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Abstract: We tried to estimate anthropogenic emission sources, including the contributions of neigh-
boring regions, that affect the fine particle concentration (PM2.5) in Daejeon using positive matrix
factorization (PMF), concentration weight trajectory (CWT), and modified concentration weight
trajectory (MCWT) models in a manner that might overcome the limitations of widely applied hybrid
receptor models. Fractions of ion, carbonaceous compound and elements in PM2.5 were 58%, 17%,
and 3.6% during January and 49%, 17%, and 14.9% during May to June, respectively. The fraction of
ions was higher during winter season, while the fraction of elements was higher during the other
season. From the PMF model, seven factors were determined, including dust/soil, sea salt, secondary
nitrate/chloride, secondary sulfate, industry, coal combustion, and vehicle sources. Secondary sulfate
showed the highest contribution followed by secondary nitrate/chloride and vehicle sources. The
MCWT model significantly improved the performance of regional contributions of the CWT model,
which had shown a high contribution from the Yellow Sea where there are no emission sources.
According to the MCWT results, regional contributions to PM2.5 in the Daejeon metropolitan re-
gion were highest from eastern and southern China, followed by Russia, northeastern China, and
Manchuria. We conclude that the MCWT model is more useful than the CWT model to estimate
the regional influence of the PM2.5 concentrations. This approach can be used as a reference tool for
studies to further improve on the limitations of hybrid receptor models.

Keywords: PM2.5; positive matrix factorization; emission source; modified concentration weight
trajectory; hybrid receptor model

1. Introduction

Increasing industrialization, urbanization, and the accompanying population growth
in Northeast Asia, including Korea, in recent decades have given rise to substantial atmo-
spheric environmental pollution in the form of anthropogenic air pollutants and particulate
matter (PM) [1–3]. PM and gaseous air pollutants adversely affect human health and visibil-
ity and contribute to global climate change [2,4–6]. Particulate matter less than 2.5 microns
in aerodynamic diameter (PM2.5, i.e., fine particles) is classified by the International Agency
for Research on Cancer (IARC) as a Group 1 carcinogen, which is regarded as a major con-
cern in many countries [7]. Fine particles produced from both anthropogenic and natural
sources can be inhaled and penetrate into deeper areas of the human body, and then they
adversely affect human health by reacting with their large surface area [8–10]. According
to a World Health Organization (WHO) report, about 90% of the population of urban
residents during 2014 were exposed to excess concentrations of PM2.5 [11]. Approximately
7 million people died of various diseases related to PM2.5 exposure around the world [12].
The Korean government, through the Ministry of the Environment, has conducted trials
that have focused on managing specific sources, such as mobile and coal power plants, to
mitigate PM pollution [13], but scientific evidence about major sources is still insufficient.
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To achieve an effective strategy for PM pollution control, the major sources and their con-
tributions to PM pollution should be identified [1,13,14]. An effective top-down scientific
approach would consist of identifying sources of PM emissions and characterizing PM at
the receptor, the sampling location where air quality is measured [1,13,14].

Various mathematical or statistical modeling methods have been introduced for de-
termining the influence of PM2.5 pollution at the receptor. Many studies have used the
positive matrix factorization (PMF) model, one of several receptor models, in an attempt to
trace emission sources [15–21]. Receptor models such as the PMF model are a powerful
tool to analyze complicated data such as air quality data based on 12 statistically extracted
emission sources [13,22,23]. However, those receptor models do not include functions that
can locate sites of pollution origin. Accordingly, several hybrid receptor models using
a back trajectory of air mass such as the potential source contribution function (PSCF),
the concentration-weighted trajectory (CWT), the residence time-weighted concentration
(RTWC), and others have been developed [24–26]. However, a limitation of these hybrid
receptor models is that they tend to overestimate the contribution of the sea and other
sources where there actually are little or no emission sources [27,28]. Hybrid models are
still needed to improve the tracing function that finds the source location [29–34]. PSCF
models are often unable to classify regions with a high contribution because the same PSCF
values appear when the sample concentration is high [35]. As an alternative, the CWT and
concentration field (CF) hybrid models using pollution concentrations in grid cells were
developed [36]. However, these hybrid receptor models still need to compensate for the
overestimation in the grid without any emission sources.

