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Abstract: A CNN+LSTM (Convolutional Neural Network + Long Short-Term Memory) based deep
hybrid neural network was established for the citywide daily PM2.5 prediction in South Korea. The
structural hyperparameters of the CNN+LSTM model were determined through comprehensive
sensitivity tests. The input features were obtained from the ground observations and GFS forecast.
The performance of CNN+LSTM was evaluated by comparison with PM2.5 observations and with
the 3-D CTM (three-dimensional chemistry transport model)-predicted PM2.5. The newly developed
hybrid model estimated more accurate ambient levels of PM2.5 compared to the 3-D CTM. For
example, the error and bias of the CNN+LSTM prediction were 1.51 and 6.46 times smaller than those
by 3D-CTM simulation. In addition, based on IOA (Index of Agreement), the accuracy of CNN+LSTM
prediction was 1.10–1.18 times higher than the 3-D CTM-based prediction. The importance of input
features was indirectly investigated by sequential perturbing input variables. The most important
meteorological and atmospheric environmental features were geopotential height and previous day
PM2.5. The obstacles of the current CNN+LSTM-based PM2.5 prediction were also discussed. The
promising result of this study indicates that DNN-based models can be utilized as an effective tool
for air quality prediction.

Keywords: artificial neural network; CNN+LSTM; daily PM2.5 prediction

1. Introduction

PM2.5 (particulate matter with an aerodynamic diameter of≤2.5 µm) is a very harmful
air pollutant. Several epidemiological studies have evaluated the harmfulness of this
pollutant [1,2]. In South Korea, PM2.5 is one of the most concerning air pollutants. During
the cold seasons, high PM2.5 events frequently occur. To prevent public damage caused
by high PM2.5, the National Institute of Environmental Research (NIER) of South Korea
has conducted air quality forecasts using a three-dimensional chemistry transport model
(3-D CTM) based ensemble system since 2014.

However, the accuracy of current CTM-based air quality prediction is known to be
relatively low for PM2.5. The CTM estimations have several sources of uncertainty: emission
inventories, meteorological fields, initial and boundary conditions, and physico-chemical
mechanisms. Great efforts have been made to enhance the predictive performance of
3-D CTMs [3–6]. Nevertheless, it is not yet clear when the air quality predictions will be
sufficiently accurate. Therefore, in order to estimate more accurate ambient levels of PM2.5,
it is necessary to develop a new model that makes predictions with a different operating
principle from traditional CTMs.

Recently, artificial intelligence (AI) algorithms such as decision tree (DT)-based ensem-
bles and deep neural networks have been utilized in air quality prediction [7–19]. For the
optimal algorithm for PM2.5 prediction, several previous studies have performed compre-
hensive performance comparisons between AI algorithms [7–10]. As shown in Table 1, in
general, it is well known that artificial neural network (ANN) algorithms tend to predict
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PM2.5 more accurately than the DT-based ensemble algorithms. Because of the advantages
of predictive performance, ANN algorithms have shown a wide range of applications in
the field of air quality prediction. For example, general deep neural network (DNNs)-based
air quality models have been established to estimate the ground levels of O3 [11,12]. In
addition, recurrent neural networks (RNNs), an ANN specialized in time-series prediction,
have been used in PM2.5 predictions [13–16]. Moreover, convolutional neural network
(CNN)-based DNNs have been developed to estimate ambient levels of air pollutants
by considering the spatial distribution of meteorological and atmospheric environmental
variables together [17–19]. Unlike the traditional CTMs, these ANNs make predictions in a
data-driven manner (i.e., without consideration of sophisticated atmospheric processes).
Because of their operation principles, ANN-based prediction is known to be more cost-
effective than the CTM-based estimation. In this study, for more accurate daily PM2.5
prediction, a CNN+LSTM hybrid model was established.

Table 1. Performance comparison between AI-based PM2.5 prediction models *.

References Study Area Period Algorithm RMSE (µg/m3)

Joharestani et al., 2019 [7] Tehran, Iran 2015–2018
Random forest 14.47

XGBoost 13.66
MLP 15.11

Karimian et al., 2019 [8] Tehran, Iran 2013–2016
MART 13.19
DFFN 19.62
LSTM 9.42

Li et al., 2020 [9] Beijing, China 2010–2014
CNN+LSTM 17.93

LSTM 18.08

Park et al., 2020 [10] Beijing, China 2015–2017
MLP 37.79

LSTM 11.34
CNN+LSTM 5.357

* XGBoost stands for extreme gradient boosting; MLP stands for multi-layer perceptron; MART stands for multiple
additive regression trees; DFFN stands for deep feed forward neural network.

