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Abstract: High urbanization and a consequent change in land cover can lead to a deterioration
in air quality and generate impacts on public health. The objective of this paper is to provide a
multitemporal analysis of the influence of particulate matter ≤ 10 µm (PM10) on human mortality
from the land cover variation in a Latin American megacity. Six monitoring stations (monitoring
daily PM10 concentration, increases in daily mortality (IDM), and land cover) were established
throughout the megacity. The results suggest that for every 10% increase in vegetation cover, the
daily PM10 concentration and IDM decreases by 7.5 µg/m3 and 0.34%, respectively. Moreover, it is
evident that the monitoring station with the lowest vegetation cover (8.96 times) shows an increase
of 1.56 times and 4.8 times in the daily PM10 concentration and IDM, respectively, compared with
the monitoring station with the highest vegetation cover (46.7%). It is also suggested that for each
increase of 100 inhabitants/hectare in population density, the daily PM10 concentration and IDM
increases by 9.99 µg/m3 and 0.45%, respectively. Finally, the population densification of the megacity
possibly implies a loss of vegetation cover and contributes to the increase in PM10 and IDM.

Keywords: Bogotá D.C.; human mortality; multitemporal analysis; land cover; particulate matter;
public health

1. Introduction

Air pollution is a global problem that can generate negative environmental effects and
harm human health [1–3]. According to the World Health Organization (WHO), the rate of
mortality attributable to urban air pollution in Latin America and the Caribbean is seven
deaths per 100,000 inhabitants, with exposure to particulate matter ≤ 10 µm (PM10) being
one of the main influencing factors [4]. Indeed, most pollutants come from anthropogenic
sources, such as emissions from vehicles and industrial processes [5]. Air pollution is
also associated with urbanization and rapid economic development [6]. In urban areas
that measure air pollution levels, WHO identified that more than 80% of inhabitants were
exposed to concentrations that exceeded their guideline values [5].

Changes in land use and, consequently, changes in surface cover are often associated
with urban expansion. This expansion leads to the loss of ecosystems and the decline of
green areas and impacts the environmental conditions of cities [7]. Land cover is then
conditioned by urbanization, which is a process that alters the size, structure, and growth
of cities in response to population explosion and leads to lasting challenges in air quality
control [8]. Thus, in the study megacity (Bogotá D.C., Colombia), high urbanization
may be associated with a deterioration in air quality and impacts on public health [9,10].
Epidemiological studies have identified that urban air pollution by PM2.5 was associated
with increased risks of human morbidity and mortality [11]. The PM pollution varies in time
and space and is dominated by differences in geographic conditions, such as topography,
meteorology, land use, urbanization, and industrialization [2]. In the context of urban and
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environmental studies, it was demonstrated that PM2.5 pollution was strongly related to
the pattern of microscale land cover change, and it was also suggested that optimizing
this pattern could contribute to air pollution mitigation [12,13]. Therefore, analyzing the
dynamics of PM10 and PM2.5 pollution in relation to land cover and its impact on human
health will facilitate a deeper understanding of the air quality problem, framed in the
interaction between human activities and urban environment.

The temporal association of air pollution with human health has been evaluated
in numerous studies (e.g., [14,15]). Epidemiological studies suggested that short-term
exposure to air pollution was associated with increased mortality from respiratory and
cardiovascular diseases [16,17]. Correlations have also been identified with the increase
in the rates of visits to emergency departments for respiratory and cardiovascular issues,
and with the number of hospitalizations [18]. In Bogotá D.C., it was estimated that PM2.5
contributed to more than 10% of deaths [9]. The PM10 impacts on public health also
generated economic and social costs that were mainly attributed to premature deaths,
higher health care expenditures, and productivity losses [19]. A study developed by
Aguiar-Gil et al. [20] in the metropolitan area of Aburra Valley (Colombia) reported the
following cases of deaths in adults that were attributable to PM2.5 pollution: 1971 cases from
all causes (95% CI: 1363–2559); 194 cases from lung cancer (95% CI: 92–284); and 932 cases
from ischemic heart disease (95% CI: 791–1064). These authors also reported that in the
case of implementing 100% of the measures to prevent and control emissions from motor
vehicles by 2030, as defined in the city’s air quality plan, 55.7% of adult deaths attributable
to PM2.5 could be avoided. Rodríguez-Villamizar et al. [18] also reported, when considering
respiratory and circulatory diseases in five cities in Colombia, that adverse effects were
statistically more significant in models with zero days of delay in exposure. This suggested
that the negative impacts on human health of air pollutant mixtures were more significant
in the short term. These researchers reported that mixtures of traffic-related air pollutants
(NO2 + CO + PM10) had a greater combined effect on human morbidity related to the
circulatory and respiratory systems.

