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Abstract: Air pollution is still one of the biggest environmental threats to human health on a global
scale. In urban environments, exposure to air pollution is largely influenced by the activity patterns of
the population as well as by the high spatial and temporal variability in air pollutant concentrations.
Over the last years, several studies have attempted to better characterize the spatial variations in air
pollutant concentrations within a city by deploying dense, fixed as well as mobile, low-cost sensor
networks and more recently opportunistic sampling and by improving the spatial resolution of air
quality models up to a few meters. The purpose of this work has been to investigate the use of
properly designed mobile monitoring campaigns along the streets of an urban neighborhood to assess
the capability of an operational air dispersion model as SIRANE at the district scale to capture the
local variability of pollutant concentrations. To this end, an IoT ecosystem—MONICA (an Italian
acronym for Cooperative Air Quality Monitoring), developed by ENEA, has been used for mobile
measurements of CO and NO2 concentration in the urban area of the City of Portici (Naples, Southern
Italy). By comparing the mean concentrations of CO and NO2 pollutants measured by MONICA
devices and those simulated by SIRANE along the urban streets, the former appeared to exceed the
simulated ones by a factor of 3 and 2 for CO and NO2, respectively. Furthermore, for each pollutant,
this factor is higher within the street canyons than in open roads. However, the mobile and simulated
mean concentration profiles largely adapt, although the simulated profiles appear smoother than the
mobile ones. These results can be explained by the uncertainty in the estimation of vehicle emissions
in SIRANE as well as the different temporal resolution of measurements of MONICA able to capture
local high concentrations.

Keywords: urban air quality; AQ mobile monitoring; spatial-temporal air pollutant variation;
MONICA; SIRANE

1. Introduction

Air pollution is considered the most important source of risk for the environmental
quality at European level. According to the EEA report on air quality in Europe in 2022,
most of the European urban population is exposed to dangerous levels of air pollutants,
although the COVID-19 lockdown measures implemented in 2020 have led to a non-
negligible reduction of air pollutants emissions. As an example, it is estimated that 89% of
the urban population is exposed to levels of NO2 above the threshold value established by
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the 2021 WHO guidelines, even if in France, Italy, and Spain, NO2 annual mean levels fell
by as much as 25% in large cities and 17% in rural areas [1,2].

The main source of NO2 is road transport, which emits NO2 close to the ground,
mostly in densely populated areas, contributing to population exposure. Other important
sources are industrial combustion processes, and, generally, energy supply systems.

Urban population exposure to air pollution is influenced by human activities, and it
is subject to a high spatial and temporal variability, related to the variability of pollutant
concentrations on a small scale [3–5]. Such a variability is mainly due to the differences in
traffic density, street topology (e.g., street canyons), and source localization. Indeed, close
to busy streets and intersections in built-up areas, traffic emissions are more important, and
natural ventilation is reduced by the local topography. It is therefore important to capture
and quantify the existing differences in any urban areas mapping air quality at high spatial
resolution and quantify pollutants concentration levels.

Traditional central monitoring stations, sparsely distributed within urban environment,
may not always accurately characterize the spatial variability in the surrounding area and
may be not representative of the whole city [6].

Over the last years, several studies have attempted to better characterize the spatial
variations in air pollutant concentrations within a city, using fixed low-cost sensor networks
as well as mobile and more recently opportunistic sampling systems [7], and have attempted
to improve the spatial resolution of air quality models up to a few meters [8–10]. With the
increasing availability of low-cost sensors, though their data quality is still debated [11],
the deployment of stationary low-cost sensor networks at high spatial density has become
more feasible.

One primary application of such networks within the cities is to supplement regulatory
monitoring networks providing the lacking informative content for high resolution air
quality mapping. Regarding this application, an important question is where these stations
should be deployed. Fattoruso et al. [7] have addressed this issue by developing a spatially
explicit methodology able to allocate optimal sites for stationary low-cost multi-sensor
stations across a city for a spatially dense monitoring of air quality.