A recent, large-scale study (Fine Particle Research Initiative in East Asia Considering
National Differences (FRIEND)) has scientifically identified PM2.5 pollution in Korea. The
central region of Korea, including Chungcheongnam-do, Chungcheongbuk-do, Jeollabuk-
do, Daejeon, and Sejong-si, is one of the research regions in this project. The Daejeon
metropolitan region, located in the center, has a supersite for air quality monitoring (Central
Air Environment Research Center). An emission inventory of air pollutants from the central
region of Korea shows that emissions of SOx, VOCs, PM, and others are higher than those
from the capital region (Seoul, Gyeonggi-do, Incheon) because the central region of Korea
has, in particular, large-scale power plants and steel mills. Most previous studies related to
PM source apportionment using receptor models were mostly focused on the capital region
in Korea.

In this study, a hybrid receptor model that combines features of the PMF and MCWT
was used to identify PM2.5 pollution in Daejeon metropolitan city. The source apportion-
ment of was carried out using this PMF model, and finally, contributions of dominant
sources and the area of origin influencing PM2.5 pollution in the Daejeon metropolitan
region were investigated using an MCWT model which is used to overcome the limitations
of the CWT model.

2. Experimental Methods
2.1. Sampling Location and Monitoring Site

Figure 1 shows the location of the measurement site and surrounding environmen-
tal/industrial conditions, including the central region of Korea, which contains a monitor-
ing site adjacent to the Yellow Sea in the west (oversea influence), the capital region (urban
influence) in the north, the southeastern region (mountain influence), and the southern
region (agricultural influence). The distribution of emission sources in the central region
includes large manufacturers such as petroleum plants, steel mills, and coal-fired power
plants, which are located in the northwest; animal feeding operations and a coal-fired
power plant located in the west; urban areas, including the Daejeon metropolitan region,
Sejong special self-governing city, Cheongju-si, and Cheonan-si, located in the central-north;
and cement industries located in the northeast. This central region in Korea is thus a proper
geographical location to determine internal and external sources of emissions of PM2.5 and
any interactions between the sources. The measurement site is located at 36◦19′21.4′′ N
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(latitude), 127◦24′49.7′′ E (longitude), i.e., one of the supersites in the central region of
Korea (Central Air Environment Research Center).
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Figure 1. Location of the measurement site and surroundings.

2.2. PM2.5 Sampling and Measurement

The two PM2.5 monitoring periods were from 1 January to 31 January 2021, and
1 May to 30 June. Measurement compounds were PM2.5 mass concentration, 8 ions (SO4

2−,
NO3

−, Cl−, Na+, NH4
+, K+, Mg2+, and Ca2+), organic carbon (OC) and elemental carbon

(EC), and 17 elements (Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Ba, and Pb).
Hourly data for all measurement compounds were used in this study. Real-time PM2.5
mass concentration (µg/m3) was measured by beta-ray attenuation methods (BAM-1020,
Met One Ins, Oregon, 97526, USA) which semi-continuous monitoring method. Ions were
analyzed by an Ambient Ion Monitor (AIM(9000D), URG Co., North Carolina, 27516, USA),
i.e., ion chromatography (IC) [37,38]. The experimental conditions of IC in details are
shown in Table S1 in the Supplementary Materials.

OC and EC were analyzed by the thermal/optical transmittance method (OCEC
Aerosol Analyzer, Sunset Laboratory) and non-dispersed infrared (NDIR) method based on
the National Institute for Occupational Safety and Health (NIOSH) and the Environmental
Protection Agency (EPA) Scientific and Technology Network (STN) methods. Table S2 in
the Supplementary Materials shows gas and temperature conditions of the OCEC Aerosol
Analyzer [37].

Elements were analyzed by an online X-ray fluorescence (XRF) (Xact® 625i, SailBri
Cooper, Inc., Tigard, OR 97223, USA) [38,39]. Online PM2.5 samples were taken by a
PM2.5 cyclone and collected on a filter tape. Mass concentration of 17 elements were
detected by non-destructive analysis method. Further details on sampling and analysis
methods are provided in the references [37]. Table S3 in the Supplementary Materials
shows measurement detection limit (MDL) of PM2.5 components.

2.3. Positive Matrix Factorization (PMF)

PMF receptor models are based on an algorithm that calculates factors as positive
values and minimizes the least square of individual data [13]. Positive matrix factorization
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(PMF) model version 5.0 was used in this study. In the PMF model, X data matrix can be
expressed as two matrices, i.e., G (n× p) and F (p×m) (Equation (1)), where n and m are
the number of samples and chemical species, respectively. E is the residual species; p is the
number of extracted factors. In Equation (1), G means the source contribution matrix of p
(number of factors) and F means the source profile matrix.

