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Abstract: Extreme precipitation could result in many disasters, such as floods, drought, and soil
erosion, further bringing severe economic loss. Based on the daily precipitation records during
1960–2019 of 26 stations obtained from the National Meteorological Science Data Center of China,
10 extreme precipitation indices (EPIs: annual total precipitation (PRCPTOT), max-1-day precipitation
amount (RX1day), max-5-day precipitation amount (RX5day), number of heavy rain days (R10),
number of very heavy rain days (R10), simple daily intensity index (SDII), consecutive dry days
(CDD), continued wet days (CWD), very wet days (R95p) and extremely wet days (R99p)) were chosen
and used to analyze the spatial-temporal variation of extreme precipitation within Hubei province,
China, which is an important industrial and agricultural base in China. Finally, the correlation
between El Niño-Southern Oscillation and EPIs was analyzed by cross-wavelet analysis. Results
showed that the annual EPIs varied obviously during 1960–2019, and CWD decreased significantly
(p < 0.05). The chosen EPIs were higher in eastern and southwestern Hubei compared to other regions,
and RX1day, RX5day, R95p, and R99p were increased in most regions. The spatial-temporal variations
of spring and summer EPIs were more obvious than those on an annual scale. In summer, all EPIs
except CDD should increase in the near future. More attention should be paid to Wuhan, Enshi, and
Macheng, where the RX1day, RX5day, R95p, and R99p will increase in these regions. Finally, the
RX1day and R10 were positively correlated with MEI (p < 0.05), while the RX5day, CDD, CWD, and
R99p were negatively correlated with MEI (p < 0.05). The extreme precipitation events within Hubei
were affected by the El Niño-Southern Oscillation. The results could provide a possible driving factor
for precipitation prediction and natural hazard prevention within Hubei province, China.

Keywords: extreme rainfall index; trend analysis; hurst index; spatial-temporal variation; El Niño-
Southern Oscillation; middle China

1. Introduction

In the context of global warming, evaporation has increased in most regions [1],
and water vapor circulation speeds up in different regions with different change trends
in the world [2]. According to the existing precipitation observation data, the balance
of precipitation distribution in many regions has been affected [3]. Abnormal extreme
precipitation events that occurred in recent years have led to rare flood disasters in the
world such as in China [4], Japan [5], America [6], and India [7]. Existing study indicates
that the intensity and frequency of extreme precipitation events in the mid-latitudes may
further increase in the future [8]. In city areas, extreme events could result in problems such
as urban waterlogging [9] and economic loss [10], while in rural areas, extreme precipitation
would affect normal farming activity, reducing crop yields [11] and resulting in severe soil
erosion [12].
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Under the background of global climate change, the variations of extreme precipitation
have been investigated worldwide recently [13–15]. In recent decades, extreme precipi-
tation characteristics have changed around the world. On a country scale, Fu et al. [16]
analyzed the temporal variation of extreme precipitation events within China based on
the site-measured rainfall data during 1961–2009, and results showed that the selected
extreme precipitation indices had changed differently in different regions within China;
Dey et al. [13] analyzed the extreme precipitation variation within Australia, and found
that extreme precipitation events could appear in Australia in any time of a year, and
extreme precipitation more likely occurred in southern Australia during summer; Vu
et al. [17] analyzed the variation of extreme precipitation frequency based on unusual
extreme precipitation events over more than a thousand years in the past within the United
States, and results show that the return periods of extreme precipitation events have been
significantly reduced. On a basin scale, Srivastava et al. [7] analyzed the long-term trend
of extreme precipitation events during 1901–2016 within the Kosi River Basin in India,
and results revealed that the changing trend of some extreme precipitation indices varied
within the basin; Zhao et al. [18] analyzed the changing trend of extreme precipitation
during 1961–2016 within the Yellow River Basin in China, and results showed that most
extreme precipitation was decreased and that the average precipitation indices and extreme
precipitation indices are significantly correlated both seasonally and annually; Yin et al. [19]
has analyzed the variations of extreme precipitation during 1960–2014 within the Huai
River Basin in China, and results showed that extreme precipitation events will increase
and were closely correlated with the flood/drought disasters in the HRB. These results all
provide theoretical suggestions for further prevention of the loss brought about by extreme
precipitation events for local organizations.

Besides the simple analysis of the changing trend of extreme precipitation, some
scholars also have investigated the causes of these changes. Many studies have pointed out
that the anomalies in large-scale climate circulations were the main cause of the changes
in extreme precipitation all over the world [20–23]. Grimm et al. [20] found that the
El Niño and La Niña episodes affected the frequency of extreme precipitation events
significantly in several regions of South America. In the study conducted by King et al. [24],
a nonlinear relationship was shown to exist between extreme precipitation and the El
Niño–Southern Oscillation in Australia, and that the magnitude of La Niña events affected
extreme precipitation intensity. Li et al. [25] tried to determine the sources of the extreme
precipitation in the lower reaches of the Yangtze River during May 2016, and results showed
that the strong El Niño of 2015–2016 may have been the main attribution for extreme
precipitation event in 2016. In the existing literature, the El Niño-Southern Oscillation has
been identified as the main driving factor for the changes in extreme precipitation in most
regions worldwide.

Hubei province is one of the important industrial and agricultural bases in China. The
annual precipitation in the province has obvious seasonal variation, and the summer pre-
cipitation accounts for about 40% of the annual precipitation [26]. In recent years, extreme
precipitation events occurred continually in Hubei province. In June 2020, an extraordinary
rainstorm happened in Yichang city [27] and resulted in severe economic loss; subsequent,
in August 2021, an extraordinary rainstorm occurred in Suizhou city, Xiangyang city, and
Xiaogan city, et al. [28]. Some towns and villages were flooded during these extraordinary
rainstorm events, and these extreme precipitation events mainly occurred in spring and
summer. Hence, it is important to investigate the spatial-temporal variations of extreme
precipitation and its correlation with large-scale atmospheric circulation for a better under-
standing of extreme precipitation events within these regions. However, no such study has
been conducted in the Hubei province, China.