Another application of low-cost sensor networks across a city is to develop and
validate atmospheric pollutant dispersion models [12,13]. Traditionally, the performance of
regional models, operating with a spatial resolution on the order of 10 km, is evaluated
by comparing simulation results with reference network measurements. However, using
atmospheric dispersion models at a spatial resolution up to a few hundred meters (see
for example SIRANE [14] and ADMS-Urban models [15]), a larger number of sampling
locations are required to evaluate their performance. Thus, distributed low-cost sensors
networks can be used as well as mobile monitoring to quantify pollutant spatial variations
at fine (sub km) length scales and better address the model uncertainties.

It is known that mobile low-cost sensors can acquire air pollution data at a high
spatial-temporal resolution [16,17], though the representativeness of their measurements
is still investigated, because of the mobile nature of the measurements and the high tem-
poral variability of the urban air pollution. To date, there are few studies available in
literature on the use of mobile monitoring systems for high resolution urban air quality
assessment [18–20].

Van den Bossche et al. [18] investigated the use of large experimental datasets of
mobile air quality measurements for capturing the high spatial-temporal variability of
urban air pollution. They concluded that a careful set-up of mobile monitoring campaigns
is needed with a sufficient number of repetitions in relation to the desired reliability
(e.g., at least 8 runs for generating pollutant concentrations maps at a 50 m spatial resolution
with an uncertainty of 5%). This approach can provide insight into the spatial variability
that it is not possible to assess with stationary monitors.

They also investigated the potential of unstructured opportunistic campaigns and
concluded that there is still a rather large uncertainty on the average concentration levels
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at spatial resolution of 50 m due to sampling bias. Despite this uncertainty, large spatial
patterns within the city are clearly captured [20].

The objective of this research work has been to investigate the use of mobile mon-
itoring campaigns, properly designed, along the streets of a densely populated urban
neighborhood, in order to evaluate the ability of an operational air dispersion model as
SIRANE at district scale of capturing the local variability of pollutant concentrations. At
this aim, a mobile IoT ecosystem—MONICA (an Italian acronym for Cooperative Air
Quality Monitoring), developed by ENEA [21], including multiple low-cost air quality
monitoring systems interconnected through different telecommunication infrastructure,
has been used for monitoring the concentrations of the air pollutants NO2 and CO along
the streets of the City of Portici (Southern Italy). Thus, these mobile measurements have
been compared with the estimated air pollutants concentrations at street scale, performed
by SIRANE software.

The City of Portici has been chosen because of its high population density and its
complex urban canopy layer composed of numerous street canyons that promote the
accumulation of traffic-induced pollution, due to their lack of natural ventilation.

In the following paragraphs, the material and methods are firstly described. Then, the
results estimated and measured by SIRANE and MONICA are described and discussed.
Finally, the conclusions of the study are reported.

2. Materials and Methods
2.1. The Case Study

The study has been carried out in the City of Portici. Portici lies at the feet of a volcano
(i.s. Mount Vesuvius), faces the Gulf of Naples, and is bordered by three densely populated
cities (Figure 1). The city counts 56,000 habitants and occupies an area of 4.54 km2 with a
population density of 13,000 inhabitants/km2. Because of the absence of any significant
industrial activity, air pollution is almost exclusive attributed to urban mobility.
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Figure 1. Map of the City of Portici. The map includes: the weather station (by ENEA RC Portici) and
the regulatory air quality monitoring station located in the city (both represented in red stars); the
area study (represented in the yellow area) and the urban street network classified as street canyon
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Air quality in the city of Portici is monitored by a single monitoring station main-
tained by the Regional Agency of Environmental Protection (ARPAC). This is a background
monitoring station, located within a park (Figure 1), at about 80 m on the sea level. The
height of the sampling point is at about 3.5 m from the ground. The measurement equip-
ment and operating methods meet the standards established by the European Community
(2008/50/CE). From the meteorological point of view, the city is characterized by a breeze
regime, as almost all coastal towns are. Prevailing winds are mainly from S to SW during
spring and summer, and mainly from N to NE during autumn and winter. The most
frequent classes of wind velocity are the 1–2 m/s [7].

