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Abstract: This paper presents an analysis of the annual precipitation observed by a network of 30 rain
gauges in Iraq over a 65-year period (1941-2005). The simulated precipitation from 18 climate models
in the CMIP5 project is investigated over the same area and time window. The Mann-Kendall test is
used to assess the strength and the significance of the trends (if any) in both the simulations and the
observations. Several exploratory techniques are used to identify the similarity (or disagreement) in
the probability distributions that are fitted to both datasets. While the results show that large biases
exist in the projected rainfall data compared with the observation, a clear agreement is also observed
between the observed and modelled annual precipitation time series with respect to the direction of
the trends of annual precipitation over the period.

Keywords: precipitation; trend analysis; Iraq; climate projection; CMIP5

1. Introduction

Studying precipitation trends is an essential step in assessing the impact of climate
change on hydrological processes. A substantial change in the amount of precipitation can
lead to severe conditions of flooding and droughts. It is also important to examine such
trends for water resource planning since water demand may be affected; thus, strategies
and operations for the water supply need to be adjusted accordingly.

While the trend of recorded observations of hydro-meteorological variables, such
as precipitation, has been widely studied using long-term observation datasets, e.g., [1],
scenario-based climate projections are still a preferred source for most studies on the
future trends of climate change. More recently, the Fifth Climate Model Inter-comparison
Project CMIP5 [2] published a rich set of climate simulations produced by several key
metrological centres in the world, which offers an updated and improved (in both accuracy
and resolution) collection of outputs of climate models for many downstream impact
studies, e.g., [3-6].

The post-industrial period, particularly the 20th century, has been the focus of many
studies on the trend of hydro-climatic variables. Generally, these studies aimed to establish
a link between the so-called anthropogenic greenhouse effect and the change in climate, as
indicated by the key variables. Moreover, the baseline period was chosen by many studies
as observation records became abundant. The studied areas range from global to regional
scales. To name just a few: New et al. [7] showed that, in the 20th century, precipitation
has significantly changed in various parts of the world, and Griggs and Noguer [8] and
Xu et al. [9] pointed out that the average annual rainfall considerably increased by 7-12%
in the high and middle latitudes in the northern hemisphere during the 20th century.

Several statistical techniques have also been employed to detect the trend and the shift
of climatological variables, as reported in Martinez et al. [10]. There are two main families
of methods for determining trends, parametric and non-parametric, with non-parametric
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methods being preferred over parametric ones, as the former is less likely to be affected by
the outliers and does not assume a predefined distribution for datasets or homogeneity [11].
The statistical test of Mann—-Kendall, i.e., the MK test [12,13], has often been utilized to
evaluate the trends of rainfall [14,15].

Most studies have been carried out on the trend of observed hydro-meteorological
variables; few are focused on the trend analysis of simulated variables such as precipitation
projection from climate models. Rather, many studies make use of “snapshots” from climate
projections to indicate the difference (hence change) between the projected value of the
variable in question and its current values, without revealing the process or temporal trend
associated with such change.

On the other hand, researchers tend to use projected, scenario-defined variables from
climate model simulations, notably, precipitation, to drive other models for impact studies.
Errors or biases in these simulated variables have been widely recognized in this type of
application. While sophisticated bias correction methods have also been developed to cope
with this situation, little attention has been paid to the trend of those simulated variables
either with or without bias correction. It is very plausible that an overall quantity-fit
projection after bias correction may not be able to reproduce the trend revealed by the
observations; to some extent, this would be more of a concern in projection-driven climate
impact studies.

Trend analysis of precipitation data on the regional and global scales has been studied
by many researchers all over the world. Readers can refer to Palomino-Lemus et al. [16],
Sharmila et al. [17] and Palizdan et al. [18]. Global climate models are broadly utilized to
create current and project future climate conditions [19,20]. This is essential to investigate
and evaluate the models” performance in simulating precipitation to develop adaptation
strategies to reduce uncertainties in projecting precipitation in the future [21].

The Coupled Model Intercomparison Project Phase 5 (CMIP5) comprises more com-
prehensive global climate models than its predecessors, enabling researchers to address
many research questions [22]. The assessment methods for different models’ performance
have progressed from traditional qualitative methods to quantitative methods [23]. Some
research has assessed models based on some traditional statistical methods, such as spatial
correlation coefficients [24], linear trend analysis [20] and standard deviation [25].