The purposes of this paper were: (1) to analyze the spatial-temporal variations of
the annual extreme precipitation indices within Hubei province during 1960–2019; (2) to
analyze the spatial-temporal variations of the extreme precipitation indices in spring and
summer within Hubei province during 1960–2019; and (3) to investigate the relationship
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between the extreme precipitation indices and El Niño-Southern Oscillation within the
Hubei province.

2. Study Area

Hubei province is located in middle China, between 29◦02′–33◦07′ N, 108◦21′–116◦08′

E, with an area of ~186,000 km2 (Figure 1). The elevation within Hubei province is ranged
from −96 to 3052 m and is dominated by mountainous topography in the western regions
while the plain is distributed widely in the middle and eastern regions. Within the whole
Hubei province, the mountains, hills, and plain lakes covered about 56%, 24%, and 20%,
respectively. Hubei province is located in the subtropical climate zone, except for the alpine
areas belonging to the alpine climate, most areas belong to the subtropical monsoon humid
climate. The average precipitation in the region is 800–1600 mm, decreasing from south to
north with an obvious seasonal variation.

Hubei Province is rich in water resources. Except for the mainstream Yangtze river
and the Han river, there are 4228 rivers with a length of more than 5 km and a total length
of 59,200 km. Besides, there are 755 lakes with a surface area of ~2707 km2. According to
the statistics of the Water Resources Bulletin of Hubei province in 2020, the water resources
amount was ~175.5 billion m3. Since the South to North Water Diversion project was
launched in 2014, the middle route of the project has transported an average of 5.6 billion
m3 of water to northern China every year. In addition, Hubei province is one of the
important industrial and agricultural bases in China. The extreme precipitation events that
happened in recent years have brought severe economic loss to the residents. It is important
to investigate the spatial-temporal variations of extreme precipitation and its correlation
with large-scale atmospheric circulation for better extreme precipitation prediction, further
benefiting water resource management and natural hazard prevention.
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3. Data and Methods
3.1. Data Sources and Processing

The main relevant data are daily precipitation from 1960–2019 within the Hubei
province, the Multivariate El Niño/Southern Oscillation (ENSO) index (MEI) index series
from 1960–2019, and the El Niño and La Niña Years and Intensities data. The daily
precipitation is obtained from the National Meteorological Science Data Center (https:
//data.cma.cn/, accessed on 5 March 2020), and 26 stations (Table 1) within Hubei province
are used for this study. The MEI index is a multivariate ENSO index developed by Wolter
and Timlin to express the phase and intensity of the ENSO phenomenon [29]. The MEI is
calculated from six key variables characterizing the tropical Pacific environment (sea surface
temperature, surface air temperature, sea-level pressure, and total cloudiness fraction). This
study used the MEI series during 1979–2019 to describe the El Niño-Southern Oscillation
characteristic, and it was obtained from the website (https://psl.noaa.gov/enso/mei/,
accessed on 2 June 2021). Finally, the El Niño and La Niña years and intensities data were
obtained from the Golden Gate Weather Services (https://ggweather.com/enso/oni.htm,
accessed on 1 August 2022). The strong and very strong El Niño and La Niña Years
were taken into consideration for the analysis of correlations between El Niño-Southern
Oscillation and EPIs in the discussion section.

Table 1. Descriptions of the meteorological stations within Hubei province.

No. Station Name Longitude Latitude Elevation No. Station Name Longitude Latitude Elevation

1 Xunxi 33◦00′ 110◦25′ 249 m 14 Enshi 30◦17′ 109◦28′ 457 m
2 Fangxian 32◦02′ 110◦46′ 427 m 15 Wufeng 30◦12′ 110◦40′ 620 m
3 Laohekou 32◦23′ 111◦40′ 90 m 16 Yichang 30◦42′ 111◦18′ 133 m
4 Xiangyang 32◦02′ 112◦10′ 70 m 17 Jingzhou 30◦21′ 112◦09′ 32 m
5 Zaoyang 32◦09′ 112◦45′ 125 m 18 Xiaogan 30◦54′ 113◦57′ 24 m
6 Badong 31◦02′ 110◦22′ 334 m 19 Tianmen 30◦40′ 113◦10′ 34 m
7 Xingshan 31◦14′ 110◦46′ 252 m 20 Wuhan 30◦37′ 114◦08′ 23 m
8 Zhongxiang 31◦10′ 112◦34′ 66 m 21 Laifeng 29◦31′ 109◦25′ 460 m
9 Suizhou 31◦43′ 113◦23′ 86 m 22 Jianli 29◦50′ 112◦54′ 31 m
10 Dawu 31◦34′ 114◦07′ 102 m 23 Honghu 29◦49′ 113◦27′ 24 m
11 Macheng 31◦11′ 115◦01′ 60 m 24 Jiayu 29◦59′ 113◦55′ 36 m
12 Lichuan 30◦17′ 108◦56′ 1086 m 25 Yingshan 30◦44′ 115◦40′ 124 m
13 Jianshi 30◦36′ 109◦43′ 559 m 26 Yangxin 29◦51′ 115◦12′ 42 m