ANNs have their own specialized functions depending on the type or structure. For
example, RNNs have a unique structure that allows past experiences to be stored in
their internal pinholes (or memory cells). Because of this capability, RNNs have shown
superior performance in time-series prediction [20,21]. In particular, among the RNNs,
long short-term memory (LSTM) cells have shown a wide range of applications because
of their low probability of gradient exploding and vanishing [22–24]. In addition, CNN
is the most specialized ANN for finding the latent information in multi-dimensional
data (e.g., language, voice, and image). To analyze multi-dimensional data, general DNNs
require the construction of hidden nodes with extremely complex and deep structures. In
contrast, CNNs can significantly reduce computation costs by sharing the convolutional
kernels (or filters), and this type of ANN has also shown superior analytical capabilities for
high-dimensional datasets compared to other ANNs [25–27]. For accuracy improvement
of air quality prediction, recent studies have proposed the development of hybrid DNNs
utilizing both special functions of CNN and LSTM [9,10,19].

It is well known that the concentration of PM2.5 in South Korea is under the great
influence of domestic and international emission sources [28]. The East Asian atmospheric
pressure pattern determines the degree of the said influences. For example, in stagnant
conditions, PM2.5 emitted from domestic sources accumulates, and the concentration of
PM2.5 increases. In addition, if the intensity of the westerly wind increases, air pollutants
originating from China move to South Korea and the ambient levels follow suit—the levels
increase. Therefore, for more accurate DNN-based PM2.5 prediction, it is necessary to
utilize ANNs that can effectively analyze atmospheric pressure patterns over East Asia.
Furthermore, the possibility of gradient exploding and vanishing caused by using a long-
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term training dataset should be minimized. For these reasons, we propose a CNN+LSTM
hybrid system for daily PM2.5 prediction.

In this study, the CNN+LSTM model was optimized through comprehensive sensi-
tivity tests. The details of the model development are described in Section 2. This section
also provides detailed information on the configuration of the input features and the struc-
ture of the CNN+LSTM. Evaluation of the newly developed hybrid system is conducted
through the comparisons between the CNN+LSTM-based predictions, the observations,
and 3-D CTM estimations in Section 3. The discussions of the advantages and limitations
of the current CNN+LSTM model are in Section 4.

2. Model Development
2.1. Dataset

We constructed 3.1-year big data for model development (May 2017 to December 2019)
and prediction (November 2016 to April 2017). In this study, the data produced after
2019 were not included in the construction of the big data because of COVID-19 (coron-
avirus disease 2019)-induced anomalies in air quality patterns. As input variables, NCEP
(National Center for Environmental Prediction) GFS (Global Forecast System) forecast,
KMA (Korea Meteorological Administration), ASOS (Automated Surface Observing Sys-
tem) observations, and NIER AIR KOREA observations were obtained from their offi-
cial websites (https://rda.ucar.edu/datasets/ds084.1/, last accessed: 11 November 2022;
https://rda.ucar.edu/datasets/ds084.1/, last accessed: 11 November 2022; https://www.
airkorea.or.kr/web/, last accessed: 11 November 2022). In order to represent the pres-
sure pattern over East Asia, the latitudinal and longitudinal boundaries of GFS were set
from 20◦ N to 52◦ N and 96◦ E to 144◦ E. The forecast product of GFS has a resolution of
0.25◦ × 0.25◦, respectively (i.e., the dimension of the GFS forecast was 128 × 192). Since
the time interval of the GFS forecast is three hours, we performed linear interpolation to
estimate the hourly forecast dataset.

Figure 1 presents locational information of ASOS and AIR KOREA ground monitoring
stations, which consist of 103 and 494 monitoring sites throughout South Korea, respectively.
ASOS network provides hourly observed meteorological variables, and the AIR KOREA
network provides hourly concentrations of air pollutants (refer to Table 2). Among the
monitoring sites, the urban observation sites located in seven major cities (with a population
of more than one million) in South Korea were selected for daily PM2.5 predictions (refer to
Figure 1a–g). For the prediction of citywide PM2.5, the observations of the selected sites
located in each city were averaged. Table 2 is the detailed information on input variables.

Similar to this study, several previous studies have proposed the use of the integration
of input features of both observation-based meteorological and air quality information
for more accurate DNN-based PM2.5 predictions [13,29]. The selected input variables are
closely related to the concentrations of PM2.5. For example, wind speed and amount of
precipitation can directly represent the intensity of atmospheric turbulent dispersions and
wet scavenging processes, and the concentrations of primary pollutants such as CO and SO2
can denote the degree of domestic anthropogenic emissions. In addition, combining input
features allows DNN-based models to consider more diverse atmospheric environmental
properties. Among the meteorological variables, wind speed, wind direction, pressure, and
geopotential height can represent the possibility of long-range transport of air pollutants.
Moreover, by co-considering meteorological and air quality variables such as O3, NO2,
temperature, and relative humidity, the intensity of atmospheric oxidation processes can be
reflected in the DNN-based prediction.

