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Abstract: For better modeling the vertical distribution and variations of water vapor, a 10-year time-
series of a newly derived water vapor parameter (termed IRPWV), defined as the ratio of water vapor
density (WVD) to the total precipitable water vapor (TPWV), was statistically analyzed. This research
showed that the vertical distribution of IRPWV presents a periodic pattern and is highly correlated
with the relative magnitude of its corresponding TPWV when compared with the other TPWVs
in the same time range. Six TPWV ranges were first chosen to determine the relative magnitude
and then used to classify the IRPWV vertical distributions of TPWV. For the periodic variations in
each of the six classified IRPWV vertical distribution time-series, a temporal IRPWV model was
developed accordingly with six sets of coefficients. The new models were validated by comparing
their predictions against the reference values from sounding data at 12 radiosonde stations in China,
and their performance was also evaluated against that of the commonly used exponential model.
Results showed that, first, the proportions of the height range that had reduced annual root mean
square error (RMSE) of WVD in all height ranges within all TPWV ranges were over 75% at the
12 stations. Then, the annual RMSEs of the WVD for all the stations were reduced by at least 11%, 20%,
43%, 48%, 40%, 38%, 32%, 35%, 32%, and 28% in each of the 10 selected height ranges, respectively.

Keywords: atmospheric water vapor; water vapor spatio-temporal model; water vapor vertical distribution

1. Introduction

Water vapor (WV) is an important part of the earth’s atmosphere and is the principle
greenhouse gas. It plays a very important role in the atmospheric radiation balance [1]. WV
mainly concentrates in the lower part of the atmosphere [2]. Although its content in the
atmosphere is a small portion (about 0–4%) of the total atmospheric mass, it is the most
active and variable component in the atmosphere. WV is also one of the meteorological
parameters that is most difficult to characterize [3]. From global climate to local meteorology,
it has a strong influence on climate at various spatial and temporal scales [4–9]. Therefore,
the vertical distribution and variation of WV plays a critical role in both the regional and
global climate system, such as the influence on convection and monsoon climates [10–13].
The study of the vertical distribution and variation of WV over time and geographical
space [4] will help us enormously in climate change analysis including climate model
parameterization and weather forecasting [7,14–22].

The development of parametric functions/models of the vertical WV distribution
is the first step forward since it can enhance our in-depth understanding of many WV-
related problems in the atmosphere. Existing vertical WV distribution functions/models
are mostly based on the power law of WV [2,23–25] which can approximately represent the
WV distribution along the vertical direction and has been routinely used. For example, in
ground-based microwave remote sensing, the initial inversion value of WV can be obtained
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by using the WV parametric scheme [26]. In numerical weather prediction models, in
order to generate the predicted initial conditions, on top of the observed data, a complete
first-guess value field needs to be first given and improved by the vertical parameterization
scheme of the WV profile [27], which is required to provide an estimate of the atmospheric
state at all grid points. The large-scale atmospheric vertical dynamics (the convection and
the associated vertical motions) on the vertical distribution of atmospheric WV have been
inferred by a proposed method using the power-law of WV [28]. In the troposphere, it is
generally assumed that the WV density (WVD) follows a power-law distribution vertically,
which can be expressed by the following exponential function [23]

ρwh = ρws exp(−β(h− hs)) (1)

where ρws and ρwh (unit: g/m3) are the WVDs at the ground surface level (hs) and the
height h exceeds hs (unit: km), respectively; β (unit: km−1) is a constant for the height
range from hs to h.

According to the WV equation of state, the WVD (ρw) can be obtained by a function of
the WV partial pressure e (unit: hPa) and temperature T (unit: K), expressed as [29,30]

ρw =
e

RT
(2)

where R is the specific gas constant of the water vapor ratio, and R = 0.4615 (unit: J/(K · g)).
Let PWVh2

h1
denote the partial WV in the height range from h1 to h2 along the vertical

direction over a site; it can be calculated by the integral of WVD in the range

PWVh2
h1

=
1
ρv

∫ h2

h1

ρwdh (3)

where ρv is the water density (ρv = 1 g/cm3); dh is the increment step (unit: km, the same
as that of h). In Equation (1), β can be approximated by the inverse of the atmospheric
WV scale height (H, unit: km). H is the equivalent height under the assumption that
atmospheric WV is uniformly distributed in the entire vertical range of the troposphere,
and it has a physical interpretation as the depth through which the WVD reduces to 1/e of
its value at the base of the troposphere [31,32]. It is an important parameter in terms of its
control on the radiative balance and convective stability of the atmosphere [33]. By taking
the approximate relation of the total PWV (TPWV) and H, TPWV can be simplified to the
following formula [30,32]

TPWV ∼ ρws H (4)