X = GF + E (1)

Missing values for mass concentration or abnormal data that exceeded the recom-
mended ratios between PM2.5 and each individual species were eliminated in the data
preprocessing. Data processing details for input data were described in “An estimate of
internal and external sources contributing to ambient particulate matter and a guideline on
the application of air quality receptor models (II)” [40].

2.4. Concentration Weight Trajectory (CWT)

Hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) and CWT models
based on the HYSPLIT model were used in this study to trace source locations. A HYSPLIT
model developed by the National Oceanic and Atmospheric Administration/Air Research
Lab (NOAA/ARL) was used to induce air masses arriving at the receptor site. The HYSPLIT
model calculates the trajectories using grid data obtained by various weather forecast
models. A 3-day back trajectory (500 m height) was used in this study. The 3-day back
trajectories are the most common method to analyze transportation of air mass in East Asia
on the Korean Peninsula. Previous studies have shown that short-range reverse trajectory
patterns, such as 3-day back trajectory, are useful to identify which regions are potential
sources of the dominant aerosol type [41]. CWT analysis was processed using the package
“openair” in R studio [36]. The concentration used in the CWT analysis was calculated
according to Equation (2). In Equation (2), i and j are the grids indicating each location, k
is the index of trajectory. N is the total number of trajectories, Ck is the concentration of
pollutants when k trajectory arrives at the receptor site. τijk means the residence time of
k trajectory at the grid (i, j). The high Cij means that k trajectory passed by the grid (i, j)
causing a high average concentration at the receptor site [36].

ln(Cij) =
1

∑N
k=1 τijk

N

∑
k=1

ln(Ck)τijk (2)

To improve the limit of CWT, which continuously overlaps depending on the analyzed
trajectory, a modified concentration weight trajectory (MCWT) model was also used and
compared with CWT model. In the MCWT model, a trajectory that appeared at a concen-
tration of 5 µg/m3 or less (background level) among the analyzed Ck values was extracted
under the assumption that the trajectory did not affect the high levels of concentration of
the receptor site.

3. Result and Discussion
3.1. Chemical Composition of PM2.5

Table 1 shows the PMF input data of the physicochemical composition of PM2.5 during
the one-month period of January 2021 and during the two-month period of May to June
2021. Data which had possible errors were eliminated in the preliminary data analysis.
Fractions of ion, carbonaceous compound and elements in PM2.5 during January were 58%,
17%, and 3.6%, respectively, while those fractions during May to June were 49%, 17%, and
14.9%, respectively. Owing to yellow dust events, the elements fraction during May to
June was significantly higher than that during January. The average PM2.5 concentration
was 25 ± 14 µg/m3 during January and 22 ± 19 µg/m3 during May to June. The highest
PM2.5 concentrations were 104 µg/m3 during January and 183 µg/m3 during May to June.
The element high concentration during January was 8.53 µg/m3, while the concentration
during May to June was significantly higher (85.2 µg/m3), indicating a yellow dust event in
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this period. Filonchyk et al. (2022) reported that yellow dust was formed by sand storms in
the Gobi Desert in China [42]. The concentration of cluster elements (Ca, Al, Fe etc.) existed
at a higher concentration during the period of yellow dust [42,43]. Dust storms deliver
large amounts of crustal aerosols and trace elements [44]. Therefore, the concentration of
the elements was high in the period of May–June containing yellow dust events. Indeed,
the fraction unknown portion in PM2.5 was considerably high in yellow dust periods,
compared with other periods. Thus, the extremely high fraction of elements would be
sometimes possible to be expressed in the PM2.5 chemical speciation. Average sulfate and
nitrate concentrations were 3.29 ± 2.09 µg/m3 and 8.32 ± 5.96 µg/m3 during January and
5.01 ± 3.01 µg/m3 and 3.45 ± 4.39 µg/m3 during May to June, respectively. The sulfate
concentration was higher during May to June, while nitrate was higher during January.
Guo et al. (2010) reported that the formation of sulfate in May–June was higher than other
periods and the sulfate was mainly attributed to the formation of cloud or aerosol droplets
(70–80%), while nitrate decreased because NH4NO3 was converted to gas-phase HNO3
and NH3 by thermodynamic equilibrium in May–June [45]. These results were consistent
with previous reports that the gas-to-particle conversion rate from sulfur dioxide to sulfate
salt was higher in the daytime in the humid summer season [7,22,23] and the formation
of particulate nitrate was more significant in conditions of low temperature and relative
humidity [46,47].

