

Article Sol–Gel Synthesis of LiTiO₂ and LiBO₂ and Their CO₂ Capture Properties

Liang Li ^{1,2,*}, Haidi Yu ¹ and Yuqi Chen ^{2,3}

- ¹ School of Mechanical and Electrical Engineering, Nanyang Normal University, Nanyang 473061, China
- ² Department of Materials Science and Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
- ³ School of Materials Science and Engineering, Shanghai Dian Ji University, Shanghai 201306, China
 - Correspondence: liliangjdgc@nynu.edu.cn; Tel.: +86-037763513077

Abstract: LiTiO₂ was prepared from tetraethoxy titanium and lithium ethoxide by a sol–gel process and then treated at 773 K and 973 K under oxygen atmosphere, respectively. Compared with LiTiO₂ prepared at 973 K, LiTiO₂ prepared at 773 K has better CO₂ capture properties. XRD patterns of synthetic LiTiO₂ before and after CO₂ capture confirm that the intermediate product, Li_xTi_zO₂, is produced during CO₂ capture. CO₂ absorption degree of LiTiO₂ was determined to be 37% (293 K), 40.8% (333 K), 45.5% (373 K), and 50.1% (393 K) for 11.75 h, respectively. Repetitive CO₂ capture experiment indicates that LiTiO₂ has excellent cyclic regeneration behavior. The CO₂ absorption degree of LiTiO₂ increased with increasing CO₂ concentration. At a concentration of 0.05%, the absorption degree of LiTiO₂ had a stable value of 1% even after an absorption time of 1.4 h. LiBO₂ was fabricated by the similar sol–gel method and treated at 713 K. Mass percentage and specific surface area of synthesized LiBO₂ increased with the increasing absorption temperature. Evidently, the diffusion of the CO₂ molecule through the reaction product, which had a low activation energy of 15 kJ·mol⁻¹ and apparent specific surface value of 55.63 m²/g, determined the efficiency of the absorption reaction. Compared with the other sol–gel synthesized lithium-based oxides, LiTiO₂ possessed higher absorption capabilities and lower desorption temperature.

Keywords: LiTiO₂; LiBO₂; sol-gel synthesis; CO₂ capture; rate-determining process

1. Introduction

Solid ceramic absorbents, as one of the most utilized materials for carbon dioxide capture [1,2], have gained more and more attention for their highly cost-effective and energy efficient characteristics for CO₂ capturing and sequestration by chemical absorption [3,4]. High-performance absorbents required high selectivity and CO₂ absorption capacity, good absorption/desorption kinetics, and stable absorption capacity after repeated cycles. Solid ceramic absorbents include lithium-based ceramic sorbents and sodium-based ceramic sorbents. Sodium-based adsorbents have a high theoretical adsorption capacity and low cost, but have a lower reaction rate and adsorption capacity under actual operating conditions [5–7].

Lithium ceramic absorbents, such as Li_4SiO_4 [4,8–11], Li_2ZrO_3 [12–14], and Li_2MnO_3 [15], had displayed high CO₂ absorption capacity [16] and ultrafast carbon dioxide sorption kinetics [17]. The development of novel materials for CO₂ capture is one of the important themes in adsorption science [18]. It is meaningful to study CO₂ capture properties of LiTiO₂ and LiBO₂ for the prominent CO₂ absorbent materials because they can react with CO₂ reversibly. Compared with other CO₂ absorbers, another advantage for lithium ceramic absorbents is that different absorption thermodynamic equilibrium temperatures expand the CO₂ capture temperature range so these corresponding oxides can be applied for different temperatures [16].

 CO_2 absorption properties of those compounds were not only influenced by the constituents but also the synthesis methods [19]. Li₄SiO₄ has been prepared by one-step

Citation: Li, L.; Yu, H.; Chen, Y. Sol–Gel Synthesis of LiTiO₂ and LiBO₂ and Their CO₂ Capture Properties. *Atmosphere* **2022**, *13*, 1959. https://doi.org/10.3390/ atmos13121959

Academic Editors: Dimitra Karali, Panagiotis Grammelis and Panagiotis Boutikos

Received: 5 November 2022 Accepted: 21 November 2022 Published: 24 November 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). synthesis [20–22] or the sample rolling ball method [11,23]. LiTiO₂ has been synthesized by mechanochemical reactions between Li₂O, Ti, and TiO₂ by ball milling [24], the electrochemical insertion of Li⁺ into TiO₂ in a fused LiCl salt medium [25], the hydrothermal method [26], microwave heating of the mixture of Li₂CO₃ and TiO₂ [27] method, and so on. When compared to conventional techniques, sol–gel polymerization synthesis offers superior control over the production of fine powders of better purity at low temperatures and requires just basic tools and procedures [28].

In our former research, Li_2ZrO_3 and Li_2SiO_3 have been fabricated by sol-gel process [29,30]. CO₂ absorption degree of synthesized Li_2ZrO_3 was higher than that of solid-state synthesized Li_2ZrO_3 [29]. Therefore, sol-gel synthesized LiTiO₂ and LiBO₂ are speculated to exhibit similar CO₂ absorption characteristics of Li_2ZrO_3 [31]. However, synthesis of LiTiO₂ and LiBO₂ by a similar sol-gel process has little been reported.