3.2. Extreme Precipitation Index

In total, 10 extreme precipitation indices (EPI) suggested by the Expert Team on
Climate Change Detection and Indices (ETCDI) [30] were adopted in this study to represent
the extreme precipitation characteristics (Table 2). According to the definitions of EPI,
they can be divided into four categories: persistence indices, adiabatic indices, relative
indices, and intensity indices. The persistence indices were represented by consecutive
dry days (CDD) and continued wet days (CWD). The adiabatic indices were represented
by the number of heavy rain days (R10), the number of very heavy rain days (R20), and
annual total precipitation (PRCPTOT). The relative indices were mainly represented by
very wet days (R95p) and extremely wet days (R99p). The intensity indices were mainly
represented by max-1-day precipitation amount (RX1day), max-5-day precipitation amount
(RX5day), and simple daily intensity index (SDII). These EPIs have been widely used in
previous research [31–34] and can represent extreme precipitation events properly. In this
study, these 10 EPIs were calculated on the annual and seasonal scale for each station;
then, the station values were interpolated into grid values with a spatial resolution of 1 km
using inverse distance weighted (IDW) methods [12]. The grid values within the Hubei
province were averaged to obtain the average value of EPIs of Hubei province, and finally,
the average of EPIs series for the total Hubei province was used to analyze the extreme
precipitation characteristic within this region. For spatial analysis, the average value was

https://data.cma.cn/
https://data.cma.cn/
https://psl.noaa.gov/enso/mei/
https://ggweather.com/enso/oni.htm
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calculated for each grid with a spatial resolution of 1 km to obtain the spatial distribution
of each EPI on annual, spring, and summer scales.

Table 2. Definition of each extreme precipitation indices.

Type of Indices Name of Indices Abbreviation Definition

Persistence indices
Continued drought days/d CDD Maximum number of continued days when

precipitation < 1 mm

Continued wet days/d CWD Maximum number of continued days when
precipitation > 1 mm

Adiabatic indices
Number of heavy rain days/d R10 Annual count when precipitation ≥ 10 mm

Number of very heavy rain days/d R20 Annual count when precipitation ≥ 20 mm

Annual total precipitation/mm PRCPTOT Annual total precipitation when daily
precipitation ≥ 1 mm

Relative indices
Very wet days/mm R95p Annual total precipitation from days > 95th

percentile

Extremely wet days/mm R99p Annual total precipitation from days > 99th
percentile

Intensity indices
Max-1-day precipitation amount/mm RX1day Maximum 1-day precipitation
Max-5-day precipitation amount /mm RX5day Maximum continued 5-day precipitation

Simple daily intensity index/(mm/d) SDII The ratio of annual total precipitation to
the number of wet days ≥ 1 mm

3.3. Analysis Methods

In this study, the linear regression analysis [35] was adopted to analyze the historical
change trend of these EPIs, and the F-test [36] was used to test the significance of these
trends for each EPI. These methods have been widely used and achieved good performance
in previous studies [12,37,38]. In this study, the EPIs series calculated based on the daily
precipitation records during 1961–2019 of the precipitation stations within the Hubei
province was used as the dependent variable and the year was used as the independent
variable to exam the trend of EPIs by the linear regression analysis and F-test. The Moving T
test [39] was used to discuss the abrupt change point for each EPI during 1960–2019, which
was widely used for detecting trends in the time series [40–42]. The Hurst exponent index
(H) was calculated with the rescaled range analysis (R/S) method to analyze the future
trends for each EPI in each station within Hubei province, which was applied maturely
in previous studies [43,44] and the details of this method can be referred to in [45]. The
value of H ranged from 0 to 1, which was widely used to reveal the strength of the (anti)
persistent trend of the historical trend for series. In general, when the value of H was
closer to 0, the trend in the future was opposite to that during history; when the value
of H was closer to 1, the trend in the future was the same as that in the historical data;
when the value of H was closer to 0.5, the future randomness of the series was large. The
cross-wavelet analysis [29] was adopted to analyze the correlation between the EPIs and El
Niño-Southern Oscillation, which has been widely used to reveal the historical correlation
between different factors in meteorological fields [46,47]. The detailed basic description
of this method can be referred to in [48]. In this study, the regional average EPIs series
and MEI series were used to conduct the cross-wavelet analysis to reveal the relationship
between the EPIs and ENSO.

4. Results
4.1. Spatial-Temporal Variations of EPIs on the Annual Scale
4.1.1. Temporal Variations

As shown in Figure 2 and Table 3, the average value of PRCPTOT, RX1day, RX5day,
SDII, R95p, and R99p is 1124.08, 95.75, 152.83, 12.56, 660.36, and 219.43 mm, respectively; the
average value of R10, R20, CDD, and CWD is 32.45, 15.86, 29.11, and 6.23 day, respectively.
During 1960–2019, the highest value of PRCPTOT, RX1day, RX5day, R95p, and R99p is
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1522.55, 142.35, 225.74, 867.85, and 311.88 mm, respectively; the highest value of R10, R20,
CDD, and CWD is 41.49, 24.56, 46.25, and 8.42 day, respectively.
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Figure 2. Trend and 10a average value of EPIs within Hubei province on the annual scale during
1960–2019.

Table 3. Statistic of change trend of each EPI within Hubei province on the annual scale during
1960–2019.