Urban growth was associated with air pollution because of its dynamics of densifying
cities [21]. To describe the relationship between land use and the air pollution level, for
example, regression models have been developed in European, American, and Asian cities.
In a study conducted in Shanghai (China), the following factors were identified as having
significant explanatory value for a PM2.5 pollution model: residential area, distance to
coast, industrial area, urban district, and road density (R2 = 0.88) [12]. Indeed, the detected
factors in each case were associated with different types of predominant land cover. In
Shanxi Province (China), a geographically weighted regression model was also developed,
in which the researchers identified that the decreasing order in PM2.5 concentration for the
different land covers considered was as follows: land with constructions (buildings and
roads) > unused land > water bodies > cropland > grasslands > forests [7].

The main objective of this paper is to provide a multitemporal analysis of the influence
of PM10 on human mortality from the land cover variation in Bogotá D.C. Six monitor-
ing stations were established throughout the megacity. The multitemporal analysis was
performed during the period from 2008 to 2018. The time scales of this study’s analysis
were hourly, daily, and monthly. In the context of urban air pollution, this study provides
increased knowledge in relation to the following aspects: (1) the temporal behavior of daily
PM10 in Bogotá D.C.;(2) the impact of daily PM10 on urban public health (e.g., the increase
in human mortality); and (3) the relationship between urban land cover and PM10 pollution.
Finally, PM10 was used as a size fraction indicative of the increase in daily mortality (IDM)
according to land cover, because in Bogotá D.C. the time series of PM2.5 concentrations
were short and scarce. Indeed, this did not allow a detailed spatiotemporal analysis for
PM2.5 in the context of this study.
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2. Materials and Methods
2.1. Study Site

Six stations were established to monitor background PM10 concentrations, which
were distributed throughout the megacity. The area of influence considered for each
monitoring station, based on its physical location, covered a radius of 1600 m (Figure 1).
The selected monitoring stations were identified as follows: Centro de Alto Rendimiento
(CAR), Kennedy (KEN), Guaymaral (GUA), Suba (SUB), Tunal (TUN), and Usaquén (USQ).
These monitoring stations were in five locations of the megacity (Barrios Unidos, Kennedy,
Suba, Tunjuelito, and Usaquén). In the megacity, the population of approximately 8 million
inhabitants was concentrated, and increased to more than 10 million with the inclusion of
its metropolitan area. The megacity was established as the main geographical, political,
industrial, economic, and cultural center of Colombia [22]. Bogotá D.C. is located near the
Equator. Thus, there are no seasons such as those observed at higher latitudes. The climate
of the study sites was tropical mountain, with wide hourly variations in temperature
(between 7.2 ◦C and 19 ◦C). On average, the inventory of PM10 emissions showed the
following contributions for 2018: mobile sources = 7.62%, fixed sources = 1.06%, natural
and forest sources = 0.11%, and resuspended particulate matter = 91.2% [23]. Table 1 shows
the main characteristics of the study areas that were established.
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Table 1. Physical characteristics of the location areas of the established monitoring stations.

Characteristics
Station CAR KEN GUA SUB TUN USQ

Coordinates 4◦39′30.5′′ N
74◦5′2.28′′ W

4◦37′30.2′′ N
74◦9′40.8′′ W

4◦47′1.52′′ N
74◦2′39.1′′ W

4◦45′40.5′′ N
74◦ 5′36.5′′ W

4◦34′34.4′′ N
74◦7′51.4′′ W

4◦42′37.3′′ N
74◦1′49.5′′ W

Elevation (masl) 2577 2580 2580 2571 2589 2570

Annual mean PM10 (µg/m3) 28 50 28 46 38 39

Annual mean rainfall (mm) 932 1280 796 454 544 905

Hourly mean temperature (◦C) S/R a 15.2 14.5 14.4 S/R a S/R a

Mean wind speed (m/s) 1.19 2.30 1.00 1.39 1.19 1.60

Locality Barrios Unidos Kennedy Suba Suba Tunjuelito Usaquén

Land classification Urban Urban Urban/Rural Urban/Rural Urban Urban/Rural

Urban land use b AUI/CS/D/I/
R/SP

AUI/CS/D/I/
R/SP

AAC/AUI/
CS/D/I/R/SP

AAC/AUI/
CS/D/I/R/SP

AUI/CS/D/I/
R/SP

AAC/AUI/CS/
D/R/SP

Rural land use c N/A N/A SAP/ME/AC SAP/ME/AC N/A SAP/SE

Population density
(inhabitants/ha) 112 265 115 115 173 82.2

Population/locality 133,126 1,019,748 1,152,387 1,152,387 171,632 535,693

Area/locality (ha) 1189 3855 10,048 10,048 990 6514

Note: a S/R = no registration. b AAC = central activity area, AUI = integral urban area, CS = commerce and services,
D = endowment, I = industrial, R = residential, and SP = protected land. c AC = high capacity, ME = special
handling, N/A = not applicable, SAP = protected area system, and SE = expansion land.