In this study, LiTiO₂ and LiBO₂ powders were synthesized by the sol–gel process. The reversible reactions between LiTiO₂ and LiBO₂ and CO₂ are listed below. CO₂ absorption properties and cyclic behavior of LiTiO₂ were evaluated by dynamic and isothermal thermogravimetry analysis. CO₂ capture properties and the specific surface area of LiBO₂ were evaluated with chromatography and the BET method, respectively. Kinetic of CO₂ absorption/desorption processes of LiTiO₂ was analyzed with different kinetic equations. CO₂ capture properties of sol–gel synthesized lithium ceramic absorbents were compared and summarized.

$$2 \text{ LiTiO}_2 + \text{CO}_2 = \text{Li}_2 \text{CO}_3 + \text{Ti}_2 \text{O}_3 \tag{1}$$

$$2 \operatorname{LiBO}_2 + \operatorname{CO}_2 = \operatorname{Li}_2 \operatorname{CO}_3 + \operatorname{B}_2 \operatorname{O}_3 \tag{2}$$

2. Materials and Methods

2.1. Sol–Gel Synthesis Processes of LiTiO₂ and LiBO₂

The sol–gel synthesis processes of LiTiO₂ and LiBO₂ are described as follows. The preparation of sol was conducted under dry N₂ atmosphere because sol is extremely sensitive to moisture. Table 1 lists the starting material information and molar ratio for the synthesis of LiTiO₂ and LiBO₂. Firstly, Ti(OC₂H₅)₄ or B(i-OC₃H₇)₃ was dissolved by stirring in the mixture of (C₂H₄OH)₂O and a quarter of C₂H₅OH. Then, drop by drop, distilled water containing another quarter of C₂H₅OH was stirred into the aforementioned solution until it was clear. In another container, LiOC₂H₅ was incorporated in 50 percent of the C₂H₅OH solution by swirling. The molar ratio of Li:B was designed to be 3:2 in order to compensate for the loss of Li atoms during the preparation of the LiBO₂ solvate precursors. Finally, clear lithium precursor solution was slowly added to the titanium precursor solution. These solutions were mixed by stirring and then aged for 24 h at room temperature.

Reagent	Chemical Formula	LiTiO ₂	LiBO ₂
Tetra-ethoxytitanium	$Ti(OC_2H_5)_4$	1	_
Tri-isopropoxyboron	B(i-OC ₃ H ₇) ₃	-	2
Lithium ethoxide	LiOC ₂ H ₅	1	3
Ethanol	C ₂ H ₅ OH	200	50
Diethylene glycol	$(C_2H_4OH)_2O$	10	3
Distilled water	H ₂ O	5	6

Table 1. Raw material information and molar ratio for synthesis of LiTiO₂ and LiBO₂.

The gel was produced by vacuum curing the sol in a Petri plate at room temperature for 48 h. To hasten the breakdown of organic residues, the wet gel was heated to 773 K (or 973 K) for the preparation of LiTiO₂ and 713 K for the preparation of LiBO₂ with duration of 0.5 h under a flow of oxygen gas, respectively. The resultant powder was ground gently by an agate mortar to break the agglomerates. Lastly, the ground powder was heated to 623 K for an absorption time of 0.3 h under Ar atmosphere to remove the absorbent CO_2 during the synthesis process.

2.2. Characterization

The synthesized powders were characterized through the utilization of X-ray diffraction (XRD: Rint-Ultima+, Rigaku Corp., Tokyo, Japan) with monochromatic CuK α radiation. On a surface area analyzer (Autosorb-1, Quantachrome, Boynton Beach, FL, USA), the Brunauer–Emmett–Teller (BET) technique was used to measure the specific surface areas (SSA) of synthesized powders.

 CO_2 capture properties of LiTiO₂ and LiBO₂ were evaluated simultaneously by thermogravimetry and differential thermal analysis (TG-DTA2000S, MAC Science Co., Ltd., Kanagawa, Japan). To determine the CO₂ capture temperatures, the produced LiTiO₂ powder was heated from ambient temperature to 623 K continuously at 10 °C·min⁻¹ under 300 mL/min of dry CO₂ flowing. To understand the repetitive CO₂ absorption properties, the samples were heated to 388 K at a rate of 5 °C/min for 0.9 h under CO₂ atmosphere after heating at 623 K under Ar atmosphere and cooling to ambient. These steps were repeated five times.

Absorption degree is calculated by multiplying the proportion weight of LiTiO_2 or LiBO_2 added following absorbing by the percentage amount added to equate to 100% reaction completion of the reaction, as shown in Equations (1) and (2). The degree of absorption was calculated with the mathematical formula Equation (3):

$$R = (M_2 - M_1)/M_1 \alpha$$
 (3)

where *R* represents absorption degree (%); M_1 and M_2 are sample mass (mg) before and after CO₂ absorption, respectively. The factor α is a value of LiTiO₂/LiBO₂ mass required to absorb one mole of CO₂ divided by the molecular mass of CO₂. The estimated value of α is 0.253 for LiTiO₂ and 0.44 for LiBO₂.