EPI Average Value Change Rate/per Year p Value for F-Test Hurst Value Future Trend

PRCPTOT 1124.08 mm −0.2136 0.86 0.44 Up
RX1day 95.75 mm 0.0511 0.66 0.43 Down
RX5day 152.83 mm −0.1151 0.61 0.37 Up

R20 15.86 day 0.0072 0.75 0.36 Down
R10 32.45 day −0.0214 0.53 0.43 Up
SDII 12.56 mm 0.0054 0.59 0.49 Down
CDD 29.11 day −0.0331 0.42 0.51 Down
CWD 6.23 day −0.0139 0.03 0.68 Down
R95p 660.36 mm 0.3065 0.65 0.51 Up
R99p 219.43 mm 0.1344 0.58 0.51 Up

During 1960–2019, the RX1day, SDII, R95p, and R99p increased with a trend of 0.0511,
0.0054, 0.3065, and 0.1344 mm per year, respectively; the PRCPTOT and RX5day decreased
with a trend of 0.2136 and 0.1151 mm per year, respectively; the R20 was increased with a
trend of 0.00722 days per year; while the R10, CDD, and CWD were decreased with a trend
of 0.0214, 0.0331, and 0.0139 days per year, respectively. The CWD decreased significantly
(p < 0.05) during 1960–2019, and it would decrease in the recent future. Besides, in the
recent future, the PRCPTOT, RX5day, R10, R95p, and R99p would increase, while the
RX1day, R20, SDII, and CDD would decrease. The decade average values of RX1day,
RX5day, and R10 were obviously changed between near decades, while other EPIs showed
no trend similar to this.

As shown in Figure 3, among these 10 EPIs, only the CWD has a significant abrupt
change point in 1975, with a t value of 2.27. Other EPIs had no significant change point
during 1960–2019.
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Figure 3. Moving T-test for each EPI within Hubei province on the annual scale during 1960–2019.

4.1.2. Spatial Variations

As shown in Figure 4, there were obvious differences in EPIs in different regions
of Hubei. The annual average value of PRCPTOT, RX1day, RX5day, SDII, R95p, and
R99p varied 783.39–1444.18, 63.17–120.52, 103.03–197.54, 9.93–15.91, 486.68–829.78, and
180.71–333.61 mm, respectively. The annual average value of R10, R20, CDD, and CWD
varied from 23.66–42.73, 10.36–20.96, 20.06–34.88, and 5.25–7.7 days, respectively.

The variations of PRCPTOT, RX1day, RX5day, SDII, R95p, and R99p are similar,
which are higher in the eastern and southwestern Hubei, and lower in the middle and
northern Hubei. Especially, Wuhan, Macheng, Yingshan, and Jianshi stations with the
highest PRCPTOT, RX1day, RX5day, R95p, and R99p simultaneously. This indicated that
these regions are at greater risk of extreme rainfall events, and more attention should be
paid to better disaster prevention. The variations of CDD and CWD are almost opposite
within Hubei, the CDD was obviously lower in southwestern Hubei compared to other
regions, while the CWD was much higher in southwestern Hubei compared to other
regions. This may be caused by the difference in terrain, the mountain was dominated in
the southwestern Hubei, while the plain was dominated in the middle and eastern Hubei.

As to the extreme event, the highest PRCPTOT occurred at Yingshan, Jianshi, and
Yangxin, in 1983 (2182.1 mm), 1983 (2131.5 mm), and 1999 (2128.3 mm), respectively;
the highest RX1day occurred at Yangxin, Xunxi, and Dawu, in 1994 (538.7 mm), 1997
(340.9 mm), and 2016 (333.6 mm), respectively; the highest RX5day was occurred at Yangxin,
Jiayu, and Honghu, in 1994 (585.1 mm), 1964 (560.8 mm), and 1996 (550.6 mm), respectively;
the highest R95p occurred at Macheng, Dawu, and Yangxin, in 2016 (1364.2 mm), 2016
(1283.5 mm), and 1999 (1281.2 mm), respectively; the highest R99p occurred at Yangxin,
Mcheng, and Dawu, in 1994 (719.3 mm), 2016 (632.4 mm), and 1999 (625.6 mm), respectively;
the highest CDD occurred at Macheng, Wuhan, and Xiaogan, in 1973 (80 days), 1973
(80 days), and 1973 (80 days), respectively.

The changing trends of each EPI are different at different stations. The number of
stations that was increased in PRCPTOT, RX1day, RX5day, R10, R20, SDII, CDD, CWD,
R95p, and R99p was 9, 15, 10, 14, 10, 16, 5, 5, 16, and 17, respectively; the number of stations
that were decreased in PRCPTOT, RX1day, RX5day, R10, R20, SDII, CDD, CWD, R95p, and
R99p was 17, 11, 16, 12, 16, 10, 21, 21, 10, and 9, respectively. In addition, during 1960–2019,
RX5day decreased significantly at Enshi station, SDII increased significantly at Fangxian
and Jianli stations, CDD decreased significantly at Jianli station, and CWD decreased
significantly at Lichuan, Jianshi, Jingzhou, Laifeng, and Jianli stations. In addition, the
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Wuhan, Yingshan, and Macheng are increased in RX1day, RX5day, R95p, and R99p, with
a much higher annual average value compared to other stations within Hubei province.
These regions are more at risk of extreme precipitation disasters compared to other regions.
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4.2. Spatial-Temporal Variations of EPIs in Spring and Summer

The precipitation, especially extreme precipitation events in Hubei mainly concen-
trated during spring and summer, hence, the EPIs characteristics in spring and summer
within Hubei province were also discussed in this paper.

4.2.1. Temporal Variations

In spring, as shown in Figure 5 and Table 4, the overall trend of each EPIs in spring
was similar to those on the annual scale during 1960–2019. The average value for PRCPTOT,
RX1day, RX5day, SDII, R95p, and R99p in spring was 319.55, 54.27, 84.04, 11.52, 143.23, and
54.27 mm, respectively; the average value for R10, R20, CDD, and CWD was 10.26, 4.67,
12.29, and 4.49 day, respectively. During 1960–2019, R1day, R20, SDII, CDD, R95p, and
R99p in spring increased, while PRCPTOT, RX5day, R10, and CWD in spring decreased.
The changing trend of EPIs in spring is similar to those on an annual scale, but the future
trends of EPIs in spring are quite different from those on an annual scale. In the near future,
RX1day, R20, SDII, CDD, and R99p could be increased, while PRCPTOT, RX5day, R10,
CWD, and R95p could be decreased. This may indicate that the extreme precipitation will
be increased in spring within Hubei.
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Figure 5. Trend and 10a average value of EPIs within Hubei province in spring during 1960–2019.