The input variables were normalized before feeding into the CNN+LSTM hybrid
model to prevent overestimating the effect of the variables with large-scale values.

xnormal, i =
xi − xmin,i

xmax,i − xmin,i
(1)

https://rda.ucar.edu/datasets/ds084.1/
https://rda.ucar.edu/datasets/ds084.1/
https://www.airkorea.or.kr/web/
https://www.airkorea.or.kr/web/
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here xnormal, i is the normalized value of variable i; xi is the value of variable i; xmax,i and
xmin,i are maximum and minimum values of variable i, respectively. The previous day’s
observations and the next day’s geopotential height forecasts were normalized and merged
with the next day’s PM2.5-observations.
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Figure 1. Locations of KMA ASOS and NIER AIR KOREA observation sites in seven major cities:
(a) Seoul, (b) Incheon, (c) Daejeon, (d) Gwangju, (e) Daegu, (f) Ulsan, and (g) Busan. The blue circle
represents the ASOS site, and the red triangle represents the AIR KOREA site.

Table 2. Input variables of CNN+LSTM hybrid PM2.5 prediction model.

Data Type Variable Unit Time Resolution Feature Type

Observed meteorological variable

Temperature K

1 h Temporal feature

Wind speed m/s
Wind direction ◦

Relative humidity %
Vapor pressure hPa
Dew point K
Pressure hPa
Sea level pressure hPa

Observed atmospheric
environmental variable

SO2 ppmv

1 h Temporal feature

CO ppmv
O3 ppmv
NO2 ppmv
PM10 µg/m3

PM2.5 µg/m3

Predicted meteorological variable Geopotential height * gpm 3 h Spatial feature

* Geopotential height at 850 hpa.

2.2. Model Construction

The procedure of the CNN+LSTM-based daily PM2.5 prediction is summarized in
Figure 2. The proposed model consists of three parts: i) feature representation, ii) data vector
fusion, and iii) PM2.5 prediction. As shown in the figure, we extracted the spatial feature of
the GFS forecast and temporal features of ground observations in the feature representation
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step. In order to represent the spatial latent features, two CNN layers were embedded.
Comprehensive sensitivity tests have been made to determine the number and structure
of deep hidden layers. For example, CNN-based autoencoders have been constructed en
masse. We elected the type of CNN layers and their structural hyperparameters (the size
and number of convolutional filters) based on the reproduction accuracy of the constructed
autoencoders. Based on the result, we decided to embed two three-dimensional CNN
(3-D CNN) layers to represent the spatial features. The kernel size of CNN layers was set
to 3 × 3 × 3. The number of kernels for the first and second CNN layers were 32 and 24.
The input dimension of the first 3-D CNN layer was set to 24 × 128 × 192 × 1 for daily
PM2.5 prediction. We embedded two 3-D max pooling layers for downscaling the vector
matrices extracted from the CNN layers. The pooling size was set to 2 × 2 × 2.
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Figure 2. Flowchart of the CNN+LSTM hybrid ANN-based PM2.5 prediction.

Latent features extracted through convolutional operations were subjected to the next
flatten and LSTM layers for data fusion with temporal features. We injected observation-
based input features (i.e., ASOS and AIR KOREA observations) into two LSTM-based
hidden layers to extract the characteristic of temporal input features. The input dimension
of the first LSTM layer was 24 × 14. Additionally, we determined the number of hidden
nodes of the entire LSTM layers through sensitive tests. The number of the LSTM hidden
nodes was 512. In the second step, the vectors of temporal and spatial latent information
extracted through the first step were fused as they passed the concatenate layer. Since the
number of LSTM hidden nodes was set to 512, the concatenate layer generates 1024 output
vectors. The concatenate layer was connected to the final dense layer. This dense layer
identifies the relationship between the outputs of concatenate layer and the true values
(observed PM2.5). Table 3 shows the summary of detailed configuration information of the
CNN+LSTM hybrid model.
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Table 3. Configuration of the CNN+LSTM hybrid neural network model.

Prediction Step Structural
Hyperparameter

Neural Network

1st CNN 1st Max Polling 2nd CNN 2nd Max Polling Flatten LSTM

Feature
representation for

spatial
features

Input shape (None, 24, 128,
192, 1)

(None, 24, 128,
192, 32) (None, 12, 64, 96, 32) (None, 12, 64, 96, 24) (None, 6, 32, 48, 24) (None, 221184)

CNN kernels or
hidden nodes 32 - 24 - - 512

Kernel size (3, 3, 3) - (3, 3, 3) - - -
Activation ReLU - ReLU - - Tanh

Pooling size - (2, 2, 2) - (2, 2, 2) - -

Output shape (None, 24, 128,
192, 32) (None, 12, 64, 96, 32) (None, 12, 64, 96, 24) (None, 6, 32, 48, 24) (None, 221184) (None, 512)