To investigate the influence of CO_2 concentration on the absorption degree of LiTiO₂, the synthesized LiTiO₂ powder was heated to 388 K at a rate of 5 °C·min⁻¹ in a gas mixture of CO_2 and N₂ gas with a flowing rate of 300 mL/min. The mixture ratio of CO_2 was 0.05% (500 ppm, which is close to CO_2 concentration of the ambient atmosphere), 10%, 40%, and 100%, respectively. LiBO₂ was evaluated with the mixture gas of N₂ and CO₂ (volume ratio = 6:4) by the gas chromatography method to check the variation of CO_2 concentration with time. The sample was placed in the sample holder in the furnace and the mixture gas flowed into the furnace from the right (primary gas) and left side (secondary gas). The primary gas pressure was 0.1 MPa and gas flowing rate was 500 mL/min. The secondary gas flowing rate was 30 mL/min.

3. Results

3.1. Synthesis of LiTiO₂ and LiBO₂ Powders

Figure 1 depicts TG-DTA trends for the chemically synthesized products heated to 623 K in a CO₂ environment as the second heat treatment. The samples were prepared by heating the gel at 773 K (marked as LiTiO₂-A) and 973 K (marked as LiTiO₂-B), respectively. LiTiO₂-A and LiTiO₂-B showed similar TG behavior as the temperature increased. TG of LiTiO₂-A increased gradually with a temperature up to approximately 360 K and subsequently decreased immediately at 360–573 K. The remarkable rise and decline of mass of LiTiO₂-A corresponded to CO₂ absorption and desorption. Above 573 K, the value of mass loss transfer changed from positive to negative. The difference in the amount of CO₂ before absorption and after desorption can be attributed to the characteristics of the sol–gel synthesized powders. A carbonated phase is said to have formed when heat treatment breaks down any remaining organic materials in wet gels.

Figure 1. TG-DTA curves of sample prepared by heating the gel at 773 K (**a**) and 973 K (**b**) under CO₂ atmosphere.

DTA curve of LiTiO₂-A showed a strong endothermic peak at the beginning of the reaction, indicating CO₂ absorption, while LiTiO₂-B exhibited a relatively low endothermic DTA peak. At approximately 360 K, the mass loss of LiTiO₂-A reached its maximum of 0.9 mg, which is 4.5 times higher than that of LiTiO₂-B (0.2 mg at 330 K), revealing that LiTiO₂-A has better CO₂ capture property than that of LiTiO₂-B. For this reason, the gel was heated at 773 K in the subsequent experiment.

Figure 2 displays the TG-DTA profiles for the synthetic products heated to 650 K in an environment of Ar. The mass of LiTiO₂-A decreased at above 320 K, which was lower than that treated under CO₂ atmosphere (360 K), as shown in Figure 1a. Table 2 lists the weight losses of sample prepared by heating the gel at 773–973 K. This mass loss may potentially be related to CO₂ desorption, which results from the initial remaining organic component's dissociation. The decomposition temperature of carbonates decreases with the fall of CO₂ partial pressure under the Ar atmosphere. Both the TG and DTA curve also saturate to a constant at 630 K, and there is no further drop in mass beyond 623 K under the Ar atmosphere. Therefore, all the adsorbent CO₂ can be assumed to be released at 623 K. Hence, CO₂ capture properties were studied after heating the samples to 623 K under an Ar atmosphere.

Figure 2. TG-DTA curves of sample prepared by heating the gel at 773 K under Ar atmosphere.

Table 2. Weight losses of sample prepared by heating the gel at 773–973 K.

Temperature (K)	Atmosphere	Weight Losses (mg)
773	CO ₂	1.5
973	CO ₂	0.8
773	Ar	4.7

XRD patterns of synthetic LiTiO₂ before and after CO₂ absorption are shown in Figure 3. This sample reacted with CO₂ at 373 K for 11.75 h for the absorption degree of 43%, which will be discussed later in detail. Before CO₂ absorption, diffraction peaks corresponding to single LiTiO₂ have been confirmed in Figure 3a. During CO₂ adsorption, the intermediate product $Li_xTi_zO_2$ is generated (Figure 3b) and after five cycles of adsorption LiTiO₂ is re-formed (Figure 3c).

Figure 3. XRD patterns of synthetic LiTiO₂ before and after CO₂ absorption.

The SSA of LiTiO₂ before and after CO₂ absorption was found to be 55.63 and $61.56 \text{ m}^2 \cdot \text{g}^{-1}$, respectively. If we assume that the mass of LiTiO₂ is 188 g, the system theory volume can be calculated according to the density of LiTiO₂ ($3.15 \text{ g} \cdot \text{cm}^{-3}$). Similarly, the system volume after CO₂ absorption is calculated with the densities of LiCO₃ and Ti₂O₃ (2.11 and 4.49 g·cm⁻³, respectively). The system theory volume increased by 11% following with CO₂ absorption progress, indicating that SSA of LiTiO₂ should be enlarged during the CO₂ absorption process.