Table 4. Statistic of change trend of each EPI within Hubei province in spring during 1960–2019.

EPI Average Value Change Rate/per Year p Value for F-Test Hurst Value Future Trend

PRCPTOT 319.55 mm −0.3078 0.55 0.54 Down
RX1day 54.27 mm 0.0389 0.61 0.57 Up
RX5day 84.04 mm −0.0224 0.85 0.59 Down

R20 4.67 day 0.0010 0.91 0.55 Up
R10 10.26 day −0.0165 0.36 0.59 Down
SDII 11.52 mm 0.0178 0.11 0.53 Up
CDD 12.29 day 0.0085 0.63 0.53 Up
CWD 4.49 day −0.0137 0.06 0.59 Down
R95p 143.23 mm 0.0951 0.59 0.47 Down
R99p 54.27 mm 0.0389 0.61 0.57 Up

Compared the Figures 2 and 5, the decade changes in spring EPIs are more obvious
compared to annual EPIs during 1960–2019. Average spring RX1day in the 1970s was
much higher than that in the 1960s and 1980s, average spring RX5day in the 1970s was
much higher than that in other periods, and spring CWD kept decreasing from the 1960s
to the 2010s. During 1990–2019, changes in spring PRCPTOT, RX5day, R20, SDII, and
R95p were weak, and spring RX1day and R99p decreased in the 2010s compared to that
during 1990–2010. Especially, the decade variations of Average spring CDD were obviously
shocking during 1980–2019. This may indicate that the 10a average spring CDD showed a
cycle of “down-up-down-up” trend during this period, and in the next decade (the 2020s)
the CDD may be lower than that during the 2010s.

In summer, as shown in Figure 6 and Table 5, the overall trend of each summer EPIs
were differ from those in the spring and annual scale during 1960–2019. The average value
for PRCPTOT, RX1day, RX5day, SDII, R95p, and R99p in summer was 477.52, 87.96, 142.79,
17.70, 232.27, and 87.96 mm, respectively; the average value for R10, R20, CDD, and CWD
was 12.77, 7.61, 13.92, and 4.68 days, respectively. During 1960–2019, RX5day, CDD, and
CWD in summer decreased, while PRCPTOT, RX1day, R10, R20, SDII, R95p, and R99p in
summer were increased. Almost all EPIs will be increased in the near future except CDD.
The EPIs such as RX1day, RX5day, R95p, and R99p in summer was much higher than that
in spring, which indicated that the risk of suffering extreme precipitation disaster is higher



Atmosphere 2022, 13, 1922 10 of 19

in summer than in spring within Hubei province. As for CDD and CWD, they were close
in spring and summer.

Atmosphere 2022, 13, x FOR PEER REVIEW 10 of 20 
 

 

R95p 143.23 mm 0.0951 0.59 0.47 Down 

R99p 54.27 mm 0.0389 0.61 0.57 Up 

 

Figure 6. Trend and 10a average value of EPIs within Hubei province in summer during 1960–2019. 

As shown in Figure 6, the changes in decade average summer EPIs are obvious com-

pared to those in spring and annual scale. Almost all EPIs except CDD and CWD in sum-

mer were lowest in the 1970s compared to other periods during 1960–2019. During 1980–

2019, the decade average summer PRCPTOT, R10, and R20 kept a decreasing trend, the 

decade average summer RX1day, RX5day, CDDD, and R99p show a sudden change, 

while the decade average summer SDII and R95p were almost consistent with minor var-

iations. 

Table 5. Statistic of change trend of each EPI within Hubei province in summer during 1960–2019. 

EPI Average Value Change Rate/per Year p Value for F-Test Hurst Value Future Trend 

PRCPTOT 477.52 mm 0.4182 0.65 0.67 Up 

RX1day 87.96 mm 0.0678 0.60 0.56 Up 

RX5day 142.79 mm −0.0560 0.82 0.49 Up 

R20 7.61 day 0.0088 0.57 0.66 Up 

R10 12.77 day 0.0063 0.77 0.74 Up 

SDII 17.70 mm 0.0148 0.41 0.56 Up 

CDD 13.92 day −0.0299 0.12 0.80 Down 

CWD 4.68 day −0.0075 0.30 0.48 Up 

R95p 232.27 mm 0.2151 0.51 0.61 Up 

R99p 87.96 mm 0.0678 0.60 0.56 Up 

As shown in Figures 7 and 8, the abrupt change point of EPIs in spring and summer 

was more than that on an annual scale. In spring, PRCPTOT has a significant abrupt 

change point in 1979, with a t value of 2.39; RX5day has two significant abrupt change 

points in 1976 and 1978, with a t value of 2.36 and 2.39, respectively; R10 and R20 have a 

significant abrupt change point in 1979, with a t value of 2.14 and 2.49, respectively; CDD 

has a significant abrupt change point in 1978, with a t value of −2.40. In summer, 

PRCPTOT, R10, and R20 have a significant abrupt change point in 1980, with a t value of 

−2.57, −2.46, and −2.57, respectively; CDD has two significant abrupt change points in 1980 
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Table 5. Statistic of change trend of each EPI within Hubei province in summer during 1960–2019.