Figure 2 shows the fraction of major compounds in PM2.5. The average concentrations
of SO4

2−, NO3
−, NH4

+, OC, EC, and elements during January were 15%, 39%, 18%, 18%,
5%, and 5%, respectively, while those fractions during May to June were 26%, 18%, 16%,
16%, 3%, and 14.9%, respectively. When PM2.5 concentration rose during sampling periods,
NO3

- was increased in the January period. May to June showed high SO4
2−, but elements

were high due to the yellow dust events, e.g., crustal elements. The fractions of OC
and NH4

+ were quite stable because OC emission was mainly caused by vehicle source
rather than the source of biomass burning in Daejeon area and ammonium at all times
combined with either nitrate or sulfate, regardless of seasonal variations in winter and
summer [45,48–51].

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 16 
 

 

/PM2.5 

Element 738 1.04 0.64 1.16 8.53 0.12 1430 3.97 2.66 7.96 85.2 0.031 

Element 

/PM2.5 
738 0.036 0.02 0.04 0.29 0.004 1426 0.149 0.13 0.07 0.81 0.01 

Figure 2 shows the fraction of major compounds in PM2.5. The average concentrations 

of SO42−, NO3−, NH4+, OC, EC, and elements during January were 15%, 39%, 18%, 18%, 5%, 

and 5%, respectively, while those fractions during May to June were 26%, 18%, 16%, 16%, 

3%, and 14.9%, respectively. When PM2.5 concentration rose during sampling periods, 

NO3- was increased in the January period. May to June showed high SO42−, but elements 

were high due to the yellow dust events, e.g., crustal elements. The fractions of OC and 

NH4+ were quite stable because OC emission was mainly caused by vehicle source rather 

than the source of biomass burning in Daejeon area and ammonium at all times combined 

with either nitrate or sulfate, regardless of seasonal variations in winter and summer 

[45,48–51]. 

 

Figure 2. PM2.5 chemical speciation during the measurement periods. 

3.2. Source Apportionment by PMF 

In the PMF base model, differences between observed and estimated values for fac-

tors such as the correlation coefficient (R2), slope, intercept, and standard error underwent 

preliminary data analysis. Major components (PM2.5, SO42−, NO3−, NH4+, OC, EC, K, V, and 

As), which were frequently used as markers in the source apportionment, mostly showed 

good values indicating an R2 of more than 0.8 (data not shown). Figure 3 and Figure 4 

show factor profiles and contributions by PMF during both measurement periods (1 Jan-

uary to 31 January and 1 May to 30 June 2021). This result was optimized by changing the 

number of factors and considering whether markers expressed factor properties well. In 

conclusion, seven factors for source profile and contributions were selected, as shown in 

Figures 3, 4 and Table 2. 

Figure 5 shows the correlation between observed and predicted PM2.5 mass concen-

trations. The correlation coefficient (R2) between observed and predicted PM2.5 concentra-

Figure 2. PM2.5 chemical speciation during the measurement periods.



Atmosphere 2022, 13, 1902 6 of 15

Table 1. PMF input data during the measurement period (µg/m3).

Jan. 2021 May to Jun. 2021

Data
(n)

Ave. Med. Std. Max. Min. Data
(n)

Ave. Med. Std. Max. Min.

PM2.5 743 25 22 14 104 1 1460 22 19 19 183 1
SO4

2− 540 3.29 2.74 2.09 11.8 0.33 890 5.01 4.89 3.01 15.8 0.16
NO3

− 540 8.32 7.05 5.96 42.2 0.55 890 3.45 1.83 4.39 29.5 0.07
Cl− 540 0.75 0.67 0.41 2.92 0.1 866 0.16 0.07 0.23 1.44 0.005

Anions 540 12.3 10.1 7.58 56.1 1.56 890 8.61 7.31 6.76 45.9 0.31
Anions/PM2.5 540 0.43 0.35 0.26 1.93 0.05 888 0.37 0.36 0.15 1.19 0.013

Na+ 419 0.13 0.09 0.1 0.63 0.02 935 0.1 0.06 0.13 1.32 0.005
NH4

+ 540 3.9 3.21 2.68 19.3 0.4 962 3.07 2.64 2.35 14.9 0.014
K+ 291 0.16 0.13 0.13 0.9 0.01 847 0.16 0.13 0.13 0.93 0.005

Mg2+ 497 0.09 0.03 0.21 2.58 0.01 791 0.05 0.02 0.12 0.85 0.005
Ca2+ 539 0.33 0.13 0.74 7.79 0.01 949 0.26 0.09 0.79 6.81 0.006