3.2. CO₂ Absorption Properties of LiTiO₂ and LiBO₂

Figure 4 shows the absorption curves of LiTiO₂ for an absorption time of 11.75 h obtained from TG. The temperature increased with a rate of 5 °C·min⁻¹ and then maintained at 293 K, 333 K, 373 K, and 393 K, respectively. As shown in Table 3, the absorption degree attained 37%, 40.8%, 45.5%, and 50.1% at the maintained temperature of 293 K, 333 K, 373 K, and 393 K, respectively. CO₂ absorption degrees of sol–gel synthesized Li₂ZrO₃ were also considered for comparison [29]. The CO₂ absorption degree of Li₂ZrO₃ only attained 17%, 20%, and 22% at the same conditions [29].

Figure 4. Comparison absorption degree of CO₂ between LiTiO₂.

Table 3. Absorption degree of LiTiO₂ at 293K–393 K for the absorption time of 2–11.75 h.

Temperature (K)	Abs. 2 (h)	Abs. 4 (h)	Abs. 8 (h)	Abs. 11.75 (h)
293	14.9	20.3	29.1	37.0
333	23.9	31.0	37.7	40.8
373	33.5	39.8	44.0	45.5
393	37.2	42.9	48.0	50.1

Repetitive CO_2 absorption degree of LiTiO₂ was obtained from TG analysis as shown in Figure 5. The repetitive CO_2 absorption degree decreased slightly every time with a mean drop of 0.5%. As shown in Table 4, the absorption degree of LiTiO₂ decreases with the increasing number of cycles. This result is similar with that of sol–gel synthesized Li₂ZrO₃ [29].

Figure 5. Repetitive cycles absorption on absorption degree of LiTiO₂.

Table 4. Absorption degree of LiTiO₂ for the repetitive cycles.

CO ₂ Absorption	Abs. 0.2 (h)	Abs. 0.6 (h)	Abs. 1.0 (h)	Abs. 0.14 (h)
First time	22.2	26.9	29.6	31.3
Second time	21.6	25.7	28.2	30.7
Third time	22.1	25.2	27.3	29.1
Fourth time	21.0	25.6	28.0	29.6
Fifth time	20.8	24.1	26.4	28.1

Figure 6 shows the influence of variation of CO_2 concentration on the absorption degree of LiTiO₂ at different temperatures. As shown in Table 5, the absorption degree

enlarges with the augmentation of CO_2 concentration. The absorption degree of LiTiO₂ is approximately 30% under pure CO_2 atmosphere. Moreover, the absorption degree of LiTiO₂ decreases from 25% to 23% as CO_2 concentration reduces from 40% to 10%. Finally, the absorption degree is a minuscule 1% even after an absorption time of 1.4 h at a CO_2 concentration of 0.05%.

Figure 6. Dependence of CO_2 concentrations on the absorption degree of LiTiO₂.

Table 5. Dependence of the concentrations of CO_2 in the atmosphere on the degree of absorption.

CO ₂ Absorption	Abs. 0.2 (h)	Abs. 0.6 (h)	Abs. 1.0 (h)	Abs. 0.14 (h)
500 ppm	2.4	1.3	0.9	0.9
10%	13.1	20.7	22.8	23.7
40%	18.6	24.0	25.8	26.4
100%	22.3	26.9	29.6	31.3

The mass percentage of synthetic LiBO₂ at 333–423 K is shown in Figure 7. As shown in Table 6, the mass percentage of synthetic LiBO₂ enlarged with the augment of CO₂ absorption temperature. LiBO₂ reacted with CO₂ with the extension of the absorption time. Higher explored temperatures improved the reaction activation energy and then increased the mass percentage of LiBO₂. The mass percentage of synthetic LiBO₂ at 393 and 423 K presents a second mass increment in the last part of these curves. Usually, similar behaviors have been associated with physical adsorption. Therefore, absorption of LiBO₂ is the mixture of both the physical adsorption and chemical absorption of CO₂. Table 7 lists the specific surface area and mass percentage of synthetic LiBO₂. Following the increasing absorption temperature, SSA of synthetic LiBO₂ obviously increased. SSA of synthetic LiBO₂ is larger than that of Li₂ZrO₃ (SSA value of 6.9 m²/g). Similar to LiBO₂, Li₃BO₃ exhibits exceptionally quick kinetics and a high ability to collect CO₂ [32].

Figure 7. Weight percentage of synthetic LiBO₂ at 333–423 K.

Temperature (K)	Abs. 6 (h)	Abs. 12 (h)	Abs. 18 (h)
333	2.8	3.7	4.5
363	4.1	5.5	5.8
393	4.0	5.8	7.9
423	5.0	6.6	8.5

Table 6. Mass increasing rate of LiBO₂ at 333–423 K for the absorption time of 6–18 h.

Table 7. Specific surface area and weight percentage of synthetic LiBO₂.