EPI Average Value Change Rate/per Year p Value for F-Test Hurst Value Future Trend

PRCPTOT 477.52 mm 0.4182 0.65 0.67 Up
RX1day 87.96 mm 0.0678 0.60 0.56 Up
RX5day 142.79 mm −0.0560 0.82 0.49 Up

R20 7.61 day 0.0088 0.57 0.66 Up
R10 12.77 day 0.0063 0.77 0.74 Up
SDII 17.70 mm 0.0148 0.41 0.56 Up
CDD 13.92 day −0.0299 0.12 0.80 Down
CWD 4.68 day −0.0075 0.30 0.48 Up
R95p 232.27 mm 0.2151 0.51 0.61 Up
R99p 87.96 mm 0.0678 0.60 0.56 Up

As shown in Figure 6, the changes in decade average summer EPIs are obvious
compared to those in spring and annual scale. Almost all EPIs except CDD and CWD in
summer were lowest in the 1970s compared to other periods during 1960–2019. During
1980–2019, the decade average summer PRCPTOT, R10, and R20 kept a decreasing trend, the
decade average summer RX1day, RX5day, CDDD, and R99p show a sudden change, while
the decade average summer SDII and R95p were almost consistent with minor variations.

As shown in Figures 7 and 8, the abrupt change point of EPIs in spring and summer
was more than that on an annual scale. In spring, PRCPTOT has a significant abrupt change
point in 1979, with a t value of 2.39; RX5day has two significant abrupt change points in
1976 and 1978, with a t value of 2.36 and 2.39, respectively; R10 and R20 have a significant
abrupt change point in 1979, with a t value of 2.14 and 2.49, respectively; CDD has a
significant abrupt change point in 1978, with a t value of −2.40. In summer, PRCPTOT, R10,
and R20 have a significant abrupt change point in 1980, with a t value of −2.57, −2.46, and
−2.57, respectively; CDD has two significant abrupt change points in 1980 and 2009, with a
t value of 2.96 and −3.72, respectively. The abrupt change point for PRCPTOT, R10, R20,
and CDD are almost opposite in spring and summer. For example, spring PRCPTOT, R10,
and R20 increased before 1980 and decreased after 1980, but summer PRCPTOT, R10, and
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R20 decreased before 1979 and increased after 1979. This may indicate that the EPIs change
trends were quite different in spring and summer.
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4.2.2. Spatial Variations

In spring, as shown in Figure 9, RX1day, RX5day, R10, R20, R95p, and R99p in spring
were lower in the southwestern Hubei compared to that on an annual scale, and CWD in
spring was higher in the southeastern Hubei compared to that on an annual scale. There is
an obvious difference in the distribution of CDD in the spring and annual scale. In spring,
the CDD was higher in northern Hubei, while CDD was higher in most regions and lower
in southwestern Hubei on an annual scale.
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Figure 9. Spatial variations of spring average EPIs and the changing trend of spring EPIs for each
station within Hubei province.

The spatial variations of spring PRCPTOT and R20 value were obvious compared to
those of annual PRCPTOT, the highest and lowest spring PRCPTOT was 476.96 and 178.25
mm, respectively, and the highest and lowest spring R20 was 7.76 and 1.81 day, respectively.
This indicates that the spatial variability of spring precipitation was greater than that of
the annual precipitation. The highest RX1day, RX5day, R95p, and R99p were 74.45, 117.75,
199.97, and 74.45 mm, respectively, occurred at Honghu station. This indicates that the
Honghu region suffers a higher risk of extreme precipitation in spring compared to other
regions within Hubei province.

The changing trend of spring EPIs was also different than those on an annual scale.
The number of stations that were increased in summer PRCPTOT, RX1day, RX5day, R10,
R20, SDII, CDD, CWD, R95p, and R99p was 9, 14, 11, 3, 14, 20, 14, 3, 17, and 14, respectively;
the number of stations that was decreased in summer PRCPTOT, RX1day, RX5day, R10, R20,
SDII, CDD, CWD, R95p, and R99p was 17, 12, 15, 23, 12, 6, 12, 23, 9, and 12, respectively.
Besides, during 1960–2019, spring RX5day was significantly increased at Wuhan station
and significantly decreased at Laifeng station, spring R10 was significantly decreased at
Xiangyang and Dawu stations, and spring SDII was significantly increased at Fangxian,
Wuhan, Jianli, Honghu, and Jiayu stations, spring CWD was significantly decreased at
Badong, Macheng, Lichuan, Jianshi, Enshi, Jingzhou, Tianmen, and Laifeng stations. This
indicated that Enshi city (Concluding Badong, Lichuan, Jianshi, and Enshi stations) would
be increased in CWD during spring, further indicating that these regions would be wetter
in spring compared to in the future.

In summer, as shown in Figure 10, EPIs like RX1day, RX5day, R10, R20, R95p, and
R99p in summer were higher in the southwestern Hubei compared to that in spring, and
CWD in summer was lower in the southeastern Hubei compared to that in spring. There is
an obvious difference in the distribution of CDD in summer and spring. In summer, the
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CDD was higher in the mid-eastern Hubei, while CDD was higher in most regions and
lower in northern Hubei in spring.
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Figure 10. Spatial variations of summer average EPIs and the changing trend of spring EPIs for each
station within Hubei province.

The highest summer PRCPTOT and R20 was 647.00 mm and 10.33 day, respectively,
occurred at Jianshi station; and the lowest PRCPTOT and R20 were 322.16 mm and 4.95
days, respectively, occurred at Laohekou station. The highest summer RX1day, RX5day,
R95p, and R99p were 112.91, 187.18, 293.21, and 112.90 mm, respectively, occurred at
Macheng station. This indicates that the Macheng region suffers a higher risk of extreme
precipitation in summer compared to other regions within Hubei province.