2.2. Information Collection

The information collected on PM10 corresponded to hourly values between 1 January
2008, and 31 December 2018. The information was obtained from six monitoring stations
that measured background concentrations. In other words, the established stations were
characterized by not being influenced by pollution sources, such as vehicular traffic and
industries. The equipment for the measurement of PM10 concentration operated under
the guidelines established in Title 40 of the Code of Federal Regulations of the U.S. Envi-
ronmental Protection Agency (U.S. EPA) [24]. These devices operated using the beta ray
attenuation method. The precision of the equipment used was as follows: ±5 µg/m3 for
concentrations below 80 µg/m3 and 7% for concentrations above 80 µg/m3 (Appendix J:
Part 50, Title 40 of the CFR) [24].

The IDM was calculated from the results of the study conducted by Blanco et al. [4] for
PM10 in Bogotá D.C. Those researchers performed a time series analysis from 1998 to 2006
to study the association between daily mortality and acute PM10 exposure. On average,
the results of that study indicated that the percentage change in mortality risk for all ages
and causes was 0.57% (95% CI: 0.25–0.89%, minimum = 0.08%, and maximum = 1.06%) for
each 10 µg/m3 increase in PM10 concentration during the same day of exposure. This was
according to the international classification of diseases established by WHO [25]. Other
studies (e.g., [10]) also used the findings of Blanco et al. [4] to facilitate the inclusion in their
analyses of the daily mortality risk due to PM10 exposure.

The land cover was determined using high-resolution Quickbird satellite images
(spatial resolution = 2.50 m) between 2008 and 2018, which were freely downloaded from
Google Earth Pro V.7.3 software. Information on the different types of land cover was
collected during the study period; then, data were averaged for each monitoring station
(radius = 1600 m). It was assumed that there were no significant changes in land cover of
the megacity during the study period. On average, vegetation, impermeable, water bodies,
and bare land covers changed by −0.49%, 6.07%, −0.03%, and −3.04%, respectively. Land
cover was identified using supervised classification, applying the maximum likelihood
method, and employing ArcGIS Desktop V.10.4.1. software [26]. In this study, the following
types of urban land covers were considered [7,27]: (i) vegetation (trees, grasslands, and
crops), (ii) impermeable (buildings and roads), (iii) bare land (uncovered land and quarries),
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and (iv) water bodies (rivers, lakes, and wetlands). Finally, the urban population density
reported by the Planning Secretariat of Bogotá D.C. was considered [28].

2.3. Information Analysis

The information analysis considered four phases. In the first phase, information on
PM10 concentrations at each of the established monitoring stations was analyzed. A time
series of hourly PM10 concentrations was generated at each station, which had a percentage
of valid information greater than 75% [29]. From frequency histograms, it was confirmed
that the data showed a positive asymmetry coefficient, and through a Kolmogorov–Smirnov
test [30], the non-normal distribution of the data series was confirmed (p-value < 0.001).
The correlation of data between monitoring stations was analyzed using Spearman’s
coefficient (rs) [31]. A Tukey test determined the upper and lower limits in the time series
of PM10 concentrations to detect the occurrence of outliers [32]. These outliers were then
removed from the time series. The missing data in the time series were completed using
the normal value ratio method, which enabled the estimation of a missing value when
there were support stations that showed a similar temporal behavior as that observed at the
study station [33]. Thus, combinations of three support stations that showed a Spearman
correlation coefficient greater than 0.50 in relation to the station to be completed were
used to complete each item of the missing data [34]. Moreover, daily PM10 concentrations
(moving average for 24 h) were calculated to compare them with the limits established
by the Colombian guideline (Resolution 2254 of 2017) [35] and with those established
by the WHO Air Quality Guide [25]. In this study, the results were also analyzed under
hourly, daily, and monthly time scales. This information was spatially represented in the
megacity using Kriging’s geostatistical interpolation method [36] and ArcGIS Desktop
V.10.4.1 software.

In the second phase, IDM was analyzed. The IDM for all ages and causes in the
megacity under study was calculated. For this purpose, each item of daily PM10 con-
centration data was subtracted by 50 µg/m3 (the lower limit of calculation), because the
total mortality increased from this reference value in response to prolonged exposure to
daily PM10. This was according to a meta-analysis conducted by WHO [25]. The resulting
negative data were adjusted to 0.0 µg/m3. Subsequently, IDM was calculated from the rate
reported by Blanco et al. [4] for the city of Bogotá D.C., where for each 10 µg/m3 increase
in daily PM10, the IDM increased 0.57% (linear model). In this study, in calculating the
IDM, it was not assumed that an increase in population was associated with an increase
in PM10 concentration. Indeed, PM10 concentrations were measured directly, over time
(between 2008 and 2018), from the established monitoring stations. The results obtained
were analyzed under the daily and monthly time scales. This information was spatially
analyzed in the megacity applying the Kriging’s geostatistical interpolation method [36]
and using ArcGIS Desktop V.10.4.1 software.