For our research, a pivotal neighborhood of the city has been considered, crossed by
the road network of the city center. The network consists of four main urban roads—Via
Libertà, Via Da Vinci, Via Diaz, and Corso Garibaldi (Figure 2). The latter, along with
Via Libertà, are the roads which sustain most of inbound/outbound traffic from/to the
city area.
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Figure 2. Map of the selected neighborhood of the City of Portici including footprint of the buildings
with their height, the monitoring route—Via Libertà (yellow line), Via da Vinci (blue line), Via Diaz
(green line), Corso Garibaldi (red line) —and the locations of the traffic vehicular campaigns.

The urban canopy layer (the layer of air extending from the ground surface up to
the level of the buildings) of the selected neighborhood is composed of numerous street
canyons, which are narrow urban roads, flanked by a continuous row of high buildings on
both sides. These street canyons promote the accumulation of traffic-induced pollution,
due to their lack of natural ventilation, so that, along these roads, the human exposure to
air pollution is higher. It is also known that the street levels of pollution can vary widely
between canyons, due to the meteorological conditions, to the difference in emissions, and
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to the variation in the street canyon morphology (e.g., the ratio between building height
[H] and width [W]).

Identifying the street canyon effects across an urban area can help to understand the
spatial variability of pollutant concentrations that can be captured by using air dispersion
models at district scale as SIRANE as well as a pervasive monitoring [7].

For our scope, using the 3D urban model of the City of Portici, including buildings
and vegetation, performed by the authors in a previous research work [7], the geometric
attributes (i.e., width and length) of the selected urban roads and the buildings’ height along
these roads have been derived and the spatial layer of street canyons has been generated.
This layer (Figure 1) classifies every selected urban road as a street canyon if the ratio
W/H ≤ 3 and, otherwise, is an open road. Figure 1 shows that the four roads selected are
street canyons for almost their entire length. It has to be noted that in a street canyon, the
pollutant concentrations increase near the ground due to the phenomena of recirculation
that lead to pollutants stagnation. Thus, the spatial variability in (local) concentrations can
be captured by the mobile device MONICA, used in this research. MONICA can be easily
carried in the hand or in a backpack of any citizen, eventually involved in (opportunistic)
mobile monitoring campaigns, during walk along the city streets [22,23].

2.2. Mobile Monitoring Campaigns

MONICA (Cooperative Air Quality Monitoring multi-sensor platform) [21], has been
set up with fixed time slots and a fixed route of about 2.5 km, including the streets of Via
Libertà, Via Da Vinci, Via Diaz, and Corso Garibaldi (Figure 2), during two working days
in June (5, 21 June 2019). Considering that school activity, in an urban area, significantly
contributes to the urban vehicular traffic during the morning rush hours, two working days
in June have been selected. The first one was selected when the schools were still open,
and the second one was selected during the summer holidays, i.e., when the vehicular
traffic was essentially caused by the human activities other than those related to schools
(e.g., working, leisure, sportive, in-home maintenance activities).

The sensing platform MONICA used for mobile monitoring is a low-cost air quality
monitoring portable multisensory device. With a volume footprint of (15 × 15 × 5 cm3),
it hosts an array of solid-state sensors which include three Electrochemical sensors (Al-
phasense B4 class CO, NO2, O3 targeted sensors) along with their analog front end. Sensor
data are gathered through a uC based board (Nucleo LK432KC) whose firmware is respon-
sible for continuous acquisition of raw data and its transmission through BLE interface.
Usually interfaced with the user smartphone, MONICA platform exploits an Android
APP calibrating raw data and extracting concentration estimations through AI (Artificial
Intelligence) components, previously trained with field calibration campaigns [21]. The
APP also provides immediate feedback to the user bearing the device. This Android app
has been developed and designed to provide local and immediate feedback to the user,
exploiting the above-mentioned, on-board AI driven calibration components. Estimated
concentrations for the target gases are numerically reported to the concerned user along
with a colorimetric index for holistic air quality assessment. The latter is based on Euro-
pean AQI structure (EAQI), and compares the estimated concentrations with threshold
values derived from the current regulative framework, i.e., the 2008 European Air Quality
Directive. Concentrations of single target gases are also reported using a similar color
scale which highlight their influence on the holistic index. In this way, the user can obtain
immediate feedback in terms of recommendations linked to the EAQI while being capable
to identify at a glance which pollutant is responsible for Air Quality degradation in case of
harsh conditions.