The number of stations that were increased in summer PRCPTOT, RX1day, RX5day,
R10, R20, SDII, CDD, CWD, R95p, and R99p was 16, 16, 12, 14, 16, 15, 6, 8, 17, and 16,
respectively; the number of stations that was decreased in summer PRCPTOT, RX1day,
RX5day, R10, R20, SDII, CDD, CWD, R95p, and R99p was 10, 10, 14, 12, 10, 11, 20, 18, 9, and
10, respectively. Besides, during 1960–2019, summer RX1day was significantly increased at
Macheng station, summer R10 was significantly increased at Xunxi stations, summer SDII
was significantly increased at Macheng station, summer CDD was significantly decreased at
Wuhan, Jianli, and Jiayu stations, summer CWD was significantly decreased at Zhongxiang
and Yichang stations. In addition, summer PRCPTOT, RX1day, RX5day, R10, R20, SDII,
R95p, and R99p were all increased at Xunxi, Fangxian, Laohekou, Macheng, Jingzhou,
Xiaogan, Wuhan, and Jianli stations. This may indicate that these regions could be more at
risk of extreme precipitation events in the future.

4.3. Correlation between the EPIs and MEI Index

Figure 11 shows the correlation between annual EPIs and MEI from time-frequency
space by varying the power spectrum and phase structure. These figures show the wavelet
power spectrum as colorful stripes, and the resonant period that passed a 95% significance
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test is shown as a thick black contour. Arrows show the link between the respective phases:
“→” indicates that the variation of the MEI and EPIs are positively correlated; “←” indicates
that the variation of the MEI and EPIs are negatively correlated; “↓” indicates that the
variation of the EPIs lags behind that of the MEI with one-fourth of the resonant period;
and “↑” indicates that the variation of the EPIs is ahead of the MEI with one-fourth of the
resonant period [49].
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As shown in Figure 11, almost all EPIs had a significant (p < 0.05) relationship with
MEI except PRCPTOT, R20, SDII, and R95p. A significant resonant period of six years
exists between RX1day and MEI during 1987–2001. During this period, the RX1day was
positively correlated with MEI synchronously. A significant resonant period for six years
exists between RX5day and MEI during 1999–2002. During this period, the RX5day was
positively correlated with MEI synchronously. A significant resonant period for three to
four years exists between R10 and MEI during 1984–1994. During this period, the R10 was
positively correlated with MEI with a short lag time. Three significant resonant periods
exist between CDD and MEI: A short-term period of three years, five years, and two to
three years occurred during 1999–2001, 2000–2002, and 2007–2012, respectively. During
1999–2001, the CDD was negatively correlated with MEI with a lead time; during 2000–2002,
the CDD was negatively correlated with MEI synchronously; while during 2007–2012, the
CDD was negatively correlated with MEI with a lag time. Two significant resonant periods
exist between CWD and MEI: A short-term period of five to six years and two to four years
occurred during 1991–2002 and 1997–2004, respectively. During 1991–2002, the CWD was
negatively correlated with MEI synchronously; while during 1997–2004, the CWD was
negatively correlated with MEI with a lead time. A significant resonant period of three to
five years exists between R99p and MEI during 1999–2004. During this period, the R99p
was negatively correlated with MEI with a lead time.

5. Discussion
5.1. Important Changes in the EPIs within Hubei Province and Their Effects

Based on the daily site measured precipitation records during 1960–2019, 10 EPIs
(PRCPTOT, RX1day, RX5day, R10, R20, SDII, CDD, CWD, R95p, and R99p) are chosen to be
analyzed the spatial-temporal variations of extreme precipitation on annual and seasonal
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(spring and summer) scale within the Hubei province in this paper. As analyzed in the
previous section, the extreme precipitation characteristics within the Hubei province varied
in different regions.

The annual average value of R95p and R99p within the Hubei province was 660.36
and 219.43 mm, respectively, and it all would be increased in the future. This indicated
that the possibility of extremely heavy precipitation events in the regions will increase in
recently future since 2019. As reported in 2020 and 2021, Wuhan city, Yichang city, Suizhou
city, Xiangyang city, and Xiaogan city all experienced extremely heavy precipitation which
resulted in severe economic loss [27,28]. These frequent extreme precipitation events have
proved that the probability of extreme rainstorms in Hubei province has increased. Within
the Hubei province, the SDII presents an increasing trend while the PRCPTOT shows a
decreasing trend, this indicates that the precipitation has been more concentrated. The
decrease in CWD further verified this result. The CWD decreased while the PRCPTOT
increased, this suggests that the precipitation concentration increased. The R95p and R99p
also increased, these changes increase the possibility of extreme precipitation.

The extreme precipitation events mainly occurred in the eastern and southwestern
Hubei compared to other regions, and more than half of the regions would be increased in
R95p and R99p. One thing to note is that the regions where R95p and R99p increased are
mainly distributed in eastern Hubei, where the R95p and R99p are already higher than in
other regions. Especially, Wuhan, Macheng, Yingshan, and Jianshi stations with the highest
PRCPTOT, RX1day, RX5day, R95p, and R99p simultaneously. This may indicate that these
regions are at great risk of extreme precipitation events, and more attention should be paid
to them. Besides, almost all the EPIs show a decreasing trend within the southwestern
Hubei province, this indicates that the probability of suffering extreme precipitation events
decreased, and the amount of water resources decreased simultaneously. For some middle
regions, the PRCPTOT and SDII decreased and increased, respectively, and the R95p and
R99p also increased. Thus, these regions may suffer more extreme precipitation events in
the future and their water resources could be reduced.

For the long-term, some EPIs such as RX1day, RX5day, and R10 shown an interdecadal
fluctuation (Figure 2). This indicates that the precipitation randomness and precipitation
intensity in the Hubei province is complex. In other investigations, the interdecadal
fluctuation phenomenon was also found [50]. The EPIs variations in spring and summer
were different, this may be influenced by the ENSO and Meiyu. In Hubei province, the
Meiyu is mainly during early summer, which would bring some extreme long-term or heavy
rainfall events [51], this may result in the special variation for EPIs in summer. Besides,
the ENSO has been reported as an important influencing factor on seasonal precipitation
variations in China [52]. And during 1960–2019, the 1970s and 2000s were dominated by
El Niño year, while the 1980s were dominated by La Niña year (Figure 12), which would
further affect the EPIs. These combined factors influence the temporal variations of EPIs.