Several climate studies that primarily used GCMs to estimate the future of the earth’s
climate system indicated changes in the climate from the regional scale [26,27] to global
scale [28,29]. Deng et al. [30] evaluated nine CMIP5 datasets under different RCP future
scenarios for the projections of summer and spring precipitation for the period of 2013-2050
over the Yangtze River basin in China. The precipitation projections revealed significant
positive linear trends of spring precipitation under the RCP2.6 and RCP8.5 scenarios, while
summer precipitation is shown to be undergoing an inter-annual change. Mehran et al. [31]
used volumetric hit index (VHI) analysis with 34 CMIP5 GCMs to reproduce observed pre-
cipitation across the globe. The GCMs showed good agreement with the observed monthly
time series. However, reproducing the observed precipitation over some subcontinental
and arid regions was problematic. Their finding proves the allegation that GCMs have
weaknesses when it comes to the representation of observed precipitation on small spatial
scales and short temporal scales, e.g., [27].

Nikiema et al. [32] compared and evaluated the multi-model ensembles of CMIP5 and
CORDEX and found that while CORDEX failed to outperform the temperature simulated
by the CMIP5 ensembles, it considerably enhanced the simulation of historical summer
precipitation and provided a more realistic fine-scale features tied to land use and local
topography. Long-range correlation (LRC) is an effective way to evaluate CMIP5 models’
performance in global precipitation and has been employed in many aspects of climate
systems, such as precipitation [33] and air temperature [34].

The above studies have contributed immensely to the assessment of the performance
of GCMs and RCMs in reproducing the observed climatology of various regions, but very
few focus on places with limited observed climate data, such as Iraq. Therefore, assessing
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the performances of several GCMs from CMIP5 over Iraq will contribute significantly to
the efforts in climate modelling over the region.

The study presented in this paper takes a different approach from those used by many
previous studies in trend analysis. It first investigates the observed precipitation in Iraq
over a 65-year period (1941-2005); this is then compared with the modelled precipitation
from an array of 18 climate models from the latest CMIP5 projects. Both the spatial and
temporal distribution trends are studied alongside a bias correction procedure applied to
the modelled data. Further, several exploratory statistical techniques are used to check the
similarity between the observed and modelled precipitation.

2. Materials and Methods
2.1. Study Area

Located within the southwest of the continent of Asia, Iraq shares land borders with
Turkey in the north, Kuwait and Saudi Arabia in the south, Iran in the east and Syria and
Jordan in the west (Figure 1). Iraq comprises a total area of 437,065 km?. The climate is
mainly described as a semi-arid, subtropical, and continental type; meanwhile, the north
and northeast parts have a Mediterranean climate [35]. Iraq has a rainy season in cold
months, from December to February, excluding the north area of the country, where the
seasonal precipitation takes place from November to April.

Kuwait

Figure 1. Elevation map of Iraq with climatic zones.

The yearly precipitation in Iraq is estimated to be 216 mm countrywide on average;
regionally, it has a range of less than 100 mm over the southern region to 1200 mm in the
northeast of the country [35]. Summer in Iraq is hot and dry to extremely hot with a shade
temperature of over 43 °C that falls at night to 26 °C. Winter is cold, with a day temperature
of about 16 °C, dropping at night to 2 °C [36]. According to the FAO [35], Iraq can be
divided into four agroecological zones:

(1) Semi-arid and arid zones with a Mediterranean climate (zone 1 in Figure 1): The
annual precipitation varies between 700 and 1000 mm and occurs between October
and April. The country has cold and rainy winters, while summers are hot and dry;
they are even torrid up to quite high altitudes. This zone mainly covers the north of
the country. This is the only region in Iraq that receives a considerable amount of
precipitation.

(2) Steppes with winter rainfall of 200400 mm annually (zone 2 in Figure 1): Summers are
extremely hot, and winters are cold. In the cold season of the year, some depressions
can pass that carry moderate precipitation.

(3) The desert zone/northwest of Mesopotamia (zone 3 in Figure 1) has a high tempera-
ture in summer and less than 200 mm of yearly rainfall.



Atmosphere 2022, 13, 1869

40f18

(4) The irrigated area which covers the region between the Euphrates and Tigris rivers
(zone 4 in Figure 1). This region has a desert or semi-desert climate, with mild winters
and extremely hot summers.

The land elevation decreases from the northeast mountainous parts near the Iranian
and Turkish borders (3450 m) to the desert regions in the south and west near the Syrian

and Saudi Arabian borders (a few meters above sea level).

2.2. Precipitation Data

Due to the limited and restricted availability of data, only monthly precipitation
data from 30 rain gauges over the period of 19412005 are obtained from the General
Organization of Meteorology and Seismic Monitoring in Iraq, and these are illustrated
in Figure 1 alongside a summary presented in Table 1. The gaps due to missing data are
filled using the inverse distance weighted interpolation method (IDW). The annual average
precipitation over the study area is then interpolated over the country, ranging from 92 to

376 mm, as shown in Figure 2.

Table 1. Iraqi rain gauge stations used in this study.