One of the main concerns when using low-cost, solid-state, sensor-based Air Quality
Multisensor systems is the quality and accuracy of the data. In terms of data coverage, due
to the reliability of the BT connectivity and the smartphone centered solution, the MONICA
devices have shown their capability to exceed 99% data delivery. In terms of accuracy, since
MONICA nodes are based on electrochemical devices, they are subject to environmental
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influences and to cross interference by non-target gases which elicit an unwanted response
on their electrodes. In particular, the employed Alphasense NO2 sensor is subject to limited
but significant influence of high O3 concentrations. To reduce the impact of these interfer-
ences, nodes were calibrated using state of the art methodology, ensuring the best available
accuracy for this class of sensors which is field-calibrated by colocation with regulatory
grade analyzers. The calibration law is a multilinear regression including both NO2 and O3
sensors’ raw responses (Working and Auxiliary electrodes voltage) as regressors along with
temperature readings, so to correct for their influence on multisensory device concentration
estimations. The colocation period has been performed in similar environmental conditions
in the same city so to provide for minimum performance degradation due to concept drift
effects [21]. With this information, the best accuracy setup for the proposed experiments
can be ensured. Short-term accuracy figures of the devices are highlighted in [21].

The gathered estimations along with raw data are transmitted to a backend/frontend
IoT device management platform which takes care of storage and data presentation tasks.
Battery operated (3.7 V 3800 mA), it can sustain more than 20 h of continuous monitoring
before a recharge is needed, being thus compatible with the smartphone companion use
case. A recent version has been equipped with an Optical Particle Counter (Plantower
PMS7003) for PM sensing duties [22,23].

The monitoring campaign has consisted of 6 runs (Figure 3), repeated at two different
days and different times on one day. During a run, two passages have been made by each
location taking 1 h. A passage denotes the completion of the entire route once. The entire
monitoring campaign has collected 6 h of point measurements along the selected route. This
sampling schema has been designed to make comparable concentration measurements with
concentration estimations by the SIRANE model. In fact, this latter estimates hourly average
values of the air pollution concentrations along street segments properly characterized
according to their geometry and that of the surrounding buildings.

Each run started at the city square of San Ciro (SQ in Figure 2) continued along
Via Libertà, turning to Via da Vinci and then to Corso Garibaldi until reaching the city
square. The runs have covered the rush hours in the morning (from 9 a.m. to 10 a.m.), at
the lunchtime (from 1 p.m. to 2 p.m.), and in the evening (from 5 p.m. to 6 p.m.). The
concentrations of CO and NO2 have been measured walking along the route at 1/6 Hz
time resolution and at about 1m in height from the street level.

The monitoring campaigns have been designed to guarantee an appropriate temporal
and spatial coverage and to address the research questions.

2.3. Traffic Vehicular Campaigns

During mobile monitoring campaigns, vehicular traffic has been monitored in five
strategic locations: in San Ciro Square (SQ) and at the four road junctions along the
monitoring route. These latter are the road junction of via Garibaldi and via Gianturco (C1),
the road junction of Via Diaz and Via Garibaldi (C2), the road junction of Via Diaz and Via
da Vinci (C3), and the road junction of Via Libertà and Via Da Vinci (C4) (Figure 2).