Feature
representation for

temporal
features

1st LSTM 2nd LSTM

Input shape (None, 24, 14) (None, 24, 512)
Hidden nodes 512 512

Activation Tanh Tanh
Output shape (None, 24, 512) (None, 512)

Data vector
fusion

Concatenate layer

Input shape [(None, 512), (None, 512)]
Output shape (None, 1024)

PM2.5 prediction

Final dense layer

Input shape (None, 1024)
Hidden nodes 24

Activation Leaky-ReLU
Output shape (None, 24)

To identify this complicated and non-linear relationship, we need to utilize an acti-
vation function for the final dense layer. There are several functions for the activation of
DNNs. Among them, rectified linear unit (ReLU) is the most versatile because of its low
computation cost [30]. As the output of ReLU ranges from 0 to ∞, its derivative is 0 or 1.
Therefore, this function is free from the gradient vanishing and exploding during the back
propagations. However, when the hidden node outputs a negative value, the gradient
of ReLU is zero, and thus the learnable parameters (weights and biases) associated with
the node cannot be adjusted or updated during the model training. In addition, if a huge
number of hidden nodes output negative values, training loss can no longer be reduced
(i.e., dying ReLU). To prevent the said problem, we used the leaky rectified linear unit
(Leaky-ReLU) as the activation function [31]. The Leaky-ReLU expressed by

f (x) =
{

αx when x < 0
x when x ≥ 0

(2)

as shown in the equation, the derivative of Leaky-ReLU is α or 1. In this study, we set the
value of α as 0.3.

2.3. CNN+LSTM Optimization

Model optimization is a process of finding the optimal combination of weight and bias
matrices (learnable parameters). As mentioned previously, the structural hyperparameters
of the CNN+LSTM model were determined from the massive amounts of sensitivity tests.
There are two main components in DNN optimization: (i) cost function and (ii) optimizer.
Their respective roles are to evaluate the accuracy of the updated learnable parameters
and to discover efficient and/or stable reduction paths for the cost (or loss). Several
cost functions have been utilized in the optimization of DNNs. For better predictive
performance, it is very important to select an appropriate objective function corresponding
to the purpose of the DNN model. Since the proposed hybrid model was the regression
model, the mean squared error (MSE) was utilized as a cost function in this study. The MSE
expressed as

JMSE(θ) =
1
N

N

∑
i=1

(yi − hθ(xi))
2 (3)

here yi is the true value for ith training; xi is input for ith training; hθ(xi) is the predicted
value by the given model θ. In this study, adaptive moment estimation (ADAM) was used
as an optimizer [32]. The ADAM is an extended stochastic gradient descent algorithm.
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This algorithm determines the individual adaptive learning rates for different learnable
parameters by computing the first and second moments of their gradients.

To train the CNN+LSTM hybrid model, the 2.7-year data (May 2017 to December 2019)
were used, as mentioned previously. We divided this dataset into two groups with ratios
of 80% for model training and 20% for validation. To confirm the suitability of model
optimization, the variations of MSE for model training and validation were monitored
during the model training. In the early stage of model optimization, the MSEs of the
training and validation decrease together by updating weights and biases. Because training
data are only considered in the adjustment of weight and bias matrices, the training cost
continuously decreases with the iterative update of learnable parameters. However, the
validation MSE decreases until the specific update, and then it stagnates or starts to increase.
The optimization of DNNs is to update the learnable parameters until this stagnant or
inflection point [33]. If the DNN is properly optimized, the validation MSE at this point
should be slightly higher than the training MSE. When the validation MSE is much higher
than the training MSE, this represents that the learnable parameters are overturned (i.e.,
overfitting). On the contrary, if the training cost is bigger than the validation cost, it
is called underfitting. From the perspective of improving the predictive performance
and generalization of DNNs, it is crucial to minimize the possibility of overfitting and
underfitting. To achieve this goal, iterative model training was performed, and then the
models with the smallest gap between the training and validation cost were selected for
daily PM2.5 prediction. In addition, we also compared the training and validation MSEs
and root mean squared errors (RMSEs) to re-evaluate the suitability of model training. The
results of this evaluation are summarized in Table 4. Based on this, we confirmed that the
CNN+LSTM model was suitably trained.

Table 4. Evaluation of the suitability of model optimization *.

City
Training Validation

MSE RMSE MSE RMSE

Seoul 131.85 11.48 152.81 12.36
Incheon 133.21 11.54 145.98 12.08
Daejeon 95.04 9.75 98.65 9.93
Gwangju 105.72 10.28 127.63 11.30
Daegu 87.57 9.36 96.20 9.81
Ulsan 101.60 10.08 112.51 10.61
Busan 124.09 11.14 140.84 11.87

* The units of MSE and RMSE are µg/m3.