In the third phase, land cover information was analyzed. Buffer zones were established
based on the physical location of each of the six selected monitoring stations (Figure 1). The
radii of influence considered were the following [27]: 50 m, 100 m, 200 m, 400 m, 800 m,
and 1600 m. In each of the areas of influence of the monitoring stations, the increase or
decrease (%) in the land cover considered was evaluated [37].

In the fourth phase, a multitemporal analysis was carried out between 2008 and 2018
based on the results obtained in the previous phases. Initially, the multitemporal behavior
(hourly, daily, and monthly) of PM10 concentrations was analyzed, and the concentrations
were compared with respect to the limits established by the Colombian (Resolution 2254 of
2017) [35] and WHO [25] guidelines. The spatial behavior of PM10 concentrations during
the months identified as those of highest risk (February, average PM10 = 59.8 µg/m3) and
lowest risk (July, average PM10 = 41 µg/m3) was analyzed, based on the maps generated in
the previous phases, using the Kriging’s geostatistical interpolation method [36]. Next, the
daily influence of PM10 concentrations on mortality was analyzed through a multitemporal
analysis of IDM for all causes and ages. The spatial behavior of IDM in the megacity
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was also analyzed. Finally, the land cover variation in the different areas of influence
was studied using linear regression models [38]. Specifically, the correlation between the
following variables was analyzed: (i) vegetation cover and daily PM10 concentrations, and
(ii) population density and daily PM10 concentrations.

3. Results and Discussion
3.1. Spatiotemporal Analysis of PM10

The results showed that the hourly PM10 concentrations began to increase at 4:00 h,
and at 8:00 h, the hourly concentration peak was observed. From this time, concentrations
decreased to 12:00 h. Then, concentrations were relatively stable until 22:00 h, where a
decrease in concentrations was observed again (Figure 2a). Similar results were obtained
by Franceschi et al. [39], who reported that the hourly concentration peaks in the studied
megacity were observed between 6:00 and 9:00 h. On average, the highest concentrations
were observed at 8:00 h (67.8 µg/m3) and the lowest concentrations were observed at 4:00 h
(31.7 µg/m3). The maximum hourly PM10 concentrations were 1.83 times higher than the
lowest hourly concentrations observed. Nevertheless, there were comparatively extreme
trends among the study stations that were established. For example, it was observed that
during peak hour (8:00 h), the GUA station showed an average PM10 concentration of
49.7 µg/m3 and at the KEN station this concentration was 107.4 µg/m3 (2.16 times higher).
The KEN station was the one that showed the highest daily concentrations during the study
period (average = 70.8 µg/m3). In contrast, the CAR station was the one that showed the
lowest daily PM10 concentrations during the study period (average = 34.6 µg/m3).

The above findings suggested that PM10 pollution peaks were possibly associated
with the displacement of the inhabitants from their workplaces (via motor vehicles). This
work displacement occurred between 5:00–9:00 h, according to the 2015 Mobility Survey
conducted by the megacity [40]. A correlation analysis detected very strong associations be-
tween the number of work trips and hourly PM10 concentrations (rs = 0.904; p-value < 0.05).
The previous analysis considered a two-hour delay for observed hourly PM10 concentra-
tions. In this study, it was visualized that at 6:00 h the peak of work trips occurred in the
megacity (642,369 trips), and two hours later (8:00 h), the PM10 concentration peak was
observed (Figure 3). From the development of a linear regression model, it was detected
that, on average, for every 100,000 trips there was an increase in the hourly PM10 concentra-
tion of 4.0 µg/m3. This was under the scenario of a two-hour delay (y = 4 × 10−5x + 42.3;
x = number of hourly trips, y = hourly PM10 in µg/m3; R2 = 0.817). The previous analysis
considered all observed hourly information. Considering only the information between 1:00
and 12:00 h, the time in which the concentration peaks were observed, a better correlation
between these two variables was found (rs = 0.986; p-value < 0.05). In other words, for every
100,000 trips, the hourly PM10 concentration increased by 5.0 µg/m3 (y = 5 × 10−5x + 38.7;
R2 = 0.973). Ramirez et al. [41] reported that motor vehicle-related emissions (combustion
and resuspended PM) were the main PM10 source (≈50%) in the megacity. Finally, two
additional peaks in the number of work trips (12:00 h and 17:00 h) were observed, which
were not associated with increases in hourly PM10 concentrations. This PM10 trend could
be associated with the hourly variation of the mixing–layer height. Studies have been
carried out in the megacity that reported mixing–layer heights between 722 m and 1085 m
during the hourly PM10 concentration peaks (8:00 h). Conversely, between 12:00 h and
17:00 h, these studies reported mixing–layer heights greater than 2500 m [10]. Therefore,
the mixing–layer height possibly conditioned the PM10 dispersion.
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Figure 3. Behavior of the hourly PM10 concentration in relation to the hourly amount of motor vehicle
trips in Bogotá D.C.