In practice, Equation (1) is usually replaced by ρwh = ρws exp(−(h− hs)/H), by
simply taking a constant value or a periodic function that only contains the time variable
to model the temporal variation [23,31,34–37]. However, Equation (4) is given under
the condition that the height is close to the tropopause (rather than any other heights),
so β in Equation (1) can be replaced by 1/H only in the case that the height is close
to the tropopause. In addition, WV varies greatly, both temporally and spatially, due to
evaporation and condensation as well as water vapor convergence in the lower troposphere,
and its vertical distribution may not always follow an exponentially decreasing trend.
Therefore, it is necessary to analyze the relation between WVDs at different heights in the
troposphere, instead of directly using Equation (1) containing H.
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As stated earlier, both weather and climate system models and GNSS meteorology
models are heavily dependent on the vertical distribution parametric models of WV. On
the one hand, for developing and improving the parametric models, detailed mechanistic
knowledge of WV variations over large spatial and temporal scales is required, so the impact
factors can be realistically incorporated into the model [38]. For instance, considering the
vertical structure of humidity, the correlation between WV time-series at varying heights
was quantified [39]; the vertical distribution of the moisture along the column WV (CWV)
was analyzed and the main vertical structures of WV perturbations were investigated [17],
and the WV content spatial distribution was described as a function of temperature [40].
On the other hand, it is also necessary to evaluate the impact of parametric models on
observations by applying appropriate diagnostic measures [38]. For example, to determine
patterns of inter-model dispersal in vertical water structures, the vertical WV structures
captured by the CMIP5 model were evaluated and the impact of defects in the modeled
vertical WV structures was explored [41]. The evaluation of the WV model’s performance
is particularly challenging since the WV variability needs to be determined precisely in
space and time.

It is known that the vertical distribution of WV also correlates with its transient state
caused by various controlling meteorological factors, e.g., temperature and WV pressure
of the site [7,17,40]. For better modeling the variations in the vertical distribution of WV,
in this study, a WV parameter, named IRPWV, is derived, which is the ratio of WVD to
TPWV. Its vertical distribution represents the vertical structure of WV along the vertical
direction in the troposphere. Based on our analysis of the vertical IRPWV distribution
time-series over 12 radiosonde stations in China, it was found that the vertical distribution
of IRPWV is not only correlated with the relative magnitude of its corresponding TPWV,
but it also demonstrates a notable temporal variability. Six TPWV ranges were first chosen
to determine the relative magnitude of TPWV and then used to classify the IRPWV vertical
distributions of TPWV. For the periodic variations in each of the six classified IRPWV
vertical distribution time-series, a temporal IRPWV model is developed with six sets of
coefficients for the fitting of the six classified vertical distributions of IRPWV.

This paper is organized as follows: Section 2 introduces the methodology for the
derivation of the WV parameter, i.e., IRPWV; Section 3 describes the data selection, anal-
yses the correlations between the vertical distributions of IRPWV and TPWV, and the
development of a temporal IRPWV model; Section 4 presents the test results; and Section 5
presents concluding remarks.

2. Materials and Methods
2.1. Data Description

Sounding data from 12 radiosonde stations located in the longitude range 100◦ E–125◦ E
and latitude range 20◦ N–45◦ N in China throughout 12 years from 2008 to 2019 were
downloaded from the Integrated Global Radiosonde Archive (IGRA) (at https://www.ncdc.
noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive (accessed on
23 February 2021)). The distribution of the 12 stations is shown in Figure 1. The main reason
for the selection of these stations is that they had at least 10 continuous sounding layers
containing the 10 standard pressure levels (1000, 925, 850, 700, 500, 400, 300, 250, 200) during
the period of tests. The temporal resolution of the sounding data was 12 h (observed at 00:00
and 12:00 UTC). The vertical sounding profiles contain various meteorological measurements,
including pressure, temperature, WV pressure, relative humidity, etc. at each sounding layer.

https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive
https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive
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2.2. A New Parameter for the Vertical Distribution of Water Vapor

To obtain an accurate functional relationship between WV at two heights in the
troposphere, a new WV parameter was introduced in this study (termed IRPWV), which
reflects the variation of WV along the vertical direction. The derivation of its formula is
as follows.

The ratio of PWV (noted as RPWV) at any two heights hi and hj (hj > hi) to TPWV in
the troposphere is expressed as

RPWVij =
PWV

hj
hi

TPWV
(5)

In general, PWV
hj
hi

in Equation (6) is the numerical integral value of WVD from hi to hj,

RPWVij =
ρwij∆hij

TPWV
(6)

where ρwij is the mean WVD in the height range between hi and hj; ∆hij is thickness
between hi and hj.