2.4. 3-D CTM-Based PM2.5 Prediction

We made the comparison between the CNN+LSTM-based PM2.5 prediction and the
CTM-predicted PM2.5 to evaluate the predictive performance of the CNN+LSTM hybrid
neural network model. In this study, we utilized the community multiscale air qual-
ity (CMAQ) model v5.2.1 for the 3-D CTM prediction. The meteorological fields for
CMAQ prediction were estimated from weather research and forecasting (WRF) v3.8.1
model simulation. Figure 3 presents the boundary of the CMAQ prediction. As shown
in the figure, the CMAQ boundary covers northeast Asia. The horizontal resolution
of the CMAQ simulation was set to 15 × 15 km2. The KORUS v5.0 emission inven-
tory was used for anthropogenic emissions [34]. The biogenic emissions were acquired
from the MEGAN (Model of Emissions of Gases and Aerosols from Nature) v2.1 simu-
lation [35]. The emissions for biomass burning were acquired from FINN (Fire Inven-
tory from National Center for Atmospheric Research, https://www.acom.ucar.edu/Data/
fire/, last accesses: 11 November 2022) v1.5 [36]. The lateral boundary conditions were
obtained from the official data archive of MOZART-4 (Model for Ozone and Related
Chemical Tracers version 4, https://www2.acom.ucar.edu/gcm/mozart-4, last accessed:
11 November 2022), respectively [37].

https://www.acom.ucar.edu/Data/fire/
https://www.acom.ucar.edu/Data/fire/
https://www2.acom.ucar.edu/gcm/mozart-4


Atmosphere 2022, 13, 2124 8 of 14

Atmosphere 2022, 13, 2124 8 of 15 
 

 

(CMAQ) model v5.2.1 for the 3-D CTM prediction. The meteorological fields for CMAQ 

prediction were estimated from weather research and forecasting (WRF) v3.8.1 model 

simulation. Figure 3 presents the boundary of the CMAQ prediction. As shown in the 

figure, the CMAQ boundary covers northeast Asia. The horizontal resolution of the 

CMAQ simulation was set to 15  15 km2. The KORUS v5.0 emission inventory was used 

for anthropogenic emissions [34]. The biogenic emissions were acquired from the ME-

GAN (Model of Emissions of Gases and Aerosols from Nature) v2.1 simulation [35]. The 

emissions for biomass burning were acquired from FINN (Fire Inventory from National 

Center for Atmospheric Research, https://www.acom.ucar.edu/Data/fire/, last accesses: 

11 November 2022) v1.5 [36]. The lateral boundary conditions were obtained from the 

official data archive of MOZART-4 (Model for Ozone and Related Chemical Tracers ver-

sion 4, https://www2.acom.ucar.edu/gcm/mozart-4, last accessed: 11 November 2022), 

respectively [37].  

 

Figure 3. Boundary of the CMAQ prediction (red line) and GFS forecast (blue line). The grey tri-

angles and dots represent the locational information of ground monitoring stations in South Ko-

rea. 

2.5. Evaluation Metric 

In this study, to evaluate the prediction performance of the CNN+LSTM and 3-D 

CTM, we introduced the following six scientific performance metrics, such as IOA (In-

dex or Agreement), R (Pearson correlation coefficient), RMSE, MB (Mean Bias), MNGE 

(Mean Normalized Gross Error), and MNB (Mean Normalized Bias). These evaluation 

metrics were estimated as below: 

𝐼𝑂𝐴 =  1 −
∑ (𝐶𝑀𝑜𝑑𝑒𝑙 − 𝐶𝑂𝑏𝑠)2𝑁

𝑖=1

∑ (|𝐶𝑀𝑜𝑑𝑒𝑙 − 𝐶𝑂𝑏𝑠| + |𝐶𝑂𝑏𝑠 − 𝐶𝑂𝑏𝑠|)
2

𝑁
𝑖=1

 (4) 

𝑅 =  
∑ (𝐶𝑀𝑜𝑑𝑒𝑙 − 𝐶𝑀𝑜𝑑𝑒𝑙

̅̅ ̅̅ ̅̅ ̅̅ )(𝐶𝑂𝑏𝑠 − 𝐶𝑂𝑏𝑠
̅̅ ̅̅ ̅̅ )𝑁

𝑖=1

√∑ (𝐶𝑀𝑜𝑑𝑒𝑙 − 𝐶𝑀𝑜𝑑𝑒𝑙
̅̅ ̅̅ ̅̅ ̅̅ )2 ∑ (𝐶𝑖,𝑂𝑏𝑠 − 𝐶𝑂𝑏𝑠

̅̅ ̅̅ ̅̅ )
2𝑁

𝑖=1
𝑁
𝑖=1

 
(5) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐶𝑀𝑜𝑑𝑒𝑙 − 𝐶𝑂𝑏𝑠)2

𝑁

𝑖=1

  (6) 

Figure 3. Boundary of the CMAQ prediction (red line) and GFS forecast (blue line). The grey triangles
and dots represent the locational information of ground monitoring stations in South Korea.