Temperature (K)	Weight Percentage (%)	SSA (m ² /g)
293	0	12.2
333	4.5	16.8
363	5.7	30.5

Figure 8 shows the evaluation of CO_2 absorption properties of LiBO₂ with the gas chromatography method. As the absorption time extended, CO_2 concentrations lessened firstly and then reached a saturation value at 363 K and 393 K. As shown in Table 8, higher absorption temperatures can shorten the absorption time for saturation, which is the same as the result of mass percentage (Figure 7). However, the variation of CO_2 concentration for the absorption at 363 K is larger than that for the absorption at 393 K because the equilibrium temperature of LiBO₂ is 333 K.

Figure 8. Evaluation of CO₂ absorption properties of LiBO₂ with gas chromatography method.

Table 8. Evaluation of CO₂ absorption properties of LiBO₂ with gas chromatography method.

Temperature (K)	Abs. 5 (h)	Abs. 10 (h)	Abs. 15 (h)	Abs. 20 (h)
363	39.8	39.5	39.3	39.2
393	39.3	39.0	38.8	39.0

3.3. Kinetic Calculation Analysis

The kinetic consecutive reaction model for CO_2 capture on lithium ceramic absorbents was connected with the CO_2 flow rate [33]. The conversion kinetics for the interaction combining LiTiO₂ and CO₂ are shown in Figure 9. This reaction mechanism for LiTiO₂ was similar to the reported model of high-temperature CO_2 capture on Li₂ZrO₃ [34,35]. The following rate equations were employed for analyzing the experimental data, as shown in Figure 4:

(1) equations generated from mobility modeling procedures where gas diffusion through the Li₂CO₃ and Ti₂O₃ layer is the rate-limiting phase, especially, the Yander formula [36], $Y_1 = (1 - (1 - R)^{1/3})^2 = kt$; and Gistling model [37], $Y_2 = 1 - 2\alpha/3 - (1 - \alpha)^{2/3} = kt$;

(2) equation for reactions in cylinder-shaped particles that are constrained by interfacial processes, $Y_1 = 1 - (1 - \alpha)^{1/2} = kt$; and $Y_2 = 1 - (1 - \alpha)^{1/3}$.

Figure 9. Plot of reaction kinetics and absorption time at 293 K (**a**), 333 K (**b**), 373 K (**c**), and 393 K (**d**) for data from Figure 4.

In Figure 9, data analysis shows that the highest correlation coefficient is achieved between 293 K and 393 K when the Yander equation [38] and Gistling equation [39] are fit. The formula of interactions restricted by contact processes just fits for the absorption at low temperature (293 K) and fails at high temperature due to the change of shape of the LiTiO₂ particle and the thickness of the product layer. These equations apply only for a sphere when the radius is very large as compared with the thickness of the product layer. An approximately linear dependence is found to a relatively high absorption degree. Therefore, the rate-determining step might be the gas diffusion in the Li_2CO_3 and Ti_2O_3 layer.

The Gistling equation is provided below [39]:

$$1 - 3(1 - R)^{2/3} + 2(1 - R) = (2MDC/\alpha\rho r_0^2) = k't$$
(4)

where *R* denotes the percentage of absorption, (%); *M* is the reactant's molecular mass, $(g \cdot mol^{-1})$; *D* is the intra-particle efficient diffusivity, $(cm^2 \cdot s^{-1})$; *C* stands for the reagent concentration; α means the stoichiometric ratio; ρ indicates the reactant density; r_0 is the reactant's initial particle diameter, (cm); *t* is the reaction time, (s); and *k*' is the rate parameter.

Accorded to Equation (4), the values of rate constant k' are calculated. Rate constant k' showed linear temperature dependence. The effective kinetic energy (ΔE) is determined from the values of the slope and is calculated as 15 kJ·mol⁻¹. This value is slightly smaller than that of sol–gel synthesized Li₂ZrO₃ (24 kJ·mol⁻¹ [40]). As a further comparison, the apparent activation energy of zeolite pores with the approximate diameter of 0.4 nm is approximately 20 kJ·mol⁻¹ during CO₂ diffusion through [41]. The rate-determining step of CO₂ capture in the instance of LiTiO₂ is likewise assumed to be its dispersion in the chemical process of diffusion.

3.4. Evaluation of CO₂ Capture Properties of Sol–Gel Prepared Lithium Ceramic Absorbents

Figure 10 shows a comparison of mass percentage of sol–gel synthesized lithium ceramic absorbents at 333K. Compared with other lithium ceramic absorbents, LiTiO₂ has the maximal mass percentage as shown in Table 9. It might be attributed to the larger specific surface area SSA (Table 3) and lower activation energy of sol–gel synthesized LiTiO₂. On comparison of the ambient temperature CO₂ absorption properties of LiTiO₂ and Li₂ZrO₃ powders [29] synthesized by the same sol–gel process, the absorption degree of LiTiO₂ was two times higher than that of Li₂ZrO₃. This difference should be attributed to the major difference in specific surface areas of 55.63 m²·g⁻¹ of LiTiO₂ as compared with 12.25 m²·g⁻¹ of Li₂ZrO₃, determined before CO₂ absorption.

Figure 10. Comparison of weight percentage of sol-gel synthesized lithium-based oxides at 333 K.