The above equation, by simple transformation, yields the following equation

IRPWVi,j =
ρwij

TPWV
(7)

where IRPWVi,j represents a per unit height (or thickness) of the ratio of PWV between hi
and hj to TPWV, unit: 1/km.
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When hi and hj are very close (i.e., a very thin layer), WVDi and WVDj are very close

as well. Replacing the layer in Equation (8) with its corresponding mid-height h =
hi+hj

2 ,
then Equation (8) can be expressed as

IRPWVh =
ρwh

TPWV
(8)

Comparing the above equation with Equation (5), the similarity is the water vapor scale
height H, which can be obtained from IRPWVh at the surface height, i.e., H = 1/IRPWVs,
but the difference is that Equation (5) takes the troposphere as a whole, while the above
equation represents the variations of troposphere more finely. Meanwhile, the relation
between WV can also be expressed in terms of IRPWV, as follows

ρwl= ρwk ·
IRPWVl
IRPWVk

(9)

where ρwl , ρwk , IRPWVl and IRPWVk are the WVDs and IRPWVs at hl and hk, respectively.

2.3. Temporal Model

Considering the periodic characteristics of the IRPWV time-series over a site, the
Fourier series below was used to fit IRPWV for the site in this study

f (doy) = a0 +
n

∑
i=1

(ai cos(i·doy · w) + bi sin(i·doy · w)) (10)

where i is the order of Fourier series; a0, ai and bi are the coefficients to be solved; doy is the
day of year; w is the angular frequency.

3. Spatio–Temporal Characteristics of IRPWV and Modeling

The following procedures were carried out for the sounding data from each of the
stations. First, according to Equations (2)–(4), the values of WVD at each of the sounding
height layers, TPWV, and H were calculated; and then according to Equation (8), IRPWV at
the mid-height of two adjacent heights hl = (hi−1 + hi)/2 (i is the index of the sounding
height layer) was calculated. After this step was performed for all the sounding height
layers across the 12 years and all the 12 stations on a doy-by-doy basis, the dataset containing
doy, hdoy, ρwdoy , TPWVdoy, Hdoy, hldoy

and IRPWV was obtained.

3.1. Temporal and Spatial Characteristics of IRPWV

The vertical distributions of IRPWV over the 10-year period from 2008 to 2017 at all
the 12 stations are shown in Figure 2. We can see that the range of fluctuations of the
IRPWV values decreases with an increase in altitude along the vertical direction at each
station, and then it tends to be a steady value close to 0 at the highest altitudes. The vertical
distribution ranges of IRPWV over all the stations are very similar. More specifically, the
IRPWV fluctuation range varies with respect to the TPWV value, decreasing as the TPWV
increases and vice versa.
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Figure 2. The vertical distribution of IRPWV in the 10-year period from 2008 to 2017 over each of the
12 stations. The color bar indicates the value of TPWV (in mm).

3.1.1. Statistical Characteristics of IRPWV

To analyze the temporal and spatial statistical characteristics of IRPWV, first, the
aforementioned 10-year IRPWV time-series for each of the 12 stations were interpolated to
10 height layers, i.e., [hs, 1, · · · , 10] (unit: km), where hs is the height of the station (note:
hs is 1.223 km at GUIYANG station, therefore, its height layers are 9). Then, they were
sorted monthly by their corresponding TPWV values and divided into 10 groups. Finally,
the resultant newly sorted groups of IRPWV sample data will be used to calculate their
monthly mean value and standard deviation (SD).

Figure 3a shows that, although the TPWV values in different months fall into different
TPWV ranges, the mean value of IRPWV in each of the subfigures tends to be small with
the increase in its corresponding TPWV in the same month, and eventually reaches a stable
value. From January to July, the ranges of variation of the mean value are different, with
the smallest in July and the largest in January. Mean IRPWV values at the same TPWV but
in different TPWV ranges are different from each other and increase with the month. The
results from July-to-December are the opposite of the January-to-July results. The trends
shown in Figure 3b are consistent with the results of Figure 3a, the SD values decrease
with the TPWV increases in the same time scale, i.e., for the maximum TPWV, its SD is the
minimum. Each of the 12 stations shows the same characteristics described above, while
the variation ranges of the monthly mean and SD values of the IRPWV are different from
each other.
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(a,b) indicate the values of the monthly mean and SD of IRPWV. The statistical results of other layers
are shown in the Supplementary Materials.

The above statistical results indicated that, within the same time scale, the IRPWV
value correlates with the relative magnitude value of its corresponding TPWV compared to
the other TPWV (those unlisted layers had the same characteristic), i.e., within a certain
period, the IRPWV is dependent of the relative magnitude of TPWV, but not its corre-
sponding TPWV value, which is denoted by Rel-TPWV hereafter in this paper, merely
for convenience. In summary, while the Rel-TPWV is small, IRPWV has a larger range of
fluctuations in its vertical distribution and vice versa.

3.1.2. Methodology for Determining Rel-TPWV

To obtain the vertical distribution of the IRPWV with respect to the TPWV at a certain
time, it is necessary to establish a partitioning criterion for the TPWV, which is used
to compare and determine its Rel-TPWV within the same time scale, and the following
procedure is presented in this study.