Cations 540 4.5 3.81 2.98 20.1 0.5 969 3.59 3.13 2.44 15.2 0.09
Cations/PM2.5 540 0.16 0.13 0.1 0.72 0.02 968 0.15 0.15 0.06 0.45 0.01

A+C/PM2.5 540 0.58 0.48 0.36 2.65 0.07 968 0.49 0.49 0.22 1.64 0.016
OC 737 3.81 3.34 2.07 12.4 0.92 1385 2.93 2.34 2.08 12.9 0.14
EC 737 1.03 0.81 0.73 4.21 0.11 1300 0.51 0.45 0.27 1.71 0.02

Carbon 737 4.84 4.19 2.74 16.6 1.18 1392 3.39 2.85 2.32 14 0.03
Carbon/PM2.5 737 0.17 0.14 0.09 0.57 0.04 1388 0.17 0.16 0.08 0.82 0.01

Element 738 1.04 0.64 1.16 8.53 0.12 1430 3.97 2.66 7.96 85.2 0.031
Element/PM2.5 738 0.036 0.02 0.04 0.29 0.004 1426 0.149 0.13 0.07 0.81 0.01

3.2. Source Apportionment by PMF

In the PMF base model, differences between observed and estimated values for factors
such as the correlation coefficient (R2), slope, intercept, and standard error underwent
preliminary data analysis. Major components (PM2.5, SO4

2−, NO3
−, NH4

+, OC, EC, K,
V, and As), which were frequently used as markers in the source apportionment, mostly
showed good values indicating an R2 of more than 0.8 (data not shown). Figures 3 and 4
show factor profiles and contributions by PMF during both measurement periods (1 January
to 31 January and 1 May to 30 June 2021). This result was optimized by changing the number
of factors and considering whether markers expressed factor properties well. In conclusion,
seven factors for source profile and contributions were selected, as shown in Figures 3 and 4
and Table 2.

Figure 5 shows the correlation between observed and predicted PM2.5 mass concentra-
tions. The correlation coefficient (R2) between observed and predicted PM2.5 concentrations
was significant (R2 = 0.939). This study showed a similar value compared with previous
studies that showed correlation coefficients between predicted and observed concentrations
ranging from 0.93 to 0.96 [23,52].

Factor 1 was classified as vehicle source (exhaust gas), indicating a higher contribution
of OC, EC, and Fe. In general, OC and EC appear in the vehicle combustion process [48–51].
The average contribution during whole monitoring periods was 4.8 µg/m3 (17%), and the
contribution of vehicle sources had no significant pattern during the monitoring period.
In general, the emission of diesel exhaust showed high EC, while the emission of gasoline
exhaust showed high OC [48–51]. Unfortunately, diesel and gasoline vehicle sources were
not distinguished in this study. A past study reported that the contribution of gasoline
vehicles was usually higher than that of diesel vehicles in urban areas [9].
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Table 2. Source contribution for seven sources during the whole measurement periods.
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+. Gaseous ammonia, NOx, and Cl2 or Cl− salt emitted

or transported from various sources formed NH4NO3 and NH4Cl in the atmosphere by
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photochemical oxidation with gaseous ammonia [16,53]. The average contribution of this
source during whole monitoring periods was 6.3 µg/m3 (22%), and this factor was the
second highest source influencing PM2.5 pollution in Daejeon city. The contribution of
this factor was higher during January because nucleation and condensation of gaseous
compounds progressed well for gas-to-particle conversion in low temperature conditions
during the winter season (Figure 6). The formation of secondary nitrate by the oxidation of
NOx generally progresses well in conditions of low temperature and high humidity [46,47].
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Factor 3 was classified as a secondary sulfate source, indicating a higher contribution
of SO4

2− and NH4
+. (NH4)2SO4 is formed from gaseous SO2 in the air by combination

with gaseous ammonia [22]. The average contribution of secondary sulfate source for
whole monitoring periods was 8.6 µg/m3 (30%), which was the most dominant source
influencing PM2.5 pollution in Daejeon city. The contribution of secondary sulfate sources
was higher during May to June than that during January due to the high humidity and
high temperature, which allows for the formation of particulate sulfate (Figure 6). In a
previous study, Dockery and Stone (2007) demonstrated that the conversion from SO2 to
SO4

2− was higher during the summer season and daytime than during the winter season
and nighttime [9,22].