Temperature (K)	Abs. 2 (h)	Abs. 4 (h)	Abs. 8 (h)	Abs. 11.75 (h)
LiTiO ₂	6.1	7.9	9.7	10.5
Li ₂ ZrO ₃	2.1	3.3	4.8	6.0
Li ₂ SiO ₃ LiBO ₂	1.2 1.5	2.1 2.5	3.2 3.1	4.1 3.6

Table 9. Mass increasing rate of lithium-based oxides for the absorption time of 2–11.75 h.

Table 10 summarizes the CO₂ capture properties of lithium ceramic absorbents synthesized by the sol-gel method. These lithium ceramic absorbents, which have different CO₂ emission temperatures, can be employed at an altered temperature range. LiTiO₂ has the highest CO₂ absorptivity and largest mass percentage among these lithium ceramic absorbents due to its smallest activation energy. The equilibrium temperature of LiTiO₂ (393 K) is considerably lower than that of Li₂ZrO₃ (992 K), indicating that LiTiO₂ is easier to renew compared with Li₂ZrO₃; that is, LiTiO₂ is a more efficient CO₂ absorption material than Li₂ZrO₃. The sol-gel synthesized LiTiO₂ powders can be employed as a solid CO₂ sorbent at near-ambient temperatures.

Table 10. CO₂ capture properties of lithium-based oxides synthesized by sol–gel method.

Property	Li ₂ ZrO ₃ [29]	Li ₂ SiO ₃ [30]	Li_4SiO_4	LiTiO ₂	LiBO ₂
CO ₂ emission temp.(K)	923	593	643	393	333
CO ₂ absorptivity (%) room T	23	8	-	38	-
Weight percentage (%)	5	4	3	10	4
$SSA(m^2/g)$	6.9	40.6	3.1	55.6	12.2
SSA (m^2/g) (after absorption)	_	-	-	61.56	_
Activation energy (kJ/mol)	24	28	-	-	

4. Conclusions

The preparation process of LiTiO₂ and LiBO₂ by a sol–gel process was investigated. LiTiO₂ and LiBO₂ with a larger SSA were fabricated by this method. The variety of TG-DTA revealed that LiTiO₂ prepared at 773 K has better CO₂ capture property, especially at approximately room temperature. The reaction between LiTiO₂ and CO₂ is reversible with an equilibrium temperature of 500 K. LiTiO₂ showed excellent repeated cyclic absorption behavior for CO₂ absorption and desorption. The absorption degree of LiTiO₂ reached 50.1% at 393 K for 11.75 h. The repetitive CO₂ absorption degree experiment indicates that CO₂ absorption degree decreased slightly every time with a mean decrease of 0.5%. The absorption degree of LiTiO₂ lessened with the diminution of CO₂ concentration. At a CO₂ concentration of 0.05%, the LiTiO₂ showed a low CO₂ absorption degree but kept a stable absorption degree of 1% as time went on. Higher absorption temperature increased the mass percentage and specific surface area of synthetic LiBO₂. The absorption behavior could be well explained by an intra-particle diffusion mechanism. The rate-determining step is CO₂ diffusion through the Li₂CO₃ and Ti₂O₃ layer with activation energy of 15 kJ·mol⁻¹, which is slightly smaller than that of Li₂ZrO₃ prepared by the same sol–gel process.

Author Contributions: Formal analysis, L.L.; investigation, L.L. and Y.C.; data curation, L.L., H.Y. and Y.C.; writing—original draft preparation, L.L. and Y.C.; writing—review and editing, L.L. and Y.C.; supervision, L.L.; funding acquisition, L.L.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Henan, grant number 202300410296, and Scientific Research Foundation of Henan for Returned Scholars, grant number 208007.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: The authors express their thanks and gratitude to the deceased Shinji Hirai of the Muroran institute of technology, Japan, for providing experimental instruments and materials for this work.

Conflicts of Interest: The authors declare no conflict of interest. The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

References

- Yaumi, A.; Bakar, M.A.; Hameed, B. Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy 2017, 124, 461–480. [CrossRef]
- Supriya, N.; Rajeev, R. Synthesis and characterization of lithium silicates from organosilicone precursors for carbon dioxide adsorption. J. Therm. Anal. Calorim. 2020, 147, 135–143. [CrossRef]
- Deng, B.; Tang, J.; Mao, X.; Song, Y.; Zhu, H.; Xiao, W.; Wang, D. Kinetic and thermodynamic characterization of enhanced carbon dioxide absorption process with lithium oxide-containing ternary molten carbonate. *Environ. Sci. Technol.* 2016, 50, 10588–10595. [CrossRef]
- 4. Yin, Z.; Wang, K.; Zhao, P.; Tang, X. Enhanced CO₂ chemisorption properties of Li₄SO₄, using a water hydration–calcination technique. *Ind. Eng. Chem. Res.* **2016**, *55*, 1142–1146. [CrossRef]
- 5. Wu, Y.; Liu, W. Element doped sodium-based sorbents with high attrition resistance and CO₂ capture capacity during CO₂ sorption/desorption processes. *Fuel* **2021**, *285*, 119165. [CrossRef]
- Kar, S.; Goeppert, A.; Galvan, V.; Chowdhury, R.; Olah, J.; Prakash, G.S. A carbon-neutral CO₂ capture, conversion, and utilization cycle with low-temperature regeneration of sodium hydroxide. *J. Am. Chem. Soc.* 2018, 140, 16873–16876. [CrossRef] [PubMed]
- 7. Ji, G.; Yang, H.; Memon, M.Z.; Gao, Y.; Qu, B.; Fu, W.; Olguin, G.; Zhao, M.; Li, A. Recent advances on kinetics of carbon dioxide capture using solid sorbents at elevated temperatures. *Appl. Energy* **2020**, *267*, 114874. [CrossRef]
- Wang, K.; Li, W.; Yin, Z.; Zhou, Z.; Zhao, P. High-capacity Li₄SO₄-based CO₂ Sorbents via a facile hydration-NaCl doping technique. *Energy Fuels* 2017, 31, 6257–6265. [CrossRef]