The spatial variations of EPIs are greater on the seasonal scale than that on the annual
scale. Especially, the spring RX1day and R99p would increase in the future, and all EPIs
would increase in the future except CDD. These indicate that the extremely heavy rain
would occur more frequently in both spring and summer, while almost all EPIs events
will increase in the future in the summer period. One thing that needs to be noted is that
Wuhan city will experience increases in PRCPTOT, RX1day, RX5day, R95p, and R99p. It is
an important city for Hubei, but may suffer a more severe risk of extreme precipitation in
the nearfuture. The research conducted by Xiong et al. [53] also indicated that the extreme
precipitation volume has increased than before, which would aggravate the pressure on
the drainage infrastructure of Wuhan city. Besides, almost all cities within Hubei are
developing infrastructure, especially Wuhan. This may increase the probability of the
occurrence of environmental problems, such as soil erosion, water pollution, et al. [54].
Hubei province is also an important crop production base, extreme precipitation events
would also affect the farmers’ income [55]. More attention should be paid to these regions
(Wuhan, Suizhou, Yichang, Macheng, Jianshi, Jianli) where there is more risk of EPIs events.
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In addtion, compared to artificial intelligence-based methods (e.g., deep learning
methods [56], the machine learning methods [57], and the ACANN model [58]), which
have been popular in recent studies and do well in revealing the relationship between
multiple variables, a simple linear regression method was adopted in this study. In the
future, more studies should be done based on various artificial intelligence-based methods
to reveal a more complicated trend of EPIs within the Hubei province.

5.2. Connections between the El Niño-Southern Oscillation and EPIs and Its Prediction Function

As discussed in the previous section, some EPIs (RX1day, RX5day, R10, CDD, CWD,
and R99p) exist in relationship with El Niño-Southern Oscillation. The resonant period
between these EPIs and MEI mainly varied between three and six years, which may indicate
that the correlation between EPIs and El Niño-Southern Oscillation exists in short term.
In Hubei province, RX1day and R10 were positively correlated with MEI, while RX5day,
CDD, CWD, and R99p were negatively correlated with MEI. These indicate that the MEI
could be an indicator for EPIs in Hubei, the increase in MEI may result in the reduction of
continued heavy rain and an increase of extreme short rainfall events.

The EI Niño and La Niña are the main phenomenons caused by the El Niño-Southern
Oscillation, the series of annual EPIs of Hubei from 1979 to 2019, and the statistics of El
Niño and La Niña years during this period are shown in Figure 12. From Figure 12, we
could find that there exists consistency between most EPIs and the El Niño and La Niña
years in most cases. For example, PRCPTOT, RX1day, RX5day, R10, SDII, and R99p would
be extremely higher when near the El Niño years, and RX5day, SDII, CDD, and R95p
would be lower when near the La Niña years. This indicates that El Niño could increase
the occurrence probability of EPIs events within Hubei province. In previous research,
similar findings were found. Li et al. [25] found that the strong El Niño of 2015–2016 may
be the main cause of the extreme precipitation event in the Yangtze River regions in 2016,
which means that the El Niño would increase the magnitude of extreme precipitation. Xiao
et al. [59] found that the ENSO would lead a seasonal precipitation variability over middle
China. Fu et al. [16] revealed that the ENSO could exert an important effect on the East
Asian monsoon and further influence the extreme events in China. In the Philippines,
statistically significant changes in extreme precipitation were detected and were further
linked to ENSO [21]. Many related results were obtained in other literature [60–62]. The
influence of the El Niño-Southern Oscillation on EPIs is complicated and differs in regions,
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and more in-depth investigations should be conducted to reveal the mechanistic connection
between them.

6. Conclusions

The spatial-temporal variations of extreme precipitation during 1960–2019 were ana-
lyzed within Hubei province, China, and the correlations between extreme precipitation
indices and El Niño-Southern Oscillation were examined. The main results were as follows:

(1) The annual average value of PRCPTOT, RX1day, RX5day, SDII, R95p, and R99p is
1124.08, 95.75, 152.83, 12.56, 660.36, and 219.43 mm, respectively; the annual average
value of R20, R10, CDD, and CWD is 15.86, 32.45, 29.11, and 6.23 day, respectively.
The CWD decreased significantly (p < 0.05) during 1960–2019, and it would decrease
in the recent future. The annual EPIs were higher in the eastern and southwestern
Hubei compared to other regions, and extreme precipitation events will be increased
in most regions;

(2) The changing trend of EPIs in spring and summer was more obvious compared to
that on an annual scale, both in temporal and space. The spring RX1day and R99p
will be increased in the near future, which indicates that extreme rainstorm events
may be increased in spring. Almost all EPIs except CDD would be increased in the
recent future, showing that more attention should be paid in summer to the disaster
prevention caused by extreme precipitation events;

(3) In Hubei province, RX1day and R10 were positively correlated with El Niño-Southern
Oscillation, while RX5day, CDD, CWD, and R99p were negatively correlated with El
Niño-Southern Oscillation. MEI could be an indicator for EPIs in Hubei, the increase
in MEI will result in the reduction of continued heavy rain and an increase of extreme
short rainfall events;

(4) More attention should be paid to meteorological observations and rainstorm predic-
tions in Wuhan, Enshi, and Macheng (especially in summer) where there may be
an increase in the intensity indices of extreme precipitation (RX1day, RX5day, R95p,
and R99p). This may help to reduce the economic losses brought about by extreme
precipitation events.
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