Factor 4 was classified as an industry source, indicating a higher contribution of
elements such as Cr, Mn, Fe, Cu, Ni, and Zn. The average contribution during the whole
monitoring period was 1.6 µg/m3 (5.6%). The variation of this factor between January and
May to June had no significant pattern during the monitoring period (Figure 6), which
coincided with a previous study [54].

Factor 5 was classified as a coal combustion source, indicating a higher contribution of
As. In many cases, As, K, and Mn are used as markers for coal combustion sources [13,54].
The average contribution during the whole monitoring period was 1.4 µg/m3 (4.9%), and
the temporal contribution of this source was reasonably higher during the winter season
(Figure 6).

Factor 6 was classified as a dust/soil source, indicating a higher contribution of Ca2+,
Mg2+, Si, Ti, and Fe. Average contributions of dust sources during the whole monitoring
period were 4.6 µg/m3 (15.9%), and the contribution during May to June was higher than
that during January because of yellow dust events from 7 May to 9 May (3 days) (Figure 6).
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In the previous study, Si, Ti, Fe, and so on were used as markers for dust sources and the
profile showed similar values with a previous study [23].

Factor 7 was classified as a sea salt source, indicating a higher contribution of Na+ and
Cl−. Sea salt is composed of Na+ and Cl- and is generally produced from the sea surface
by bubble bursting of waves. The contribution of Cl− was considerably low, probably
because of Cl- depletion through the reaction between NaCl and gas-phase HNO3 formed
by thermodynamic equilibrium with NH4NO3 [55]. The contribution of sea salt during
May to June was higher than during January (Figure 6). Yellow dust events occur in these
periods and wind speed is usually high during yellow dust events. High wind speed
influenced the activity of bubble bursting; thus, the contribution of sea salt was high during
the yellow dust event period.

3.3. Regional Contribution

Figure 7 shows the clusters of 3-day back trajectories using a HYSPLIT model using
the openair package (RStudio (v. 4.2.2)). In the openair package, the clusters of back
trajectories were calculated by Euclid distance and angle distance. The angle distance matrix
indicates the similarity of angles between two different back trajectories from their starting
points. In the 3-day back trajectory analysis, most air masses were transported from the
northwest direction of the Korean Peninsula, which is the traditional geographical property
of the Korean Peninsula (dominated by the prevailing westerlies). Inflow of secondary
aerosols with most air masses can be speculated because secondary sulfate, secondary
nitrate/chloride occupied 52% of the total contribution in the PMF result (Table 2).
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In this study, the PMF model was used to find dominant sources and the CWT model
was used to trace hot spots influencing PM2.5 pollution in the central region in Korea.
The result produced by this hybrid model was compared with that produced by a CWT
single model.

Figure 8 shows the PM2.5 mass concentration by a CWT model using three different
approaches. Data used PM2.5 mass concentrations for entire measurement periods (January
2021 and May to June 2021). High PM2.5 mass concentration episodes in the central region
in Korea were observed during the yellow dust events, with PM2.5 concentrations higher
than 100 µg/m3. The results using a CWT model based on 3-day back trajectory (Figure 8a)
showed that air masses from the Yellow Sea, western China and northern China strongly
influenced high PM2.5 episodes at the receptor site. Although the Yellow Sea has no
anthropogenic emission sources, the Yellow Sea area highly influences PM2.5 pollution
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in the CWT model, which is actually a limitation of CWT models. In other words, the
contributions near the receptor site affected by the air mass (e.g., the Yellow Sea) can be
overestimated by the overlapping of several trajectories with different concentration levels
when many air mass trajectories pass near the receptor site.
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Thus, a modified concentration weight trajectory (MCWT) was used to improve the
original CWT model which overestimated specific grids without emission source, e.g., the
Yellow Sea. The equation of MCWT is as follows (Equation (3)).

ln(Cij) =
1

∑N
k=1 τijk

∑N
k=1 ln(Ck)τijk ,

(
Ck ≤ 5, ln(Cij) = 0

)
(3)

Figure 8a–c show the result of the original CWT, and MCWT, respectively. In MCWT,
ln(Cij) values in Equation (3) for the grids passed less than Ck value 5 µg/m3 (background
level) were set to zero, even if other trajectories passed over the grids (Ck ≤ 5→ 0, Figure 8b).
In addition to Ck ≤ 5→ 0, yellow dust events were eliminated to locate anthropogenic
sources continuously influencing PM2.5 pollution at the receptor site because the effect of
the yellow dust events was dominant when the concentration of Ck was high (Ck ≤ 5→ 0,
delete dust event, Figure 8c).