The results showed that daily PM10 concentrations varied slightly during the first days of
the week. However, comparatively greater variations were observed over the weekend. Average
daily PM10 concentrations showed an increase from Monday to Wednesday (average = 23.4%),
while from Wednesday to Saturday the increase was lower (average = 0.749%). Next, concentra-
tions decreased from Saturday to Monday (average = 19.6%) (Figure 2b). This weekly behav-
ior was possibly associated with the working-time model established in Bogotá D.C. [42].
During the week, the interval of greatest work intensity was reported from Wednesday to
Saturday (average PM10 = 49.6 µg/m3) and the interval of least work intensity was from
Sunday to Tuesday (average PM10 = 43.8 µg/m3). In relation to compliance with the limit es-
tablished by the Colombian guideline (Resolution 2254 of 2017) [35], on average, all stations
complied. This is because they recorded daily PM10 concentrations < 75 µg/m3, except
in the KEN station, which from Thursday (75.3 µg/m3) to Friday (75.5 µg/m3) exceeded
the established Colombian limit. In relation to the WHO guideline value for daily PM10
(50 µg/m3), the KEN station exceeded this value, on average, every day (60.4–75.5 µg/m3).
The SUB (52–54.1 µg/m3) and TUN (50–53 µg/m3) stations also exceeded the WHO
guideline value from Tuesday to Saturday. According to the observed concentrations that
exceeded the WHO limit, the KEN station was the most critical during all days of the week
(excess = 41.5%), followed by the SUB (excess = 7.88%, Tuesday to Saturday), and TUN
(excess = 5.32%, Tuesday to Saturday) monitoring stations.

The monthly behavior of PM10 concentrations was similar in each of the established monitor-
ing stations. The most critical interval was from January to March (average PM10= 57.7 µg/m3)
and the least critical interval was from June to August (average PM10 = 42.6 µg/m3) (Figure 2c).
The most critical month was February (average = 59.8 µg/m3) and the least critical month was
July (average = 41 µg/m3). The results showed that PM10 concentrations were 1.35 times
higher in February than those observed in July. This behavior could be influenced by the
weather conditions of the megacity. On average, in the most critical interval, low rainfall
(68.2 mm) and wind speeds (1.73 m/s) were observed. These climatic conditions were
associated with the frequent occurrence of thermal inversion episodes, which prevented the
development of upward air currents that dispersed air pollutants [43]. In the less critical
interval, higher wind speeds (1.97 m/s) were observed, which probably facilitated the
dispersion of air pollutants emitted from the megacity. Different studies also reported
the negative correlation between wind speed and PM10 concentrations (e.g., [2,44]). This
study was no exception. Monthly, a medium-to-strong negative correlation between wind
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speed and PM10 concentration was detected (rs = −0.667; p-value < 0.05). For each 1.0 m/s
increase in wind speed, the PM10 concentration decreased by 54.2 µg/m3 (y = −34.2x + 107;
x = wind speed in m/s, and y = monthly PM10 concentration in µg/m3; R2 = 0.445).

Monthly, the findings showed that PM10 concentrations in all monitoring stations
complied with the limit established by the Colombian guideline, except for the KEN sta-
tion (average = 81.5 µg/m3), during the most critical interval (January to March). The
WHO guideline value was only complied with by the GUA, CAR, and USQ stations.
The SUB and TUN stations only complied with the WHO guideline value during the
least critical interval (June to August) and in May. Finally, the KEN station did not show
monthly PM10 concentrations lower than the guideline value established by WHO. Ac-
cording to the information observed for monthly PM10 concentrations, it was possible
to classify the monitoring stations according to their pollution degree, as follows: high
pollution = KEN (59.6–75.5 µg/m3), medium pollution = TUN and SUB (43.6–59.6 µg/m3),
and low pollution = CAR, GUA, and USQ (27.7–43.6 µg/m3).

The spatial variation of PM10 concentrations had a similar behavior, both in the
most critical month (Figure 4a) and in the least critical month (Figure 4b). It was evi-
dent that the area of the megacity with the highest concentrations was the southwest
(71.6 µg/m3 in February and 40.2 µg/m3 in July). Medium concentrations were observed
in the northwestern and southern areas of the megacity (58 µg/m3 in February and
32.1 µg/m3 in July; 60.3 µg/m3 in February and 34.3 µg/m3 in July, respectively). Low
concentrations were observed in the north (51.2 µg/m3 in February and 30.1 µg/m3 in
July) and central (51.5 µg/m3 in February and 31.7 µg/m3 in July) areas. It was estab-
lished that the Colombian guideline was complied with throughout the megacity during
July, while in February the concentrations exceeded this limit in the southwestern zone
(average exceedance = 6.67%; area = 4499 ha). In relation to the WHO guideline value,
during July this limit was exceeded in the KEN station in the southwest (average ex-
cess = 10%; area = 734 ha). However, in February, only a part of the north–central zone
(area = 15,516 ha) showed concentrations lower than the WHO guideline value. On av-
erage, the southwestern zone showed PM10 concentrations that were 1.36 times higher
than those observed in the northern zone. This spatial behavior could be due, on the one
hand, to the fact that the removal of this pollutant by wind action was not so efficient in the
southwestern and southern areas of the megacity. On the other hand, in these areas there
were covers of bare land, where the wind could resuspend the dust deposited on the urban
surface. This possibly contributed to the increase in observed PM10 concentrations [45].
Moreover, as these areas are highly densified, an increase in PM10 could be generated due
to the concentration of pollution sources and the possible reduction in wind speed due to
the physical barriers constituted by the buildings [46].

