 isftcflx = 0 Charnock [31],
Donelan et al. [33] Fairall et al. [32]

OPT1 Revised MM5 isftcflx = 1 Donelan et al. [33] Large and Pond [34]
OPT2 Revised MM5 isftcflx = 2 Donelan et al. [33] Garratt [36]

Figure 2 compared the theoretical results of the roughness length and surface exchange
coefficient from 3 surface flux parameterization schemes in the WRF version 4.0 model.
For the roughness length in Figure 2a, specifically for the momentum roughness length
z0 (thick solid line), OPT1 is the same as OPT2, and all of three have the same upper limit;
for the thermal roughness length zt (thin solid line) and the vapor roughness length zq
(dashed line), OPT1 is greater than OPT0 and OPT2. The surface exchange coefficient is
calculated from the roughness length, and for the surface exchange coefficient in Figure 2b,
OPT1 is the same as OPT2 for the drag coefficient Cd (thick solid line), and the 3 all have
the same upper limit. For the heat exchange coefficient Ch (thin solid line) and water vapor
exchange coefficient Cq (dashed line), OPT1 is greater than OPT0 and OPT2. Thus, for the
exchange coefficient ratio in Figure 2c, OPT1 is greater than OPT0 and OPT2 for the ratio
of Ch/Cd (thin solid line) and Cq/Cd (dashed line), and in the high wind speed, OPT0 is
greater than OPT2.

3. Results
3.1. TC Track and Intensity

In this subsection, we focused on the results of the simulated TC track and intensity for
three different air–sea flux schemes for Typhoon Mangkhut during the TC intensification
to verify the simulation.

Figure 3a,b shows that the simulated tracks of the three air–sea flux schemes are similar
and generally reproduce the westward movement of Typhoon Mangkhut from the JTWC
best track. Specifically, from the 7th to 9th September, the simulated tracks of the three
schemes were very close, and then the track errors of the three schemes began to gradually
increase. Overall, the simulated track was very close. It indicates that the simulated track is
not very sensitive to the different air–sea flux scheme, which is consistent with the results
in Green and Zhang [4]. It might be related to using the same PBL scheme and surface
layer scheme.

For simulated TC intensity, Figure 3c,d further compares the time series of the mini-
mum central sea level pressure (MSLP) and the maximum sustained wind speed (VMAX)
of 3 schemes. Compared with the JTWC best track data, the three numerical simulations
captured the variation trends of MSLP and VMAX, although an underestimation and dif-
ference were found in simulated TC intensity for the three schemes. In the first 3 days until
0000 UTC 10 September, the simulation difference of MSLP and VMAX in the experiments
was very small. After that, differences started to show. Seen from the parameter of MSLP,
it can be found that OPT1 generally captured the rapid intensification processes from
1800 UTC 9 September to 0600 UTC 11 September, followed by OPT1, while OPT2 showed
weaker intensification rates. While looking at the parameter of VMAX, a similar pattern can
be found. During the rapid intensification processes at the end of the simulation, among
the three simulations, OPT1 had the largest VMAX, followed by OPT0, whereas OPT2
was smaller than the JTWC’s VMAX. The simulated results of TC intensity demonstrate
the evident sensitivity of intensity to the air–sea flux scheme, which is consistent with the
conclusion in Green and Zhang [4]. According to theoretical results of exchange coefficient
in Figure 2, at high wind speed, OPT1 has the larger Ch/Cd and Cq/Cd with the same Cd
and larger Ch and Cq. The ratio of Ch/Cd and Cq/Cd correspond to the TC intensity. In
the next subsection, we further study the relationship between TC intensity and exchange
coefficient based on the simulated results in the three simulations.
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best track data; ERA5 reanalysis data and the numerical simulations from 0600 UTC 7 to 0000 UTC 13
September 2018.

3.2. Surface Exchange Coefficient

The intensity variations among different air–sea flux (or surface roughness) schemes
become evident in the TC intensification stage because of the dependence of wind speed
on surface exchanges of momentum and moisture enthalpy [37]. In this subsection, we
analyze the variation of the simulated surface exchange coefficient with the 10 m wind
speed among the three schemes at the TC peak intensity of 1200 UTC 12th September, at
which TC reached mature stage.