By using hand-held cameras, the number of vehicles travelling for the crossroads has
been monitored during the first and the last 10 min of each rush hour in the two days of
mobile monitoring campaigns. Processing point data collected on one hour, the average
number of vehicles per hour, along each street segment of the route, have been derived.
In particular, the number of vehicles along each street segment has been calculated by
the difference among the numbers of the vehicles at monitoring points, while the average
number of vehicles per minute has been calculated by dividing the number of vehicles
monitored in one rush hour for the length of the entire monitoring period. Additionally,
the vehicles monitored have been classified into 5 categories: cars, motorcycles, light duty
vehicles and heavy-duty vehicles, and buses, according to the COPERT classification [24].
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2.4. SIRANE Air Pollution Maps

The scope of this work has been to investigate the ability of a dispersion model such
as SIRANE to capture the local variability of pollutant concentrations at the urban scale by
comparing the estimated concentrations with mobile measurements. To do this, maps of
air pollutants’ concentrations at high spatial resolution have been performed by using the
model SIRANE (Figures A1–A6).

SIRANE is an operational model at the local urban scale. It simulates pollutant dis-
persion within and above the urban canopy scale and provides hourly averaged pollutant
concentrations within each street, assuming steady meteorological conditions over hourly
time steps [14]. SIRANE is based on a street network approach and represents the urban
canopy as a network of connected streets whose relative pollutant exchange is modeled
adopting ad hoc parameterizations, notably considering three exchange processes [25] as
the advection of pollutant along the street axis [26], the dispersion at the intersections [27],
and the ventilation through the turbulent exchange at the roof level [28]. Above the
canopy, SIRANE is integrated with a Gaussian plume model. Further details on the model
are provided in [14]. Over the last two decades, SIRANE has been widely used [29–36]
and has been validated both in wind tunnel [37,38] and in field trough fixed air quality
monitoring stations.

For our scope, six maps for both the pollutant NO2 and CO have been performed
using SIRANE in order to compare the estimations by the model with measurements
by MONICA.
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For running SIRANE, several input datasets have been collected and/or processed as
the urban geometry including the street network and buildings, the meteorological data,
the linear emissions, and the background concentrations.

In particular, for calculating the traffic emissions, firstly an average emission factor
for each category of vehicles and for both CO and NO2 has been estimated. To this data of
the metropolitan vehicular fleet database, published by the Automobile Club d’Italia (ACI)
have been used together with the emission factors computed by the Istituto Superiore per
la Protezione e la Ricerca Ambientale (ISPRA) by means of the COPERT model [24]. Then,
the emissions have been estimated by multiplying the emission factors by the number of
vehicles monitored during the vehicular traffic campaigns, as above described.

Background concentration of all pollutants was given to SIRANE as hourly aver-
aged concentration homogeneous in all the area study and equal to hourly averaged
concentration measured by the regulatory monitoring station, located at the City of Portici
(Figure 1). They have been processed by SIRANE before applying the chemistry module
within SIRANE.

The meteorological data taken in input by SIRANE is collected by the ENEA meteoro-
logical station (Figure 1).

The monitoring route, taken in input by SIRANE, is subdivided into homogeneous
segments, having the same geometry (i.e., the same width and aspect ratio). Along this
route, a number of 62 homogenous segments have been identified, and 47 have been
identified as street canyons. The geometric characteristics of the street segment of the
monitoring route have been derived from the 3D city model, previously performed. In
Table 1, an overview of these characteristics is reported.

Table 1. Overview of the characteristics of the monitoring route.