3.2. Spatiotemporal Variation of IDM

The IDM analysis for all ages and causes during the same day of PM10 exposure
showed that the most critical interval was Wednesday to Saturday (average IDM = 0.505%;
see Figure 5a). Indeed, this was possibly because the highest PM10 concentrations were
observed from Wednesday to Saturday (Figure 2b). The least critical interval was from Sun-
day to Tuesday (average IDM = 0.322%). On average, the results suggested that during the
most critical interval, the IDM was 1.57 times higher than it was in the least critical interval.
The findings also hinted that during the most critical interval, it would be advisable to
implement strategies that limit exposure to PM10, especially for the most vulnerable popu-
lation (i.e., children, pregnant women, and the elderly), to reduce the negative impacts that
PM10 generated on human health, mainly those people with respiratory and cardiovascular
issues [47–49].
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Considering the limit established by WHO for daily PM10, the results showed that
during the entire study period (11 years), 37.9% of the time this limit was exceeded. For
4.17 years, the daily PM10 concentrations were greater than 50 µg/m3. On average, it was
also detected by a linear regression model that for every 10% increase in exceeding the
limit established by WHO, the IDM increased by 0.15% (y = 0.015x − 0.154; x = percentage
of daily PM10 data > 50 µg/m3, and y = IDM in percentage; R2 = 0.972). For the moni-
toring station associated with the highest PM10 concentrations, a higher determination
coefficient was evidenced in the linear regression model that was developed. At this mon-
itoring station, for every 10% increase in exceeding limits, the IDM increased by 0.315%
(y = 0.032x − 1.13; R2 = 0.981). In relation to PM and its effects on global human health, for
example, it has been estimated that the loads attributable to PM2.5 pollution for ischemic
heart disease, cardiovascular disease, lung cancer, lower respiratory tract infection, and
mortality from chronic obstructive pulmonary disease were 17.1%, 14.2%, 16.5%, 24.7%,
and 27.1%, respectively [47].

Monthly, IDM for all causes and ages showed, on average, the highest values during
the interval from January to March (0.697%). Indeed, this monthly interval was the most
critical in relation to observed PM10 concentrations (Figure 2c). In contrast, the interval
from June to August was the least critical in relation to IDM (0.181%). These results were
consistent with that reported by the District Environment Secretary of Bogotá D.C., which
confirmed, that during 2018, 57% of acute respiratory infection (ARI) deaths in children
under 5 years of age occurred during the first semester [23]. Indeed, the largest number of
cases possibly occurred between January and March (the most critical interval). During
2011 and 2014, it was also observed that the highest number of people treated for ARI
occurred during the first five months of the year. Subsequently, this number of visits
decreased, as did PM10 concentrations [50]. The results suggested that the increase in these
cases was related to the increase in IDM during the most critical interval, which was 3.86
times higher than the IDM during the least critical interval.

The findings showed that climatic variables possibly influenced the observed PM10
concentrations and, consequently, the temporal behavior of IDM. On average, the most
critical month was February (IDM = 0.768%), and during this month thermal inversion
phenomena were observed more frequently in Bogotá D.C., [50]. This relationship was also
studied by Trinh et al. [51], who reported a direct correlation between the frequency of
thermal inversions and the number of cases treated in hospitals for respiratory (r = 0.452;
p-value < 0.05) and cardiovascular (r = 0.798; p-value < 0.05) diseases. These two types of
diseases were commonly associated with urban air pollution. The results also suggested
that the average IDM during the most critical month (February) was 5.42 times higher than
the average IDM during the least critical month (July, average IDM = 0.142%; Figure 5b).
This analysis was performed with respect to the same day of exposure (delay = 0 days).

The spatial behavior of IDM in the megacity during the most critical month (February)
and the least critical month (July) was characterized by lower values in the eastern zone,
which were increasing toward the western zone and reached the highest values in the
southwestern zone (Figure 6). Thus, the areas of the megacity were classified as follows,
according to the values of IDM: (i) low IDM = northern zone (0.105% in July and 0.403%
in February), central zone (0.151% in July and 0.451% in February), and northwest zone
(0.148% in July and 0.704% in February); (ii) medium IDM = southern zone (0.274% in July
and 0.862% in February); (iii) high IDM = southwestern zone (0.336% in July and 1.42% in
February). These results were consistent with the number of mortality cases from ARI in
children under 5 years of age, as reported for 2018, where the highest number of cases was
reported in the localities of Kennedy, Usme, and Ciudad Bolívar. This was in the southwest
part of Bogotá D.C. [23]. Considering that the northern zone of the megacity was the one
that showed the lowest IDM values and the southwestern zone showed the highest, it
was detected that IDM in the southwestern zone was 3.36 times higher than IDM in the
northern zone. Therefore, the results suggested a significant spatial variation in IDM in
Bogotá D.C.
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3.3. Relationship between Land Cover, PM10, and IDM