Step 1, according to the periodic characteristics of the TPWV time series [42], a peri-
odic function fitting the sample (i.e., measurements) of the 10-year TPWVdoy time series
was obtained.

Step 2, the fitting function was applied to predict the TPWV value for each doy, which
is denoted by TPWV fdoy

, and the discrepancies (residuals) between the TPWVdoy and
TPWV fdoy

were calculated.
Step 3, the set of residuals for each doy over the duration of the 10 years was used to

calculate the SD of TPWV for the doy, then according to the periodic characteristics of the
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time series of SD from doy 1 to 366, a fitting periodic model was obtained and applied to
predict the SD for each doy, denoted by SD fdoy

.
Step 4, both TPWV fdoy

and SD fdoy
on each doy were used to obtain five numerical

boundaries for the doy, which are all based on the statistical theory that the probability of a
value being within a ±2 SD range is greater than or equal to 0.95 (percentile), as follows:

TPWV fdoy
− SD fdoy

, TPWV fdoy
− 0.5·SD fdoy

, TPWV fdoy
, TPWV fdoy

+ 0.5·SD fdoy
, and

TPWV fdoy
+ SD fdoy

.
Step 5, the above five numerical boundaries form six TPWV ranges (denoted by

TPWVr, r = 1, 2, . . . , and 6) for each doy, i.e., the five numerical boundaries for all 366 doys
form six TPWVr curves (see Figure 4), as follows:
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− SD fdoy
, TPWV fdoy

− 0.5·SD fdoy
,

TPWV fdoy
, TPWV fdoy

+ 0.5·SD fdoy
, and TPWV fdoy

+ SD fdoy
, respectively.

TPWV1 = [less than TPWV fdoy
− SD fdoy

, TPWV fdoy
− SD fdoy

], TPWV2 = [TPWV fdoy
− SD fdoy

,
TPWV fdoy

− 0.5·SD fdoy
], TPWV3 = [TPWV fdoy

− 0.5·SD fdoy
, TPWV fdoy

], TPWV4 = [TPWV fdoy
,

TPWV fdoy
+ 0.5·SD fdoy

], TPWV5 = [TPWV fdoy
+ 0.5·SD fdoy

, TPWV fdoy
+ SD fdoy

], and
TPWV6 = [TPWV fdoy

+ SD fdoy
, greater than TPWV fdoy

+ SD fdoy
].

The six TPWVr were taken as the quantified and unified Rel-TPWV, e.g., if TPWVdoy
values fall in the same TPWVr, they are considered to have the same Rel-TPWV value.
Reflecting the results from the section above, that is, the vertical distribution of IRPWV
is related to the Rel-TPWV of its corresponding TPWV in the same time session, e.g., if
the Rel-TPWV of the vertical IRPWV distribution is larger than those of the others, the
vertical IRPWV distribution is more stable and its fluctuation amplitude is also smaller
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than those of the others, and vice versa. The vertical distributions of IRPWV corresponding
to the six TPWVr from 1 to 6 are considered as the following six vertical distributions of the
WV: maximal-perturbation, sub-perturbation, normal-perturbation, normal-perturbation,
least-perturbation, and least-perturbation, respectively.

According to the above partition criterion for TPWV, the 10-year sample data of IRPWV
at 10 height layers were grouped by the TPWVr according to their corresponding TPWVdoy.
The resultant new groups of IRPWV sample data will be used to study the characteristics
of the temporal variations of IRPWV and the model for each group.

3.1.3. Temporal Characteristics of IRPWV

For the spectrum analysis of each group of the 10-year IRPWV time series at each of
the 12 stations obtained in the previous section, the Fourier transform method was used,
and results at the first layer (as an example) are shown in Figure 5 for the characteristics of
the temporal variation of IRPWV of the stations.
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Figure 5. Power-period of 10-year IRPWV time series of the 10 layers within six TPWVr at
KOWLOON station. The x-axis is the frequency (year−1) of the time-series, and the magenta lines 1,
2, 3, and 4 are the marks of annual, semi-annual, 4-month, and seasonal cycles, respectively. The peak
of the green curve represents the degree of frequency. The power-periodic figures of the remaining
11 stations are shown in the Supplementary Materials.

As can be seen from Figure 5, the IRPWV time-series in each of the layers within six
TPWVr generally present a clear periodic pattern, with significant annual and semi-annual
periodic cycles. Different periodic characteristics of TPWVr are shown in different layers.
In TPWVr 1, the annual and semi-annual cycles are significant at layers 1 and 6, and the
semi-annual cycle is significant at layers 2 and 4, while at the other layers the annual,
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semi-annual, and 4-month cycles are equally significant to each other. In TPWVr 2–6, the
annual cycle is significant and the semi-annual cycle is weak at layers 2, 3, 6–10, while at
layer 5 the semi-annual cycle is equally significant with the annual cycle in TPWVr 6. In
layers 1 and 4, the periods are different from each other.