Street Name Number of
Segments

Street
Canyons Average Width [m] Average Height of

Building [m] Length [m]

Via Libertà 12 11 21.45 20.31 367.23
Via Diaz 22 15 24.82 17.62 824.89

Via Da Vinci 12 10 23.31 23.04 486.91
Corso Garibaldi 16 11 20.45 18.53 908.18

The SIRANE model evaluates the averaged value of the concentrations of the pollu-
tants over the whole volume of each street segment properly identified. SIRANE returns
the output as hourly maps of the pollutant concentrations at street scale as well as point
estimation (named receptor point) of the pollutant concentrations associated with each
identified street segment (Figure 4).
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3. Results and Discussion

The capability of the SIRANE model of capturing the local spatial variability of pollu-
tant concentrations along the urban roads has been investigated in this work by comparing
the estimated concentrations of NO2 and CO pollutants with the mobile measurements of
these pollutants gathered by the MONICA ecosystem.

The assumption of background concentration spatially homogeneous on the area of
interest and equal to hourly average values measured at a reference background station
follows the guidelines of developers in the use of SIRANE.

Firstly, the traffic vehicular data, collected during the two campaigns, has been ana-
lyzed in order to characterize the main source of the air pollution by NO2 and CO in the
City of Portici.

In Table 2, it can be seen that the traffic volume of first campaign (5 June) is greater
than that in the second campaign (21 June), in all rush hours and mostly in the morning. In
this regard, we can observe that, in the first monitoring day, the morning hours included
the entry and exit time from schools while in the second monitoring day the schools were
closed, thus explaining the difference in the traffic volume monitored.

Analyzing the single campaign, on 5 June, the greatest traffic volume has been
recorded in the evening hour (17:00–18:00) with 105,539 vehicles, while on 21 June, the
greatest number of vehicles has been recorded in the lunchtime hour (13:00–14:00) with
88,610 vehicles.
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Table 2. Overview of traffic vehicular campaigns.

Total (Vehicles/Hour)
5 June 21 June

Street 09:00 13:00 17:00 09:00 13:00 17:00

Via Libertà 23,602 19,780 23,045 14,022 15,313 16,880
Via Diaz 28,624 31,949 32,985 28,334 30,180 31,117
Via da
Vinci 12,376 10,360 10,638 7380 7158 7846

Corso
Garibaldi 34,889 35,006 38,871 34,632 35,959 26,566

Total 99,491 97,095 105,539 84,368 88,610 82,409

However, the busiest street has been Corso Garibaldi with an average traffic of 36,255
on the first monitoring day and of 32,386 on the second monitoring day. Although, the
recorded traffic volume has shown little change over the two monitoring days. The reason
could be that it is one of the inbound/outbound streets to/from the city. Finally, the
street with less traffic is Via Da Vinci with an average number of vehicles of 11,125 on the
monitoring day first and of 7461 on the second one.

Grouping by different vehicle category, a characterization of the vehicle fleet for both
monitoring days is shown in the graphs reported in Figure 5.
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Figure 5. The vehicle feet by the two traffic monitoring campaigns grouped by vehicle category.

The car category is the largest, including 79% and 76% of vehicles monitored in the first
and second traffic campaign, respectively. The motorcycles category counts for about 16%
of vehicles by the first monitoring day and 18% by the second monitoring day. The other
vehicle categories, instead, include the same number of vehicles in the two monitoring
days and are, respectively, 5% for heavy duty vehicles, 1% for light duty vehicles, and 1%
for bus.

The insight on the vehicle feet has been here performed for the calculation of the traffic
emissions that SIRANE model takes in input. Significant sources, different from vehicular
traffic, are not present in the area. Therefore, their emissions were not considered.

As regards concentrations, the data analysis has been performed by spatially aggregat-
ing the measured and estimated data at two different spatial scales. The selected spatial
entities have been the entire monitoring route and the segments of varying length within
the route, classified as street canyons and open roads. The mobile and estimated data have
been spatially aggregated by allocating them to the spatial entities on the basis of their
spatial coordinates (i.e., GPS data). Additionally, working at segment scale, they have been
associated with the central points of the segments, named receptor points. Thus, the mobile
data allocated has been aggregated by calculating the arithmetic mean while the estimated
data has been performed as average value over the whole volume of the segment. The data
aggregations have been performed for every monitored hush hour.
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Aggregating the concentration data on the entire monitoring route and for each
monitored rush hour, it has been observed that the measured concentrations of both CO
and NO2 have an overall average value higher than the estimated average concentrations.
In particular, this difference is higher by a factor of 3 for CO concentrations, while for NO2
concentrations the factor is 2. The graphs of Figure 6 show these results for each monitored
hush hour. The error bars are calculated as the standard deviation of the time-averaged
concentrations for each segment.
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monitored hush hour.