2.5. Evaluation Metric

In this study, to evaluate the prediction performance of the CNN+LSTM and 3-D
CTM, we introduced the following six scientific performance metrics, such as IOA (Index
or Agreement), R (Pearson correlation coefficient), RMSE, MB (Mean Bias), MNGE (Mean
Normalized Gross Error), and MNB (Mean Normalized Bias). These evaluation metrics
were estimated as below:

IOA = 1− ∑N
i=1(CModel − CObs)

2

∑N
i=1
(∣∣CModel − CObs

∣∣+ ∣∣CObs − CObs
∣∣)2 (4)

R =
∑N

i=1
(
CModel − CModel

)(
CObs − CObs

)√
∑N

i=1
(
CModel − CModel

)2
∑N

i=1
(
Ci,Obs − CObs

)2
(5)

RMSE =

√√√√ 1
N

N

∑
i=1

(CModel − CObs)
2 (6)

MB =
1
N

N

∑
i=1

(CModel − CObs) (7)

MNGE =
1
N

N

∑
i=1

(
|CModel − CObs|

CObs

)
× 100 (8)

MNB =
1
N

N

∑
i=1

(
CModel − CObs

CObs

)
× 100 (9)

here CModel and CObs represent the modeled and observed PM2.5, CModel and CObs are the
averaged CModel and CObs.

3. Results
3.1. Model Evaluation

We performed the daily PM2.5 prediction from November 2016 to April 2017. In order
to evaluate the accuracy of the newly developed hybrid model, the CNN+LSTM-based
PM2.5 was compared to the observed PM2.5. The CNN+LSTM-predicted PM2.5 was also
compared with that by CMAQ prediction. The results of this comparison are summarized
in Table 5 and also shown in Figure 4. In the figure, the black-dashed line with an open circle
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represents the observed daily PM2.5; blue-dashed and red lines represent the CMAQ- and
CNN+LSTM-predicted daily PM2.5; the grey shade represents the period with relatively
high concentration among nationwide high PM2.5 episodes, respectively. As shown in
the figure, the CNN+LSTM predictions showed better agreements with the observations
compared to the CMAQ-based predictions.

Table 5. Scientific evaluations of the CMAQ- and CNN+LSTM-based PM2.5 predictions *.

Model City
Statistical Parameters

IOA R RMSE MB MNGE MNB

CMAQ

Seoul 0.70 0.52 19.70 −3.16 45.95 −6.10
Incheon 0.70 0.53 19.46 −2.24 46.74 −1.63
Daejeon 0.65 0.45 17.43 −1.30 49.80 3.98
Gwangju 0.66 0.47 19.67 −6.15 50.68 −13.73

Daegu 0.67 0.47 17.45 −5.80 45.26 −11.96
Ulsan 0.67 0.49 17.01 −4.66 47.52 −10.34
Busan 0.65 0.51 18.03 −9.70 48.34 −31.78

CNN+LSTM

Seoul 0.81 0.69 12.18 −0.84 35.89 12.39
Incheon 0.82 0.68 12.55 −0.19 39.14 15.75
Daejeon 0.73 0.58 11.22 −1.64 43.31 14.39
Gwangju 0.72 0.55 14.66 −0.75 48.32 20.61

Daegu 0.79 0.65 11.47 −1.27 39.92 11.44
Ulsan 0.74 0.55 12.23 0.11 41.03 15.47
Busan 0.73 0.58 10.96 −0.53 29.68 9.20

* The unit for RMSE and MB is µg/m3; the unit for MNGE and MNB is %.

As shown in Figure 4 and Table 5, the CNN+LSTM predicted PM2.5 more accurately
than the CMAQ. The IOA for the CNN+LSTM-based PM2.5 prediction ranged from 0.72
to 0.82. On the other hand, the CMAQ-based IOA ranged from 0.65 to 0.70. These dif-
ferences in IOA demonstrate that the CNN+LSTM can produce 1.10–1.18 times better air
quality information than the CMAQ. Based on the statistic metric, among seven cities, the
CNN+LSTM predictions (0.81 ≤ IOA ≤ 0.82) at Seoul and Incheon showed the best agree-
ments with the observations. The CMAQ-based predictions in these cities also showed
better correlations with the observed PM2.5 (IOA = 0.70). However, the accuracies of
the CNN+LSTM at Daejeon, Gwangju, and Busan (0.72 ≤ IOA ≤ 0.73) were relatively
low. The CMAQ predictions showed similar trends to the CNN+LSTM-based predictions
(0.65 ≤ IOA ≤ 0.66).