With comprehensive consideration of the main annual and semi-annual periodic
characteristics of the IRPWV time-series, the third order was adopted as its fitting function
in Equation (10). It should be noted that the 4-month periodic characteristic may be
insignificant or not even present in an IRPWV time-series. In this case, the coefficient of
the 4-month term in Equation (10) will be very small or even close to 0. Consequently,
the trigonometric function contains only annual and semi-annual periodic terms. Results
from the other stations were also investigated, and the same temporal variability pattern
was observed, although the IRPWV fluctuations were different for different groups and
different stations. The spatio-temporal modeling for each of the groups of the 10-year
IRPWV data will be carried out in the next section.

3.2. Construction of Spatio-Temporal IRPWV Model

According to the classification of WV vertical distribution in Section 3.2, the vertical
distribution of IRPWV in the TPWVr is considered as a type of WV vertical distribution,
and the true vertical distribution of IRPWV can be generalized as

IRPWV = IRPWVr + perturbationr (11)

where IRPWVr and perturbationr are the IRPWV and its perturbation term in the corre-
sponding TPWVr, respectively; r is from 1 to 6.

Based on the annual and semi-annual periodic characteristics of the IRPWV time-series
in each layer within each TPWVr, Equation (10) (taking the third-order) was adopted as
the fitting model for each of the groups of the 10-year IRPWV sample data

IRPWVh,r = a0,h,r + a1,h,r cos(doy · w) + b1,h,r sin(doy · w) + a2,h,r cos(doy · 2w) + b2,h,r sin(doy · 2w)

+a3,h,r cos(doy · 3w) + b3,h,r sin(doy · 3w)
(12)

where a0,h,r, a1,h,r, b1,h,r, a2,h,r, b2,h,r, a3,h,r and b3,h,r are the coefficients of the periodic
terms; the subscripts h and r are the indexes of the height layer and TPWVr, respectively;
w = 2π/365.25. The coefficients for each group of the IRPWV sample data for the
KOWLOON station (as an example) are partially selected and shown in Table 1.

Table 1. Coefficients of the IRPWV model for the selected layers, i.e., 1 and 5 layers, within the se-
lected TPWVr, i.e., TPWVr 1 and 6, at KOWLOON station; more details are shown in Table A1
(see Appendix A). The coefficients of the model at all 12 stations are shown in the
Supplementary Materials.

TPWVr Layer a0 a1 b1 a2 b2 a3 b3

1 0.518 0.048 0.003 0.022 0.015 −0.013 0.019
1 . . .

5 0.064 −0.008 −0.001 −0.008 −0.006 −0.002 −0.006
. . .

1 0.338 −0.005 0.004 −0.007 0.004 −0.008 0.004
6 . . .

5 0.093 −0.002 −0.005 0.002 −0.006 0.006 −0.003

4. Evaluation of IRPWV Model

To validate the aforementioned constructed IRPWV models, the WVD values for each
doy in 2018 and 2019 predicted by the IRPWV model and the commonly used exponential
model containing H (named ρwm and ρw H , respectively) were compared against the ref-
erence values in the same two years using the procedure introduced in Section 3.1. Since
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there are no global H models available at present, according to the periodic characteristics
of H [36,37], instead, the coefficients of the periodic model of H over each station were
obtained from the Hdoy time series in the 10 years from 2008 to 2017 by Equation (10) (the
second-order was adopted). The validation procedure is as follows.

(1) Validation of model-predicted ρwm and ρw H in two cases below.
According to the Rel-TPWV of TPWV relative to TPWVr on the same doy at a station

site, the periodic function coefficients in each height layer within the corresponding TPWVr
were selected, and the doy in 2018 and 2019 were used as the input of Equation (12) to
calculate the IRPWVh,r value for the doy. The H on the same doy in 2018 and 2019 resulting
from the H model was obtained using the coefficients of the periodic H model of the same
station, noted as Hm.

Case 1: ρwm and ρw H resulting from two models and TPWV.
For the same station site, ρw H at the surface and ρwm in each height layer on the same

doy were calculated using the following two equations

ρw
s
H =

TPWV
ρw H

(13)

ρw
hr
m = TPWV·IRPWVh,r (14)

Then, for the ith sounding height layer, ρw
i
H and ρw

i
m at height hi

doy were

calculated by Equation (1) and interpolation between (hr1, ρw
hr1
m ) and (hr2, ρw

hr2
m ) (where

hr1 < hi
doy < hr2), respectively.