In Figure 4, the simulated values for Cd and Ck are similar with the theoretical values
in Figure 2. In Figure 4a, the Cd of the three schemes all increased initially with increasing
wind speed until high wind, and the Cd of OPT0 reached saturation slightly earlier than
the Cd of OPT1 and OPT2. Additionally, the Cd of the three schemes share the same upper
limit (about 2.4 × 10−3) under high wind speed (beyond about 33 m s−1).

In Figure 4b, the Ck of OPT0 is nearly unchanged with increasing wind speed. Similar
to Cd, the Ck of OPT1 increased initially with increasing wind speed below 33 m s−1

and saturated thereafter. Additionally, the Ck of OPT2 increased slowly with increasing
wind speed below 33 m s−1 and thereafter tended to decrease slightly. Among the three
simulations, the Ck of OPT1 is significantly larger than the Ck of OPT0 and OPT2, and in
high wind speed, the Ck of OPT0 is slightly larger than the Ck of OPT2.

Due to the same upper limit in Cd for all three schemes, the difference in Ck affects
the differences in Ck/Cd. In Figure 4c, the Ck/Cd of OPT1 is the largest, and the Ck/Cd
of OPT0 is slightly larger than the Ck/Cd of OPT2 when wind speed exceeds 33 m s−1.
Emanuel [11] suggested that in real hurricanes Ck/Cd lies in the range 0.75–1.5. Among the
three schemes, only OPT1 follows this rule (Figure 4c). It is noted that the Ck of OPT1 is
significantly larger than observation results from previous studies [38–40].
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et al. [33], Black et al. [3], Zhang et al. [39], Haus et al. [40], Bell et al. [41], and Richter et al. [42] (in
different black marks).

Since maximum wind speed is strongly sensitive to Ck/Cd [11], the decrease in Cd
(generally tends to reduce the energy loss) and increase in Ck (thus more energy gain)
have greater potential to yield a stronger storm [6]. Correspondingly, in this study, the
magnitude of Ck/Cd is consistent with the simulated TC intensity relationship for the three
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schemes because differences in Cd and Ck affect surface energy transport and influence the
storm intensification by WISHE type of feedback [4,13,37].

3.3. Surface Flux

As mentioned above, different air–sea flux (or surface roughness) schemes produce
different Cd and Ck values, and Ck and Cd determine the surface enthalpy flux and mo-
mentum flux, respectively [43]. The surface enthalpy flux is the main source of energy
for TC development, while surface momentum flux is the main sink of TC energy. In this
subsection, we look into the simulated result of surface fluxes in numerical experiments.

Figures 5–7 plot the distribution of surface latent heat, sensible heat, and momentum
flux simulated by different sea–air flux schemes within a radius of 500 km at 1200 UTC
12, September 2018, which represents mature TC. Additionally, ERA5 reanalysis data are
used here for comparison. Consistent with TC intensity results in Figure 3, surface fluxes of
ERA5 are significantly smaller than simulated surface fluxes from three options, although
the distributions of surface fluxes from ERA5 and simulations are similar. Figures 5 and 6
show that sensible heat fluxes are smaller than latent heat fluxes, which is consistent with
those derived from field measurements (e.g., [4,38]). Additionally, whether latent and
sensible heat flux or momentum flux, surface flux is the weakest in the TC center and
gradually increases outward from the TC eye, reaching its maximum near the eyewall.
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Consistent with the magnitude relationship of TC intensity, OPT1 produced the largest
latent flux and sensibility, followed by OPT0 and OPT2. This better simulation of TC
intensity by OPT0 can be attributed to the steady increase in latent flux for high wind speed.
The larger latent heat flux transfer results in stronger moist convection, thereby leading to
stronger TC intensity for simulation through thermo-dynamical interactions [37]. Similarly,
OPT1 produced larger momentum flux than OPT0 and OPT2, since momentum flux is
influenced by wind speed. Overall, the difference in momentum is relatively small due to
the same peak Cd for the three schemes.

In general, although sharing the same upper limit in Cd as OPT0 and OPT2, OPT1
has much larger Ck than the other two options, which leads to larger enthalpy flux, and
especially latent heat flux, and thus stronger TC intensity.