In addition, the CNN+LSTM-based predictions showed fewer errors and lower biases.
The RMSE for CNN+LSTM predictions ranged from 10.96 µg/m3 to 14.66 µg/m3, and
those by CMAQ ranged from 17.01 µg/m3 to 19.70 µg/m3. The CNN+LSTM generated
1.51 times smaller deviation compared to the CMAQ. The prediction errors made by the
CNN+LSTM showed significant improvement in Seoul and Busan; the improved rates in
these cities were 38.17% and 39.21%. The CNN+LSTM-based predictions also showed lower
biases than the CMAQ-based estimations. The MBs for the CMAQ predictions ranged
from −9.70 µg/m3 to −1.30 µg/m3. These negative MBs indicate that the CMAQ model
significantly underestimates ambient levels of PM2.5. Although the CNN+LSTM-based
predictions also showed negative biases (−1.64 µg/m3 ≤MB ≤ 0.11 µg/m3), their values
were 6.46 times smaller than those predicted by CMAQ.

As mentioned above, the PM2.5 prediction was conducted from November 2016 to
April 2017. During this cold season, high PM2.5 events (PM2.5 ≥ 40 µg/m3) occur frequently
in South Korea. There were seventeen nationwide high PM2.5 episodes. These high episodes
are mainly attributable to the long-range transport of air pollutants by highly enhanced
westerly wind and increased consumption of fossil fuels for domestic heating [22]. In
particular, the daily PM2.5 in Seoul increased up to 85 µg/m3 on January 1 and March 20,
respectively. As shown in Figure 4, the CNN+LSTM model generated relatively high errors
and biases during the nationwide high-PM events. Since DNNs optimize their weight
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and bias matrices in a data-driven manner, the corresponding errors and biases arise from
the quality of the optimization dataset. Because DNNs are black box models, accurate
investigation of data quality is practically impossible.
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Figure 4. Comparisons between the observed, CMAQ-predicted, and the CNN+LSTM-predicted
PM2.5 at seven major cities in South Korea. Black-dashed line with an open circle represents the
observed PM2.5. A blue-dashed line represents the CMAQ-predicted PM2.5. A red line represents the
CNN+LSTM-predicted PM2.5. Grey shade represents the period with relatively high concentration
among nationwide high PM2.5 episodes.

In this study, to indirectly present the data quality, we evaluated the data imbalance.
The datasets used for the optimization of the CNN+LSTM model were highly imbalanced
(i.e., the majority class of the training data consisted of the data samples with a relatively low
concentration of PM2.5). Since DNNs make predictions based on statistically generalized
non-linear relationships between input features, it is difficult for the influence of minority-
class data samples to be reflected in their estimations. The data samples with high PM2.5
contributed just 11.30% on average. Among the seven training datasets, the training data
for Seoul and Gwangju included the highest number of high-PM2.5 incident samples; their
contribution was 12.32% and 12.10%, respectively. In addition, Daejeon showed the lowest
frequency of high-PM2.5 incident samples (9.14%). However, as mentioned above, data
imbalance is only an indirect indicator of data quality. Therefore, it is logically flawed to
conclude that the cause of the performance degradation of the CNN+LSTM is entirely due
to the said indicator.
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3.2. Importance of Input Features

It is impossible to directly comprehend the relationship between input features and
predictions of the DNNs due to the complex non-linearity between the outputs of the
deeply structured hidden layers. In this study, we indirectly evaluated the influence of
the input variables by sequential perturbing each feature. The main idea of this method is
that: if the perturbed feature is “important” (i.e., an input feature has a larger influence
on performance), the accuracy of the model predictions will be greatly reduced by the
perturbation. In contrast, if the perturbed input feature is unnecessary, the predictive
performance of the model will be rather improved. In this estimation, IOA was used as
a basis for feature importance investigation because it can represent the overall accuracy
of model prediction, as the statistical metric includes an error, bias, and correlation. The
feature importance was estimated as below:

FIi =
(IOAw/o purtb − IOAi, purtb)

IOAw/o purtb
× 100 (10)

here FIi is the importance of feature i; IOAi, purtb and IOAw/o purtb are accuracies of the
CNN+LSTM model with and without perturbation of feature i, respectively. The results of
this estimation are summarized in Table 6.

Table 6. Importance of the input features in daily PM2.5 prediction *.