Additionally, according to the segment classification of the monitoring route, the
collected data has been aggregated by calculating the overall average of point data allocated
to the street canyon segments and open street segments, respectively.

In relation to street canyon segments, we have observed that the difference factors
between the mean recorded and simulated concentrations increase for both CO and NO2
compared to the factors observed for the entire route, exactly from 3 to 3.3 for CO and from
2 to 2.3 for NO2. On the contrary, in relation to open street segments, the difference factors
decrease compared to the related factors calculated along the entire route, exactly from 3 to
2.5 for CO, and from 2 to 1.9 for NO2. The graphs of Figures 7 and 8 show these differences
for each monitored rush hour.
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The next step has been to analyze the variability of NO2 and CO concentrations at
segment scale. At this scope, the mean concentrations profiles of NO2 and CO pollutants
have been generated by aggregating the mobile data on the identified segments and calcu-
lating the overall average of the allocated data as well as deriving the average estimation
associated with the receptor points. The graphs of Figures 9 and 10 show these profiles for
the 62 street segments identified along the monitoring route and classified as street canyons
and open streets.
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Figure 9. Comparison between MONICA (blue line) and SIRANE (orange line), for CO pollutant:
(a) at 9 am on 5 June; (b) at 9 am on 21 June; (c) at 1 am on 5 June; (d) at 1 am on 21 June; (e) at 5 pm
on 5 June; (f) at 5 pm on 21 June. Triangles are street canyons and circle open roads. The ID receptors
from 1 to 16 (red lines) are referred to the road segment Corso Garibaildi; IDs from 17 to 28 (yellow
lines) to the road segment Via Libertà; IDs from 29 to 40 (blue lines) to the road segment Via DaVinci;
IDs from 41 to 61 (green lines) to the road segment Via Diaz.
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Broadly, the patterns in these concentration profiles correspond. The concentration 
profiles exhibit the same peaks, following roughly the same spatial trend. However, the 
simulated concentration profiles appear smoother than the measured concentration ones. 
In this regard, it is to be noted that, in the mobile profiles, sharp peaks are observed 
probably due to events that occurred during the monitoring run and causing local high 
pollutant concentrations, such as a closely passing car or bus, or walking in the emission 
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Figure 10. Comparison between MONICA (blue line) and SIRANE (orange line), for NO2 pollutant:
(a) at 9 am on 5 June; (b) at 9 am on 21 June; (c) at 1 am on 5 June; (d) at 1 am on 21 June; (e) at 5 pm
on 5 June; (f) at 5 pm on 21 June. Triangles are street canyons and circle open roads. The ID receptors
from 1 to 16 (red lines) are referred to the road segment Corso Garibaildi; IDs from 17 to 28 (yellow
lines) to the road segment Via Libertà; IDs from 29 to 40 (blue lines) to the road segment Via DaVinci;
IDs from 41 to 61 (green lines) to the road segment Via Diaz.

Broadly, the patterns in these concentration profiles correspond. The concentration
profiles exhibit the same peaks, following roughly the same spatial trend. However, the
simulated concentration profiles appear smoother than the measured concentration ones. In
this regard, it is to be noted that, in the mobile profiles, sharp peaks are observed probably
due to events that occurred during the monitoring run and causing local high pollutant
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concentrations, such as a closely passing car or bus, or walking in the emission plume right
behind a vehicle, or even idling vehicles due to local traffic congestion.