- Takasu, H.; Ryu, J.; Kato, Y. Application of lithium orthosilicate for high-temperature thermochemical energy storage. *Appl. Energy* 2017, 193, 74–83. [CrossRef]
- Subha, P.; Nair, B.N.; Visakh, V.; Achu, R.; Shikhila, S.; Mohamed, A.P.; Yamaguchi, T.; Hareesh, U. Wet chemically derived Li₄SO₄ nanowires as efficient CO₂ sorbents at intermediate temperatures. *Chem. Eng. J.* 2021, 406, 126731. [CrossRef]
- 11. Sanna, A.; Thompson, S.; Zajac, J.; Whitty, K. Evaluation of palm-oil fly ash derived lithium silicate for CO₂ sorption under simulated gasification conditions. *J. CO2 Util.* **2022**, *56*, 101826. [CrossRef]
- 12. Alcántar-Vázquez, B.; Duan, Y.; Pfeiffer, H. CO oxidation and subsequent CO₂ chemisorption on alkaline zirconates: Li₂ZrO₃ and Na₂ZrO₃. *Ind. Eng. Chem. Res.* **2016**, *55*, 9880–9886. [CrossRef]
- Jo, H.G.; Yoon, H.J.; Lee, C.H.; Lee, K.B. Citrate sol–gel method for the preparation of sodium zirconate for high-temperature CO₂ sorption. *Ind. Eng. Chem. Res.* 2016, *55*, 3833–3839. [CrossRef]
- 14. Orsetti, N.G.; Gamba, M.; Gómez, S.; Gaviria, J.P.Y.; Suarez, G. The transcendental role of lithium zirconates in the development of modern energy technologies. *Ceram. Int.* 2022, *48*, 8930–8959. [CrossRef]
- Hernández-Fontes, C.; Pfeiffer, H. Unraveling the CO and CO₂ reactivity on Li₂MnO₃: Sorption and catalytic analyses. *Chem. Eng. J.* 2022, 428, 131998. [CrossRef]
- Kumar, S.; Saxena, S.K. A comparative study of CO₂ sorption properties for different oxides. *Mater. Renew. Sustain. Energy* 2014, 3, 30. [CrossRef]
- 17. Nambo, A.; He, J.; Nguyen, T.Q.; Atla, V.; Druffel, T.L.; Sunkara, M.K. Ultrafast carbon dioxide sorption kinetics using lithium silicate nanowires. *Nano Lett.* **2017**, *17*, 3327–3333. [CrossRef]
- D'Alessandro, D.M.; Smit, B.; Long, J.R. Carbon dioxide capture: Prospects for new materials. *Angew. Chem. Int. Ed.* 2010, 49, 6058–6082. [CrossRef]
- Hu, Y.; Fu, R.; Liu, W.; Yao, D.; Yan, S. Lithium-based ceramics in nonsilicates for CO₂ capture: Current status and new trends. J. Mater. Chem. A 2022, 10, 1706–1725. [CrossRef]
- Stefanelli, E.; Vitolo, S.; Puccini, M. Single-step fabrication of templated Li₄SiO₄-based pellets for CO₂ capture at high temperature. *J. Environ. Chem. Eng.* 2022, *10*, 108389. [CrossRef]
- Hu, Y.; Fu, R.; Yu, G.; Cao, J.; Huang, J. Scalable synthesis of Li₄SiO₄ sorbent from novel low-cost orthoclase mineral for CO₂ capture. *Fuel* 2022, 324, 124492. [CrossRef]
- 22. Fu, R.; Yu, G.; Cheng, J.; Hu, Y.; Yan, S. One-step synthesis of porous Li₄SiO₄ pellets by polyvinyl alcohol (PVA) method for CO₂ capture. *Fuel* **2023**, *331*, 125873. [CrossRef]
- Tan, G.; Hu, X.; Wang, C.; Cai, L.; Song, S.; Nong, Y.; Wang, Q.; Ren, Y.; Yang, X.; Zhang, Y. High efficiency CO₂ sorption property of Li₄SiO₄ sorbent pebbles via a simple rolling ball method. *Sep. Purif. Technol.* 2022, 298, 121662. [CrossRef]
- Obrovac, M.N.; Mao, O.; Dahn, J.R. Structure and electrochemistry of LiMO₂ (M= Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis. *Solid State Ion.* 1998, 112, 9–19. [CrossRef]
- Jiang, K.; Hu, X.; Sun, H.; Wang, D.; Jin, X.; Ren, Y.; Chen, G.Z. Electrochemical synthesis of LiTiO₂ and LiTi₂O₄ in molten LiCl. *Chem. Mater.* 2004, 16, 4324–4329. [CrossRef]
- Zhang, D.R.; Liu, H.L.; Jin, R.H.; Zhang, N.Z.; Liu, Y.X.; Kang, Y.S. Synthesis and characterization of nanocrystalline LiTiO₂ using a one-step hydrothermal method. *J. Ind. Eng. Chem.* 2007, 13, 92–96.
- 27. Yang, L.H.; Dong, C.; Guo, J. Hybrid microwave synthesis and characterization of the compounds in the Li–Ti–O system. *J. Power Sources* **2008**, 175, 575–580. [CrossRef]
- Yoldas, B.E. Technological significance of sol-gel process and process-induced variations in sol-gel materials and coatings. J. Sol-Gel Sci. Technol. 1993, 1, 65–77. [CrossRef]
- 29. Wang, F.; Yoshimura, Y.; Hirai, S.; Kuzuya, T. CO₂ absorption/release properties of lithium zirconate powder prepared by the sol-gel process. *Resour. Processes* **2011**, *58*, 108–113. [CrossRef]
- 30. Wang, F.; Wakou, S.; Hirai, S.; Kuzuya, T.; Li, T. CO₂ absorption/release properties of lithium silicate (Li₂SiO₃) powders prepared by the sol-gel process. *Appl. Mech. Mater.* **2014**, *675*, 7–14.
- Deptuła, A.; Olczak, T.; Łada, W.; Sartowska, B.; Chmielewski, A.G.; Alvani, C.; Carconi, P.L.; Di Bartolomeo, A.; Pierdominici, F.; Casadio, S. Inorganic sol-gel preparation of medium sized microparticles of Li₂TiO₃ from TiCl₄ as tritium breeding material for fusion reactors. *J. Sol-Gel Sci. Technol.* 2003, 26, 207–212. [CrossRef]
- 32. Villa-Pérez, C.; Larochette, P.A.; Soria, D.B.; Gennari, F.C. Thermodynamic and kinetic properties of Li₃BO₃ modified by the alkali fluorides addition in the CO₂ capture process. *Chem. Eng. J.* **2022**, *450*, 138118. [CrossRef]
- 33. Mendoza-Nieto, J.A.; Martínez-Hernández, H.; Pfeiffer, H.; Gómez-García, J.F. A new kinetic model for CO₂ capture on sodium zirconate (Na₂ZrO₃): An analysis under different flow rates. *J. CO2 Util.* **2022**, *56*, 101862. [CrossRef]
- Ida, J.-i.; Lin, Y. Mechanism of high-temperature CO₂ sorption on lithium zirconate. *Environ. Sci. Technol.* 2003, 37, 1999–2004. [CrossRef]
- Guo, X.; Ding, L.; Ren, J.; Yang, H. Preparation and CO₂ capture properties of nanocrystalline Li₂ZrO₃ via an epoxide-mediated sol-gel process. J. Sol-Gel Sci. Technol. 2016, 3, 844–849. [CrossRef]
- 36. Zagorowsky, G.; Prikhod'ko, G.; Ogenko, V.; Koval'chuk, G. Investigation of kinetics of solid-phase synthesis of lithium orthosilicate. J. Therm. Anal. Calorim. 1999, 55, 699–705. [CrossRef]