Case 2: ρwm and ρw H resulting from two models and WVD at a specific altitude.
For the same station, ρw

j
m and ρw

j
H at height hj were calculated from the WVD (ρi

w) at
the height hi (i and j are the indexes of the sounding layer from 1 to the last, respectively,
and i 6= j) using the following equations

ρw
j
m = ρi

w·
IRPWVj,r

IRPWVi,r
(15)

ρw
j
H = ρi

w exp
(
−
(
hj − hi

)
/Hm

)
(16)

where IRPWVi,r and IRPWVj,r were obtained by interpolating (hr1, ρw
hr1
m ) and (hr2, ρw

hr2
m ),

(hr3, ρw
hr3
m ) and (hr4, ρw

hr4
m ), respectively, where hr1 < hi

doy < hr2, hr3 < hi
doy < hr4, for

an example.
(2) Using the above procedure to obtain ρwm and ρw H for all doys in 2018 and 2019 for

each of the 12 stations, then the statistics including annual bias and root mean square error
(RMSE) of the differences between the model-predicted results and reference values were
calculated for the models’ performance indicators. The formulas of the bias and RMSE are

bias =
1
n

n

∑
i=1

(Valuemi −Valueri ) (17)

RMSE =

√
1
n

n

∑
i=1

(Valuemi −Valueri )
2 (18)

where i is the index of the sample data; the subscriptions m and r denote model and
reference, respectively; n is the number of the samples contained in the statistics.

For each of the 12 stations, ρwm and ρw H for all doys in 2018 and 2019 were obtained
from the two models and TPWV and ρw, respectively. The results were then divided into
10 groups of 1 km interval starting from the station altitude along the vertical direction.
Their corresponding reference values obtained from the sounding data in the same 10 height
ranges were used to evaluate the performance of the two models in each height interval.
The bias and RMSE results are shown in the next two sections.
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4.1. Accuracy of WVD Resulting from Models and TPWV

In Figure 6, considering both the bias and RMSE, it can be seen that, at stations 1, 5,
and 12, the annual biases of ρwm are close to 0 in all 10 height ranges within all TPWVr, and
that of ρw H all increase from a small negative value to 0 with the increase in height within
all six TPWVr. In addition, the annual RMSEs of ρw H at these three stations are at least
about two times that of ρwm. The bias and RMSE values of the exponential model at station
5 in the height range from 1 to 5 are about from –4 to –2.5 g/m3, and from 1 to 4.5 g/m3,
respectively. This performance of the exponential model is poor. At stations 4, 6, and 9 and
in the same low height ranges, e.g., from 1 to 5, their absolute bias and RMSE values vary
with the variation of TPWVr from 1 to 6, e.g., the two values in TPWVr 3 and 4 are less
than that in the other TPWVr, which reflects that the exponential model is only suitable to
the normal water vapor state. Note that since WV content in a low-height layer is much
larger than that in a high layer, this section mainly focuses on the results in low-height
layers. Based on both the bias and RMSE of ρwm and ρw H resulting from the two models
and TPWVdoy, the new model is superior to the commonly used exponential model in all
height ranges within all six TPWVr at all stations (the same results were also found from
the other six unlisted stations).
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Figure 6. Annual biases (a) and RMSEs (b) of ρwm and ρw H resulting from the two models and TPWV
in each of 10 height ranges within six TPWVr at six selected stations (with serial numbers 1, 4, 5, 6, 9,
and 12, instead of using the name of the stations for convenience). The blue and magenta dotted lines
are the results of the exponential model and the new model, respectively.
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Due to the difficulty of finding the difference between the RMSEs of ρwm and ρw H in
greater height ranges in Figure 6b, we counted the improvement ratios of the annual RMSE
of ρwm relative to that of ρw H in the 10 height ranges within all TPWVr at the 12 stations,
and the results are shown in Figure 7. It can be seen that the proportions of the number
of the height ranges that had reduced the annual RMSE of ρwm to all 10 height ranges
within all six TPWVr (i.e., a total of 60 height ranges) are from 75% to 80% at the CHIFENG,
BEIJING, ZHENGZHOU, and ZHANGQIU stations; and the results at the other stations
were all over 90%.
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Figure 7. Improvement ratio of annual RMSE of ρwm resulting from the new model and TPWV
relative to that of ρw H in each of 10 height ranges within each of six TPWVr at each of the 12 stations.

4.2. Accuracy of WVD Resulting from Models and WVD at a Specific Altitude

Figure 8a shows that the annual biases of ρw H at all the 12 stations increase gradually
with the increase in the height of ρw, and in the height range 2 or above, they are all above
0, which indicates that the exponential model only performs well within the height range 1,
and all the positive bias values mean systematic overestimation of the model. In contrast,
the biases of ρwm in the 10 height ranges all float around the 0 value. In Figure 8b, the
annual RMSEs of the two models at the 12 stations all show a tendency of larger RMSE in
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greater height ranges, i.e., the RMSE increases with the increase in the height of ρw, with
different amounts of increase. Therein, the minimum increment in the RMSE of ρw H is
1.5 g/m3 (from 3.5 to 5.0 g/m3), and is at GUIYANG, where the RMSE of ρwm is from 1.1 to
3.1 g/m3; the maximum increment is 5.4 g/m3 (from 1.7 to 7.1 g/m3) and is at KOWLOON,
where the RMSE of ρwm is from 1.4 to 3.9 g/m3. Noticeably, the RMSE of ρwm is less than
that of ρw H in all 10 height ranges. Compared with the ρw H result, the RMSEs of ρwm at all
stations in each of the 10 height ranges reduce at least 11%, 20%, 43%, 48%, 40%, 38%, 32%,
35%, 32% and 28%, see Figure 8c.