The original CWT model result was that anthropogenic emission sources were dis-
tributed in the desert areas of northern China and the Yellow Sea area on the southwest
side of Korea. Unusually, the contributions of the Yellow Sea area were higher than those
in the eastern area of China where many industries are distributed (Figure 8a). Therefore,
this result means that the CWT model could not reflect the real status. On the other hand,
the results of the MCWT show that anthropogenic emission sources were only distributed
in desert areas of northern China and the influence of the Yellow Sea fully decreased, com-
pared with Figure 8a. This result shows that an MCWT model significantly improves the
model performance and an MCWT model can be more useful than a CWT model to locate
anthropogenic emission sources or areas (Figure 8b). The contributions in Figure 8b still
contain yellow dust events which occur at only particular times of the year. It is difficult
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to find out the net-influence of the anthropogenic emission source or area (grid) owing to
yellow dust events. Because the concentration of PM2.5 during the dust period increased to
higher than 100 µg/m3 or more, the CWT model weighted concentration reveals a limita-
tion in which there was not a relatively existent contribution from an anthropogenic source.
Although the yellow dust event occurs during a short period (a few days), it usually plays
a dominant role in PM source apportionment [56,57]. Therefore, Figure 8c shows the result
after eliminating yellow dust events; it clearly shows the anthropogenic emission grids
influencing PM2.5 pollution in the receptor site. Anthropogenic emission grids were mostly
distributed in eastern and southern China, a famous industrial area in China (Shandong,
Hebei, Jiangsu, Zhejiang, etc.) [58,59]. Another anthropogenic emission source area is the
region adjacent to northeastern China, Russia, and the western region of Japan [60], where
there are energy power plants in Goto, Japan [61].

In this study, we suggest that an MCWT model, after eliminating yellow dust events,
can significantly improve the ability to locate anthropogenic emission grids in Northeast
Asia. In the PMF analysis, secondary sulfate showed the highest contribution to PM2.5
pollution in the Daejeon metropolitan region, followed by secondary nitrate/chloride. This
result means that sulfur oxides and nitrogen oxides emitted from large-scale industrial
complexes were converted to particles by long-range transportation. Many industrial
complexes or parks in east and southern China significantly contributed to PM2.5 pollution
in the Daejeon metropolitan region in the MCWT analysis. In addition, the contribution
from northeastern China and the border area between China and Russia were also observed
in the MCWT analysis; those areas have small-scale industrial complexes.

4. Conclusions

In this study, we tried to estimate the emission sources that affect the fine particle con-
centration in Daejeon using the hybrid receptor models PMF, CWT, and MCWT. In the PMF
results, seven factors were selected for estimation of source profile and contributions (vehi-
cles, secondary nitrate/chloride, secondary sulfate, industry, coal combustion, dust/soil,
and sea salt). The secondary sulfate source (factor 3) showed the highest contribution (30%)
followed by the secondary nitrate/chloride source (factor 2, 22%), the vehicle source (factor
1, 17%), the dust/soil source (factor 6, 16%), the coal source (factor 5, 5%), the industry
source (factor 4, 5%), and the sea salt source (factor 7, 5%). As seasonal contributions, the
secondary nitrate/chloride source and coal combustion source showed a high contribution
in the January period. Secondary sulfate sources and dust/soil sources showed a high
contribution in the May to June period. In this study, CWT based on HYSPLIT overesti-
mated values owing to the overlapping of several trajectories, especially in the Yellow Sea
area (Yellow Sea effect). The MCWT model significantly improved the limitation of CWT
results by decreasing the Yellow Sea effect. The result showed that the western area of
China and Manchuria dominantly affect PM2.5 pollution in the receptor site. Therefore, we
suggest that the MCWT model is more useful than the CWT model to estimate the regional
influence of the PM2.5 concentration at the receptor site in Korea. In addition, the research
approach of this study can be used as a reference tool for studies to improve the limitations
of the hybrid receptor model in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/atmos13111902/s1, Table S1. Analytical conditions of ion chromatography
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MDL of PM2.5 components.
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50. Coufalík, P.; Matoušek, T.; Křůmal, K.; Vojtíšek-Lom, M.; Beránek, V.; Mikuška, P. Content of metals in emissions from gasoline,
diesel, and alternative mixed biofuels. Environ. Sci. Pollut. Res. 2019, 26, 29012–29019. [CrossRef]