With respect to daily PM10 concentration levels, monitoring stations were classified
according to their degree of air pollution as follows: (i) low pollution (GUA, USQ, and
CAR), (ii) medium pollution (SUB and TUN), and high pollution (KEN). The results
showed that the degree of pollution at each monitoring station was possibly associated with
vegetation cover (radius of influence = 1600 m; Table 2). On average, the vegetation cover
percentage observed at each monitoring station was as follows: GUA = 61.1%, USQ = 46.7%,
SUB = 38.4%, CAR = 29.4%, TUN = 15.3%, and KEN = 5.21% (Figure 7a,b). Using linear
regression models, the possible relationship between the vegetation cover percentage and
the daily PM10 concentration during the most critical month (February) was analyzed.
The IDM was also considered in this analysis. The findings showed that the relationships
between the variables considered were better with an 800 m radius of influence rather than
1600 m. Thus, the results hinted that for every 10% increase in vegetation cover, the daily
PM10 concentration tended to decrease by 7.5 µg/m3 (y = −0.74x + 84.7; x = vegetation
cover in percentage, y = daily PM10 in µg/m3; R2 = 0.690; r = 0.831). In addition, IDM
tended to decrease by 0.34% (y = −0.03x + 2.0; x = vegetation cover in percentage; y = IDM
in percentage; R2 = 0.693; r = 0.832) (Figure 8a,b). Other studies also reported that with the
increase in vegetation cover, there was a decrease in PM10 concentration [52]. Indeed, some
studies reported that urban forests had positive effects on air quality and public health [53].



Atmosphere 2022, 13, 1949 13 of 19

Table 2. Types of land cover associated with each monitoring station.

Station Radius (m)

Land Cover (%)

Impermeable Vegetation Water Bodies Bare Land

2008 a 2018 2008 2018 2008 2018 2008 2018

CAR
800 46.9 63.5 50.8 34.4 2.28 2.18 0.00 0.00

1600 63.3 74.1 34.7 24.1 2.00 1.76 0.00 0.00

KEN
800 87.3 90.5 9.6 10.4 0.58 0.60 2.48 0.49

1600 91.7 95.7 6.4 4.02 0.14 0.16 1.71 0.13

GUA
800 18.6 44.8 64.2 48.4 0.22 0.20 16.9 6.70

1600 20.1 39.3 59.7 62.5 0.33 0.13 19.9 8.97

SUB
800 46.1 48.7 46.1 41.1 0.10 0.32 7.65 9.83

1600 53.8 60.4 40.9 35.9 0.14 0.2 5.14 3.6

TUN
800 78.9 87.1 9.27 17.53 0.00 0.00 11.9 3.59

1600 80.3 83.3 12.7 17.9 0.04 0.20 6.92 2.73

USQ
800 61.4 55.8 38.6 44.2 0.00 0.00 0.00 0.00

1600 56.3 49.1 43.2 50.2 0.53 0.57 0.00 0.00

Note: a = year of study.

The results showed that when the radius of influence increased (between 800 and
1600 m), for the analysis of the different types of land cover, the tendency was for there to
be a significant increase in impermeable cover in the established monitoring stations. Thus,
the land covers of water bodies and bare land represented only between 0% and 2.18%
and 0% and 9.83%, respectively (Table 2). This trend suggested an inverse relationship
between vegetation and impermeable covers in Bogotá D.C. This behavior also confirmed
the high urbanization in the megacity. In addition, the results showed that two of the
monitoring stations were opposite in their vegetation cover percentage (radius = 1600 m).
The vegetation cover percentage at the USQ station was 46.7% and at the KEN station, it
was 5.21% (Figure 7a,b). This difference in vegetation cover also confirmed changes in
the degree of PM10 pollution and IDM. The KEN station had 8.96 times less vegetation
cover than the USQ station, which made its daily PM10 concentrations and IDM 1.56 and
4.80 times higher, respectively. Therefore, the results suggested that elevated values of
impermeable land cover (KEN = 93.7%) were associated with high PM10 concentrations
and, consequently, with high IDM values. Salata et al. [54] reported that on impermeable
surfaces, there was a rebound phenomenon (resuspension) of PM, which significantly
increased air pollution in urban areas. Conversely, an adsorption phenomenon was reported
on vegetated surfaces, where vegetation acted as a pollution sink by intercepting and
facilitating the PM10 deposition on it [55,56].
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Additionally, the results showed that the KEN station was associated with a population
density between 301 inhabitants and 700 inhabitants per hectare (impermeable cover
area = 93.7%; radius = 1600 m; see Figure 7c). In contrast, the USQ station was associated
in 49.7% and 39.4% of its area, respectively, with a population density between 51 to
100 and 151 to 200 inhabitants per hectare, respectively (vegetation cover area = 46.7%;
radius = 1600 m; see Figure 7d). Indeed, impervious coverage was directly associated with
population density. The findings suggested that the higher the population density in the
megacity, the higher the daily PM10 concentration and, consequently, the higher the IDM. To
study the association between these variables, linear regression models were developed for
each of the radii of influence considered in this study (between 50–1600 m) and for the most
critical month (February). The results indicated that the best fit in the models was observed
for an 800 m radius of influence (R2 > 0.690; Figure 8). Moreover, it was observed that, on
average, for each increase of 100 inhabitants per hectare in population density, daily PM10
concentrations tended to increase by 9.99 µg/m3 (y = 0.099x + 39; x = population density
in inhabitants/ha, y = daily PM10 in µg/m3; R2 = 0.965; see Figure 8a). In addition, IDM
increased by 0.45% (y = 0.005x − 0.13; x = population density in inhabitants/ha, y = IDM
in percentage; R2 = 0.986; Figure 8b). Therefore, the results hinted that the densification of
the megacity involved the loss of vegetation cover and possibly contributed to the increase
in daily PM10 concentrations (Figure 8c,d). In other words, it is necessary to address
the air quality problem in Bogotá D.C. through the development of public health and
environmental policies, considering the spatiotemporal variation of PM10 concentrations,
land cover, and IDM.