From the above results, it can be concluded that WVD at a lower height has resulted
from the model and WVD at a greater height, while the small variation in the latter WVD
(the variation in WVD at a greater height is small relative to WVD at the lower heights,
but is large relative to WVD at the greater heights) has a great impact on the former. In
addition, the poor result of the exponential model is also caused by the fact that the model
is based on the exponential decline trend along with the vertical range from the surface
WVD to the tropopause. Therefore, the new model is superior to the exponential model
because it reflects the relationship between WVDs at different heights. In addition, when
the new model is applied, the WVD at a lower height should be selected as far as possible
to calculate the WVD at a greater height through the model.
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5. Conclusions

Water vapor in the troposphere varies with time and space. Its vertical distribution is
correlated with the state of the atmosphere, such as the meteorological factors of, e.g., the
column water vapor, temperature, and water vapor pressure. For better modeling of the
variations in the vertical distribution of water vapor under different amounts of the total
precipitable water vapor (TPWV), a new water vapor parameter, IRPWV (the ratio of water
vapor density to the TPWV), was designed.

From the analyses of the vertical distribution of IRPWV time-series obtained from
the 10-year sounding data over 12 radiosonde stations in China, it was found that the
vertical distribution of the IRPWV time-series not only strongly correlated with the relative
magnitude of its corresponding TPWV at the same time over the same site, but also
presents a periodic variation pattern in the temporal domain. To quantify the relative
magnitude of TPWV and unify the criteria for the relative magnitude, six TPWV ranges
time-series (from 1 to 6) were developed by the periodic function of TPWV and its standard
deviation. They were then used to classify the vertical distributions of IRPWV into six
vertical distributions of water vapor by their corresponding TPWVs. For the periodic
variations in each of the six classified IRPWVs, a temporal IRPWV model is developed with
six sets of coefficients for fitting the six classified vertical distributions of IRPWV. The new
fitting model was evaluated by comparing its prediction against the radiosonde data as
references in 2018 and 2019 (out-of-sample data), and its performance was also assessed
against the commonly used exponential model. Results showed that the new IRPWV
model significantly outperformed the exponential model in the following aspects: First, the
proportions of the number of the height ranges that had reduced annual root mean square
error (RMSE) of water vapor density (WVD) obtained from the new model and TPWV
in all height ranges were from 75% to 80% at the CHIFENG, BEIJING, ZHENGZHOU,
and ZHANGQIU stations; the results at other stations were all above 90%. Secondly,
considering all six TPWV ranges and all stations as a whole, the annual RMSEs of WVDs
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obtained from the new model and WVDs in the height range from 1 to 10 were reduced by
at least 11%, 20%, 43%, 48%, 40%, 38%, 32%, 35%, 32%, and 28%, respectively. All results
suggest that, for different water vapor states, the new IRPWV fitting model performs well
in reflecting not only the temporal relationship between the WVDs and the TPWV but also
the vertical distribution of WVDs at different altitudes well.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13122039/s1. Figures S1–S9: Monthly IRPWV mean (a)
and SD (b) values (unit: 1/km) of each of the TPWV groups which are sorted by their corresponding
TPWV in the layer 2–10 at each of the 12 stations.; Figures S10–S20: Power-period of 10-year IRPWV
time series of the 10 layers within six TPWVr at CHIFENG, SHENYANG, BEIJING, ZHENGZHOU,
WENJIANG, ZHENGZHOU, WUHAN, GUIYANG, NANJING, SHANGHAI(BAOSHAN), and
QINGYUAN stations, respectively. Table S1: Coefficients of the IRPWV model for all the layers
within the six TPWVr at the 12 stations.
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Appendix A

Table A1. Coefficients of the IRPWV model for all the layers within the six TPWVr at KOWLOON station.