- Mohammed, H.I.; Garba, K.; Ahmed, S.I.; Abubakar, L.G. Thermodynamics and kinetics of Doum (Hyphaene thebaica) shell using thermogravimetric analysis: A study on pyrolysis pathway to produce bioenergy. *Renew. Energy* 2022, 200, 1275–1285. [CrossRef]
- Kuznetsova, S.A.e.; Khalipova, O.g.S.; Lisitsa, K.V.; Ditts, A.A.; Malchik, A.G.e.; Kozik, V.V.e. Synthesis of nanostructured composite materials of MoO₃/TiO₂-SiO₂ with spherical shape prepared with resins. *Nanosyst. Phys. Chem. Math.* 2021, 12, 232–245. [CrossRef]
- 39. Karelin, V.A.; Voroshilov, F.A.; Strashko, A.N.; Sazonov, A.V.; Karelina, N.V. Fluorination of rutile, electrochemical reduction of titanium fluoride to titanium, and its separation from the electrolyte salts melt. *J. Chem. Technol. Metall.* **2020**, *55*, 1111–1119.
- 40. Wang, K.; Guo, X.; Zhao, P.; Wang, F.; Zheng, C. High temperature capture of CO₂ on lithium-based sorbents from rice husk ash. *J. Hazard. Mater.* **2011**, *189*, 301–307. [CrossRef] [PubMed]
- Ida, J.i.; Xiong, R.; Lin, Y.S. Synthesis and CO₂ sorption properties of pure and modified lithium zirconate. *Sep. Purif. Technol.* 2004, *36*, 41–51. [CrossRef]