Station Station ID Lat. Lon. Altitude (m) Station Station ID Lat. Lon. Altitude (m)
Sinjar Ry 36.32° 41.83° 583 Diwaniya Rig 31.95° 44.95° 20
Telaefer R, 36.37° 42.48° 373 Ramadi Ry 33.45°  43.32° 48
Najaf R3 31.95° 44.32° 53 Tuz Rig 34.88°  44.65° 220
Qaim Ry 34.38° 41.02° 178 Samaraa Ri9 34.18°  43.88° 75
Anah Rs 34.37° 41.95° 175 Amara Rpg 31.83°  47.17° 9
Nukheb Rg 32.03° 42.28° 305 Mosul Ry 36.31°  43.15° 223
Hai Ry 32.13° 46.03° 17 Rutba Ry» 33.03°  40.28° 222
Semawa Rg 31.27° 45.27° 11 Tikrit Ry3 34.57°  43.70° 107
Heet Rg 33.63° 42.75° 58 Biji Roy 34.90° 43.53° 116
Rabiah Ryp 36.80° 42.10° 382 Haditha Rys 34.13°  42.35° 108
Hella Ry1 32.45° 44.45° 27 Fao Ryg 29.98°  48.50° 1
Baghdad Rin 33.30° 44.40° 32 Khanagin Ryy 34.21°  45.23° 202
Nasiriya Ris 31.02° 46.23° 5 Basra Rog 30.50°  47.83° 2
Kut Rig 32.49° 45.75° 21 Al (?I:zlalrbi Ryg 32.46°  46.68° 13
Kirkuk Ris 35.47° 44.35° 331 Karbalaa R3o 32.61° 44.01° 29

Average precipitation (mm/year)
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Figure 2. Average annual precipitation over Iraq from 1941 to 2005.
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The statistical summary of the annual precipitation is illustrated in Figure 3 for zones
2, 3 and 4. The annual precipitation over zone 2 ranges from 35 to 700 mm with an
average of circa 300 mm for the period of 1941-2005, whereas for zone 3 and 4, the range is
3-347 mm/year with an average of around 127 mm/year.
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Figure 3. Box plot of observed annual precipitation in Iraq.

Areal precipitation is obtained using the Thiessen polygon method based on the 30 rain
gauges, illustrated in Figure 4. Additionally, the box plot of the average precipitation in Iraq
for 7 decadal periods is examined as follows: 1941-1950, 1951-1960, 1961-1970, 1971-1980,
1981-1990, 1991-2000 and 2001-2005. The box plot in Figure 5 is used to investigate the
annual and seasonal patterns: winter (combination of December, January and February
(DJF)), spring (sum of March, April and May (MAM)) and autumn (sum of September,
October and November (SON)) of average precipitation obtained from 30 stations, as
defined previously. Apparently, the pattern of precipitation differs at several temporal
bands and between seasons, as shown in Figure 5.

The Coupled Model Inter-Comparison Phase Five (CMIP5) experiments consist of
several numerical climate simulation models with various constraints, such as land use
changes, environmental pollution, and volcanic emissions. CMIP5 [2] is divided into two
major components:

(1) Long-term experiments (century and longer); and
(2) Near-term experiments (decadal prediction).
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There are 28 meteorological centres around the world that supply CMIP5 climate
model outputs with different settings of near- and extended-future scenarios and different
groups of spatial and temporal resolutions. In this paper, 18 models from the CMIP5 project
that can produce long-term scenarios are used. There are four main future scenarios when
considering the climate data: RCPs 2.6, RCPs 4.5, RCPs 6.0, and RCPs 8.5 [2]. Detailed
information on the CMIP5 models used in this study is described in Table 2.
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Figure 4. Thiessen polygon for calculating the areal precipitation in Iraq.
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Figure 5. Box plots of average precipitation in Iraq for different temporal bands for 1941-2005.
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Table 2. The CMIP5 monthly models used in this study.

Model Institution Spatial Resolution (Lat. x Long.)
MRI-CGCM3 Meteorological Research Institute, Japan (MRI) 1.125° x 1.125°

MIROCS National Institute for Environmental Studies and Japan 1'40 x 1'40
MIROC-ESM Agency for Marine-Earth Science and Technology (MIROC) 177 <28
MIROC-ESM-CHEN gency &Y 1.7° x 2.8°

CCsM4 National Center for Atmospheric Research, USA (NCAR) 0.94° x 1.25°
BCC-CSM1.1 Beijing Climate Centre, China Meteorological 2.7° x 2.8°
BCC-CSM1.1-m Administration (BCC) 2.7° x 2.8°