TPWV Range Coefficient
Height Layer

1 2 3 4 5 6 7 8 9 10

1

a0 0.518 0.336 0.192 0.115 0.064 0.036 0.021 0.014 0.008 0.005
a1 0.048 0.011 −0.005 0.001 −0.008 −0.008 −0.002 0.000 0.000 0.000
b1 0.003 −0.017 0.001 0.008 −0.001 0.002 0.000 0.002 0.002 0.001
a2 0.022 −0.004 0.015 −0.004 −0.008 −0.003 0.000 0.000 0.000 0.000
b2 0.015 0.000 0.003 −0.002 −0.006 −0.002 0.000 −0.001 −0.001 0.000
a3 −0.013 −0.016 0.015 0.001 −0.002 0.000 0.003 0.002 0.001 0.000
b3 0.019 0.014 −0.003 −0.012 −0.006 −0.001 0.001 0.000 0.000 0.000

2

a0 0.434 0.324 0.222 0.129 0.068 0.037 0.020 0.012 0.007 0.004
a1 0.017 0.024 0.022 −0.002 −0.022 −0.016 −0.008 −0.003 −0.002 −0.001
b1 −0.011 −0.002 0.011 0.005 −0.004 −0.003 −0.003 −0.001 0.000 0.000
a2 0.016 0.006 0.008 −0.009 −0.015 −0.001 0.001 0.001 0.000 0.000
b2 0.014 0.008 0.005 −0.002 −0.008 −0.004 −0.002 −0.001 0.000 0.000
a3 −0.001 −0.003 0.006 −0.005 −0.003 0.003 0.001 0.002 0.001 0.000
b3 0.014 0.006 −0.002 −0.005 −0.002 0.000 0.000 −0.001 0.000 0.000

https://www.mdpi.com/article/10.3390/atmos13122039/s1
https://www.mdpi.com/article/10.3390/atmos13122039/s1
https://www.ncdc.noaa.gov/data-acces
https://www.ncdc.noaa.gov/data-acces
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Table A1. Cont.

TPWV Range Coefficient
Height Layer

1 2 3 4 5 6 7 8 9 10

3

a0 0.410 0.324 0.222 0.131 0.072 0.039 0.022 0.012 0.007 0.004
a1 0.010 0.034 0.025 −0.005 −0.021 −0.018 −0.009 −0.005 −0.003 −0.002
b1 −0.009 0.007 0.011 0.003 −0.005 −0.007 −0.004 −0.002 0.000 0.000
a2 0.009 0.005 0.007 −0.009 −0.010 −0.001 0.000 0.001 0.001 0.001
b2 0.001 0.004 0.012 −0.002 −0.007 −0.004 −0.002 −0.001 0.000 0.000
a3 0.002 0.001 0.004 −0.004 −0.004 0.001 0.000 0.000 0.000 0.000
b3 0.003 −0.001 0.002 −0.005 −0.001 0.002 0.001 −0.001 −0.001 0.000

4

a0 0.384 0.309 0.221 0.138 0.076 0.043 0.025 0.015 0.008 0.004
a1 0.005 0.030 0.031 0.004 −0.019 −0.021 −0.013 −0.008 −0.004 −0.003
b1 −0.003 0.014 0.008 0.001 −0.007 −0.007 −0.004 −0.002 −0.001 0.000
a2 0.005 0.003 0.004 −0.004 −0.008 −0.002 0.001 0.001 0.001 0.001
b2 0.005 0.012 0.006 −0.005 −0.011 −0.004 −0.002 −0.001 0.000 0.000
a3 0.003 0.000 0.001 −0.001 −0.003 0.001 0.001 0.000 0.001 0.000
b3 0.006 0.006 0.000 −0.005 −0.005 0.000 0.001 0.000 0.000 0.000

5

a0 0.364 0.298 0.218 0.140 0.085 0.050 0.029 0.017 0.009 0.005
a1 0.003 0.028 0.028 0.006 −0.012 −0.018 −0.013 −0.009 −0.005 −0.003
b1 0.001 0.017 0.011 0.001 −0.009 −0.009 −0.006 −0.003 −0.001 −0.001
a2 0.001 0.000 0.004 −0.002 −0.004 −0.002 0.001 0.001 0.001 0.001
b2 0.006 0.011 0.005 −0.001 −0.010 −0.005 −0.001 0.000 0.000 0.000
a3 0.000 −0.004 −0.002 0.001 0.000 0.001 0.002 0.001 0.000 0.000
b3 0.004 0.004 0.000 −0.003 −0.005 0.001 0.001 0.001 0.000 0.000

6

a0 0.338 0.283 0.211 0.143 0.093 0.057 0.035 0.020 0.011 0.006
a1 −0.005 0.022 0.022 0.010 −0.002 −0.013 −0.013 −0.010 −0.007 −0.004
b1 0.004 0.016 0.009 0.000 −0.005 −0.009 −0.007 −0.004 −0.002 −0.001
a2 −0.007 −0.003 0.002 0.003 0.002 −0.001 −0.001 0.000 0.000 0.000
b2 0.004 0.010 0.006 −0.001 −0.006 −0.007 −0.003 −0.001 0.000 0.000
a3 −0.008 −0.010 −0.004 0.002 0.006 0.004 0.002 0.001 0.001 0.000
b3 0.004 0.002 0.000 −0.001 −0.003 −0.001 0.000 0.000 0.000 0.000
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