It is known that these events can occur systematically at certain places or can be more
accidental. If they are systematic, they are usually modeled by SIRANE as well as captured
by MONICA. Otherwise, if they randomly occur, they might not be modeled by SIRANE,
especially if they are sharp peaks, while they are captured by MONICA. Just as an example,
looking at the peak at segment ID 33 in the CO profile of Figure 9c, it is evident that this
peak is captured in its high magnitude by MONICA while smoothed by SIRANE. Most
probably, that is one of those accidental events above specified.

The differences observed between measured and estimated pollutant concentrations
may be attributed to several factors. A first factor is given from the operation conditions of
MONICA during the mobile monitoring campaigns. MONICA, as mobile device, has been
carried in hand during the campaigns, gathering measurements at about 1 m from street
level, on one side of the street and on the sidewalk. Thus, these operation conditions have
allowed measurements of higher pollutant concentrations to be gathered.

On the other hand, SIRANE evaluates the average concentration of a pollutant within
the whole volume of the homogeneous segment. In fact, in the literature, when SIRANE
is compared with air quality monitoring stations [39] or passive samplers [40] located 3–4
m above the streets, the simulated trends, except for the unavoidable under-estimation of
some peaks of pollution, fit very well in the measurements, with a good correlation.

Another factor that can justify the observed results is the estimation of the emissions.
In the SIRANE model, the emission data is evaluated by using an average emission factor
weighted by vehicle type on the vehicle fleet registered in one year. Thus, SIRANE does
not take into account the presence of any high emitters as high-emission vehicles (HEVs),
which could cause concentration peaks [41], as those captured by MONICA during the
mobile monitoring campaigns did.

4. Conclusions

Capturing the local variability in air pollutant concentrations across an urban area
is a key issue to assess the urban air quality at high spatial resolution and to evaluate
the population exposure to high pollutant concentration levels. To date, the approaches
available are essentially based on a pervasive air quality monitoring using fixed and mobile
sensor networks and on air dispersion modeling at fine length scales. Their potential has
been investigated in literature showing both the uncertainty in the average concentration
levels and the limits in identifying air pollution hot spots within the city.

In this study, we have investigated the capability of an operational air dispersion
model at district scale, such as SIRANE, in identifying the local spatio-temporal variability
of pollutant concentrations within an urban district, with respect to mobile monitoring
campaigns, using low-cost sensor devices. By comparing the mean concentrations of CO
and NO2 pollutants measured by MONICA devices and those simulated by SIRANE along
the urban streets, we have shown that the recorded concentrations appear exceeding the
simulated ones by a factor of 3 and 2 for CO and for NO2, respectively. Furthermore, for
both the pollutants, this factor is higher within the street canyons than in open roads.

However, the data recorded and the simulated pollutant concentrations show patterns
that broadly correspond, and also the peaks observed in the mobile profiles appear in the
simulated profiles, though smoothed. All of this has been explained by (i) the different
height of the receptor points at street level; MONICA measures pollutants concentrations
at about 1 m height while SIRANE evaluates the spatially averaged concentration in each
street segment; (ii) the uncertainty in the estimation of vehicle emissions in SIRANE that
does not take into account the presence of high-emitting vehicles; and (iii) the different
temporal resolution of measurements gathered by MONICA capable to capture local high
concentrations. Thus, a further potential research could include (i) the use of MONICA
devices at different heights for a better understanding of the differences between measured
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and modeled concentrations, and (ii) the participation of the citizens for more pervasive
monitoring campaigns.

However, the results demonstrate that an air dispersion model at district scale as
SIRANE can indeed be used for a first evaluation of the urban air pollution. An inte-
grated approach, including a pervasive air quality monitoring by mobile or opportunistic
campaigns, may be necessary for applications related to hotspot identification, personal
exposure studies, and/or high-resolution mapping. Mobile as well as opportunistic mon-
itoring campaigns will have to collect sufficient data to cover both spatial and temporal
variability. Such integrated approach can be feasible if low-cost air quality sensors are
available that can collect reliable data in an effortless way.
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