Type Input Feature
Feature Importance

Seoul Incheon Daejeon Gwangju Daegu Ulsan Busan

Meteorological variable

Geopotential height 25.29 22.00 21.86 36.41 7.92 15.04 14.32
Temperature 12.87 12.54 9.82 9.71 4.70 3.10 5.95
Wind speed 0.16 0.19 0.06 0.13 0.14 0.14 0.06

Wind direction 1.86 3.90 0.30 2.22 2.71 1.29 0.48
Relative humidity 1.86 1.84 7.40 7.88 3.65 7.79 3.65

Vapor pressure 7.68 7.58 6.43 5.52 6.98 8.03 0.04
Dew point 2.08 2.23 0.47 2.23 1.10 3.60 2.30
Pressure 3.25 4.99 4.50 6.91 7.05 1.29 3.36

Sea level pressure 2.60 2.37 2.61 7.26 7.29 2.56 3.00

Atmospheric
environmental variable

SO2 2.67 1.87 1.86 6.22 7.93 2.91 2.36
CO 1.74 0.92 0.28 3.69 1.38 1.96 0.40
O3 8.06 3.33 10.44 15.73 6.79 8.87 3.66

NO2 2.26 0.94 1.71 3.79 3.43 3.84 0.33
PM10 0.96 1.64 5.08 0.77 1.20 2.36 4.58
PM2.5 38.80 38.24 34.93 41.82 37.17 34.79 31.67

* The unit for feature importance is %.

As shown in Table 6, the importance of all input variables was positive. These positive
values indicate that all input variables are necessary for daily PM2.5 prediction (i.e., the
appropriateness of variable selection). Among the atmospheric environmental variables,
the previous day’s PM2.5 and O3 showed a great influence on the next day’s PM2.5. Their
importance ranged from 31.67% to 41.82% and from 3.33% to 15.73%, respectively. In
particular, the previous-day-PM2.5 was the most important input variable. Among the
meteorological variables, PM2.5 prediction was greatly influenced by geopotential height
(from 7.92% to 25.29%) and temperature (from 3.10% to 12.87%). In particular, the impor-
tance of atmospheric pressure-related features was relatively higher compared to other
meteorological variables. This result represents the importance of pressure patterns over
East Asia and inside cities in the daily PM2.5 prediction in South Korea. Therefore, the
spatial and temporal pressure features should be included as the input variables in the
construction of the DNN-based PM2.5 model, and it is essential to embed CNN and LSTM
together to extract their inherent information.
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4. Conclusions

In this study, we developed a new CNN+LSTM hybrid neural network for daily
PM2.5 prediction. The performance of the CNN+LSTM model was precisely evaluated by
comparing the CNN+LSTM-based PM2.5 with the ground observations. In addition, the
accuracy of the CNN+LSTM was compared with that of CMAQ to prove its usefulness as
an air quality prediction tool. The CNN+LSTM hybrid model generated 1.51 and 6.46 times
less error and lower bias on average than the CMAQ. In particular, based on IOA, the
CNN+LSTM predictions were 1.10–1.18 times more accurate than the CMAQ estimations.
This promising result clearly demonstrates that the DNN-based prediction model can be
utilized as an effective tool for air quality prediction. In addition, a similar CNN+LSTM
model can also be used in the prediction of other harmful air pollutants (e.g., NO2, SO2,
and O3).

In particular, the newly developed CNN+LSTM model is more cost-effective than the
3-D CTMs. Several pre-processing steps are required to generate a 3-D CTM-based air qual-
ity forecast: simulation of the numerical weather prediction model, preparation of biogenic
and anthropogenic emission inventories, acquisition of initial and boundary conditions,
and chemical speciation of air pollutants. Despite the efforts of these sophisticated pre-
processings, the current 3-D CTM showed lower predictive power than the CNN+LSTM
(refer to Section 3.1). On the other hand, the pre-processing of the CNN+LSTM-based
prediction is very simple. For PM2.5 predictions, it is only necessary to acquire the observa-
tional and forecast-based datasets from their official archives and configure input features.
Nevertheless, the current CNN+LSTM model is superior to the 3-D CTM. Because of these
advantages, for developing countries where it is impossible to establish and operate their
own 3-D CTM-based forecast system due to financial limitations, the CNN+LSTM model
developed through this study can be used as a more economical and efficient air quality
forecast tool.

Although the current hybrid model can accurately predict PM2.5, its performance
can be deteriorated by two obstacles: i) the amount of available data and ii) an imbalance
in training data. As shown in Section 3.1, the prediction accuracy of the CNN+LSTM
model was very high for medium and relatively low concentrations (PM2.5 < 40 µg/m3).
In contrast, the CNN+LSTM tends to generate relatively high errors and biases for high
PM2.5 episodes. This inaccuracy originates from the amount and quality of the training
data. The NIER of South Korea has officially conducted ground-based PM2.5 monitoring
since 2016. Although the PM2.5 observations have been accumulated for seven years up
to date, the amount of useful data for the CNN+LSTM development is less than four
years, excluding the COVID-19 period. In addition, the data samples with high PM2.5 only
contributed 11.30% of the total available observations. Since DNNs statistically determine
their predictions, it is very difficult to reflect the influence of these minority classes in the
model estimation. In other words, from the perspective of the DNN generalization, the
high PM2.5 samples are likely to be recognized as noise signals during the model training.
We believe that the current CNN+LSTM hybrid model can be more accurate by acquiring
more data samples of minority classes through more observations.
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