51. Cheung, K.L.; Ntziachristos, L.; Tzamkiozis, T.; Schauer, J.J.; Samaras, Z.; Moore, K.F.; Sioutas, C. Emissions of particulate trace
elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative
potential. Aerosol. Sci. Technol. 2010, 44, 500–513. [CrossRef]

52. Taghvaee, S.; Sowlat, M.H.; Mousavi, A.; Hassanvand, M.S.; Yuesian, M.; Naddafi, K.; Sioutas, C. Source apportionment of
ambient PM2.5 in two locations in central Tehran using the Positive Matrix Factorization (PMF) model. Sci. Total Environ. 2018,
628–629, 672–686. [CrossRef] [PubMed]

53. Chun, M.Y.; Lee, Y.J.; Kim, H.K. Concentration of NH4NO3 in TSP in Seoul Ambient Air. J. Korean Soc. Atmos. Environ. 1994, 10,
130–136.

54. Son, S.E.; Park, S.S.; Bae, M.A.; Kim, S.T. A study on characteristics of high pollution observed around large scale stationary
sources in Chungcheongnam-do province. J. Korean Soc. Atmos. Environ. 2020, 36, 669–687. [CrossRef]

55. Jr, S.J.G.; Weis, J.; China, S.; Evangelista, H.; Harber, T.H.; Muller, S.; Sampaio, M.; Laskin, A.; Gilles, M.K.; Godoi, R.H.M.
Photochemical reactions on aerosols at West Antarctica: A molecular case-study of nitrate formation among sea salt aerosols. Sci.
Total Environ. 2021, 758, 143586.

56. Kim, K.H.; Kim, M.Y. The effects of asian dust on particulate matter fractionation in Seoul, Korea during spring 2001. Chemosphere
2003, 51, 707–721. [CrossRef]

57. Lee, B.K.; Jun, N.Y.; Lee, H.K. Comparison of particulate matter characteristics before, during, and after Asian dust events in
Incheon and Ulsan. Korea Atmos. Environ. 2004, 38, 1535–1545. [CrossRef]

58. Zhao, Y.F.; Shi, X.Z.; Huang, B.; Yu, D.S.; Wang, H.J.; Sun, W.X.; Oboern, I.; Blomback, K. Spatial distribution of heavy metals in
agricultural soils of an industry-based peri-urban area in Wuxi, China. Pedosphere 2007, 17, 44–51. [CrossRef]

59. Li, Y.; Lin, T.; Hu, L.; Feng, J.; Guo, Z. Time trends of polybrominated diphenyl ethers in east China seas: Response to the booming
of PBDE pollution industry in China. Environ. Int. 2016, 92–93, 507–514. [CrossRef]

60. Cho, J.W. The current situation and prospect of economic cooperation between far eastern Russia and three provinces of
northeastern China. Russ. Stud. 2013, 23, 343–373.

61. Patxi, G.N.; Yusaku, K. Tidal stream energy as a potential continuous power producer: A case study for west Japan. Energy
Convers. Manag. 2021, 245, 114533.

http://doi.org/10.1016/j.atmosenv.2011.09.058
http://doi.org/10.5194/acp-10-947-2010
http://doi.org/10.1016/j.atmosenv.2005.12.051
http://doi.org/10.1016/j.scitotenv.2019.03.410
http://doi.org/10.1007/s11356-019-06144-4
http://doi.org/10.1080/02786821003758294
http://doi.org/10.1016/j.scitotenv.2018.02.096
http://www.ncbi.nlm.nih.gov/pubmed/29455128
http://doi.org/10.5572/KOSAE.2020.36.5.669
http://doi.org/10.1016/S0045-6535(03)00036-5
http://doi.org/10.1016/j.atmosenv.2003.12.021
http://doi.org/10.1016/S1002-0160(07)60006-X
http://doi.org/10.1016/j.envint.2016.04.033

	Introduction 
	Experimental Methods 
	Sampling Location and Monitoring Site 
	PM2.5 Sampling and Measurement 
	Positive Matrix Factorization (PMF) 
	Concentration Weight Trajectory (CWT) 

	Result and Discussion 
	Chemical Composition of PM2.5 
	Source Apportionment by PMF 
	Regional Contribution 

	Conclusions 
	References