3.4. TC Wind Field

In this subsection, the height–radius distribution of azimuthally averaged tangential
wind, radial wind, and upward vertical wind within 200 km from the TC center 1200 UTC
12 September simulated by the three schemes are analyzed. Similar with the last subsection,
1200 UTC 12 September is chosen to represent the TC mature stage when the simulated TC
reached its peak intensity. Additionally, ERA5 reanalysis data are used as a reference to
compare the simulation results. Although ERA5 generally underestimates the TC intensity,
it provides an effective reference for TC size [44]. Consistent with TC intensity results in
Figure 3, the wind speed of ERA5 is significantly weaker than the simulated wind speed
from the three options. For TC size (i.e., radius of maximum tangential wind speed) in
Figure 8, the three options simulate a similar TC size, which is smaller than ERA5’s TC size.

Atmosphere 2022, 13, x FOR PEER REVIEW 15 of 20 
 

 

wind speed from the three options. For TC size (i.e., radius of maximum tangential wind 
speed) in Figure 8, the three options simulate a similar TC size, which is smaller than 
ERA5’s TC size. 

 
Figure 8. Height–radius distribution of azimuthally averaged tangential wind (unit: m s−1) from (a) 
ERA5, (b) OPT0, (c) OPT1, and (d) OPT2 at 1200 UTC 12 September 2018. 

Radius–height plots of the tangential, radial, and vertical winds at 1200 UTC 12 Sep-
tember (Figures 8–10) indicate that the different air–sea flux schemes yield the same gen-
eral wind structure, which is consistent with results in Green and Zhang [4], albeit with 
some differences in the magnitude of peak wind speed. 

Figure 8. Height–radius distribution of azimuthally averaged tangential wind (unit: m s−1) from
(a) ERA5, (b) OPT0, (c) OPT1, and (d) OPT2 at 1200 UTC 12 September 2018.



Atmosphere 2023, 13, 2133 13 of 16

Radius–height plots of the tangential, radial, and vertical winds at 1200 UTC 12
September (Figures 8–10) indicate that the different air–sea flux schemes yield the same
general wind structure, which is consistent with results in Green and Zhang [4], albeit with
some differences in the magnitude of peak wind speed.
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OPT1 has the strongest wind speed, including a peak tangential wind speed greater
than 75 m s−1, peak radial inflow velocity (within boundary layer) greater than 25 m s−1,
and peak upward velocity (along eyewall) greater than 2.2 m s−1. Next, OPT0 has stronger
wind than OPT2, with peak tangential wind speed greater than 65 m s−1, peak radial inflow
velocity (within boundary layer) about 25 m s−1, and peak upward velocity (along eyewall)
about 1.6 m s−1. Greater tangential wind corresponds to stronger TC, whereas stronger
inflow within the boundary layer and updrafts around the eyewall lead to stronger TC.
The magnitude relationship of peak wind speed corresponds to the TC intensity, Ck, and
surface latent flux.

For better TC intensification simulation by OPT1, although sharing the same upper
limit for Cd, the larger Ck of OPT1 produces greater latent flux (and sensible flux) and
stronger wind field, including stronger radial inflow (boundary layer) and updrafts (around
eyewall), which leads to stronger storms.
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4. Conclusions

In this study, using the Advanced Research WRF version 4.0 model, a series of nu-
merical experiments for Typhoon Mangkhut are performed to examine the sensitivity
of TC intensification simulation with three different air–sea flux (or surface roughness)
parameterization schemes (isftcflx options), including OPT0, OPT1, and OPT2. The major
findings can be summarized as follows:

(1) 3 Air–sea schemes simulate and basically reproduce the TC track and intensity of
observation, and simulated exchange coefficients are consistent with theoretical results.

(2) Although using the same upper limit of Cd as OPT0 and OPT2, OPT1 has much
larger Ck than the other two options, which leads to larger latent heat (and sensible heat)
flux and produces stronger inflow (within boundary layer) and updrafts (around eyewall),
and thus stronger TC intensity. Meanwhile, the results that larger Ck/Cd corresponds with
stronger TC in the mature stage are consistent with Emanuel’s PI theory.

(3) Although producing the better TC intensity simulation, as a matter of fact, the Ck
in OPT1 is evidently larger than the Ck from previous studies. In brief, more reasonable
air–sea flux parameterization can improve TC intensity simulation to a certain extent.

In future, we need to conduct further work on air–sea flux parameterization and
observation of TC intensification, in order to produce more accurate intensity forecasts and
accurate exchange coefficient simulation under TC condition.
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