4. Conclusions

The results of this study of the influence of PM10 on human mortality from the
variation of land cover in a Latin American megacity allowed us to reach the follow-
ing conclusions. The results suggest that maximum hourly PM10 concentrations (8:00 h,
average = 67.8 µg/m3) are associated with the displacement of inhabitants from their work-
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places. On average, it was observed that for every 100,000 trips, there was probably an
increase of 4.0 µg/m3 in hourly PM10 concentration (delay = 2 h). The busiest time interval
in the megacity was Wednesday through Saturday, and the stations KEN, SUB, and TUN
tended to exceed WHO guidelines during this time interval. The most critical monthly
interval in air pollution was from January to March (average PM10 = 57.7 µg/m3) and
the least critical monthly interval was from June to August (average PM10 = 42.6 µg/m3).
Indeed, during these monthly intervals, there was possibly a medium-to-strong negative
correlation between PM10 concentration and wind speed (r = −0.667). Spatially, a sectoriza-
tion in the air pollution degree of the megacity was possibly observed. The southwestern
sector showed, on average, daily PM10 concentrations that were 1.36 times higher than
those in the northern sector. In addition, IDM at all ages and causes during the same
day of PM10 exposure suggested that the most critical weekly interval was Wednesday
through Saturday (average IDM = 0.505%). This was consistent with the weekly interval
that showed the highest daily PM10 concentrations. The most critical weekly interval
showed an IDM 1.57 that was times higher than that of the least critical weekly interval
(Sunday–Tuesday). Monthly, the most critical time interval was from January to March
(average IDM = 0.697%). During this monthly interval, the highest number of morbidity
and mortality cases from ARI were reported. The spatial behavior of IDM again suggested
a sectorization of the megacity. Thus, the southwest sector, which has the highest risk of air
pollution, showed an IDM of up to 1.42% during the study period. In this sector, 41.2% of
the mortality cases due to ARI were reported.

Additionally, the findings suggested an association between PM10 concentration,
IMD, and land cover. In other words, the results hinted that, on average, for every 10%
increase in urban vegetation cover, the daily PM10 concentration and IDM decreased by
7.5 µg/m3 and 0.34%, respectively. In this study, it was evident that the monitoring station
with the lowest vegetation cover (8.96 times less) showed increases of 1.56 times and
4.8 times in the daily PM10 concentration and IMD, respectively. This was compared to the
monitoring station with the highest vegetation cover (46.7%). Moreover, for every increase
of 100 inhabitants/ha in population density, the daily PM10 concentration and the IDM
increased by 9.99 µg/m3 and 0.45%, respectively. Indeed, the population densification of
the megacity possibly implied the loss of vegetation cover and contributed to the increases
in PM10 and IMD. Therefore, it was essential to address the air pollution problem in Bogotá
D.C. through the development of public health and environmental policies, considering
the spatiotemporal variation of PM10 concentrations, land cover, and IDM.

Finally, the following future research lines are visualized: (1) including in the IMD
analysis the influence of PM2.5. This was not possible in this study because in Bogotá D.C.,
this air pollutant only recently began to be monitored (short time series); (2) in simple
linear regression models developed for IDM and PM10 concentrations, adding variables
to improve fit. For example, it is necessary to analyze the inclusion of additional climate
or anthropic (e.g., population density) variables in multiple regression models to improve
their adjustment; (3) simulating future changes in land cover to analyze consequences on
PM10 and PM2.5 concentrations and IDM.
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