Commonwealth Scientific and Industrial Research o o

CSIRO-MK3-6-0 Organization (CSIRO), Australia (CSIRO-QCCCE) 1867 > 1.87

IPSL-CM5A-LR . . . 1.89° x 3.75°

IPSL-CM5A-MR Institute Pierre-Simon Laplace, France (IPSL) 1.26° x 2.5°

HadGEM2-ES
HadGEM2-AO
GISS-E2-H
GISS-E2-R
NorESM1-M
NorESM1-ME
GFDL-ESM2G
GFDL-ESM2M

1.25° x 1.875°

Met Office Hadley Centre, UK (MOHC) 1.95° % 1.875°

National Aeronautics and Space Administration Goddard 2° x 2.5°
Institute for Space Studies (NASA-GISS) 2° x 2.5°

. . 1.9° x 2.5°

Norwegian Climate Centre (NCC) 1.9° % 2.5°

NOAA Geophysical Fluid Dynamics Laboratory, USA 2.5° x 2°
(NOAA-GFDL) 2.5° x 2°

2.3. The Goodness-of-Fit Tests (GOFs)

In this paper, three statistical GOF tests are used to evaluate the selected CMIP5 model
simulations for comparison with the observed precipitation based on monthly time series
for the period of 1941-2005. The criteria used for the evaluation include:

e  Mean error (ME), which can be calculated as follows:

n

ME = % Z(Ps,t — Pot) 1)

i=1
where p, s is the observed rainfall at time f and p; is the simulated rainfall at time .
e  Mean absolute error (MAE):

1 n
MAE = o Yo Ipst = pogl ()
i=1

e  Root mean square error (RMSE), which can be calculated as:

1 n
RMSE = \/ - Y (st — Pog)’ A3)
i=1

e  Correlation coefficient (r): This index measures the linear relationship between two
time series with a range between —1 and 1, where —1 indicates a perfect negative
correction, 0 no correlation at all and 1 a perfect positive correlation. It can be calculated
as follows:

— ZZ:I (pﬂrt — %) (psrt — @) (4)
T 2190 1 2195
L [(pos = Po)| Bl [ (pos = 0)’]

2.4. Fitting of Probability Distributions
It is imperative to know the underlining distributions of both observations and simu-
lated data. This serves two purposes:

(1) To check if the two datasets are statistically consistent; and
(2) Toidentify any changes in the probability distribution of simulated data for the future.
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The skewness—kurtosis graph, also known as the Cullen and Frey graph technique, is
applied to select the most suitable distribution type to fit the dataset before the data are
fitted with the chosen distribution types. Information on this method is provided in [37].
It gives the choice of the best fit for an unknown distribution according to the kurtosis
and skewness levels. It utilizes predefined distributions such as normal and lognormal to
achieve a moment fitting. It can also show the maximum likelihood of data and evaluate
the goodness of fit (GOF).

In this technique, the x-axis is the square of skewness, and the y-axis is kurtosis. The
input data model is represented as a solid circle in this study, as demonstrated in the
sections. Several symbols illustrate different types of distribution. If the skewness and
kurtosis of the observation circle and the known distribution symbol are similar, it means
the observation and the modelled data might have the same or even a similar distribution.

In this study, 8 predefined probability distributions are considered, including beta,
uniform, exponential, gamma, normal, logistic, log-normal and Weibull distributions. The
R statistical package “fitdistrplus” [38] is employed to conduct the analysis for both the
observed rainfall and selected CMIP5 models.

2.5. Bias Correction

A bias correction based on quantile mapping is applied to the CMIP5 models that
have the best fit using the goodness-of-fit criteria mentioned in Section 2.3. Studies such as
Maraun [39] and Eden et al. [40] found that climate projection simulations from GCMs often
come with a substantial number of uncertainties as well as biases and errors. Undoubtedly,
the confidence in the direct use of GCM simulations has been adversely affected, such that
no reliable conclusions can be drawn using uncorrected GCM simulation data. However,
sophisticated bias and error correction of GCMs data have gone beyond the scope of this
paper. The simple quantile mapping [41] technique is used to adjust the climate data over
the baseline period.

Quantile mapping is a bias correction technique through which the modelled vari-
able is adjusted through equating the cumulative distribution function CDFs of both the
observation and simulated dataset. To achieve this, the following transform function is
implemented:

Xm,]a = F(;hl {Fm,h [Xm,P(t)] } )

where F, ;, and F,, ; are cumulative distribution functions of both the observed and the
simulated time series, and X, (t) is the modelled variable at time (t). Typically, the quantile
mapping algorithm will be presented through quantile-quantile (Q-Q) plot (e.g., dotty plot
between empirical quantile of simulated and observed data if the CDF (simulated data)
and inverse CDF (observed data) are empirically projected from the data.

Like other statistical bias correction approaches, the quantile mapping method pre-
sumes that climate models’ biases are stationary. Further information about this method
can be found in Maraun et al. [41]. The quantile mapping technique divides the cumulative
distribution function data into discrete portions, and an individual quantile mapping is
implemented as a correction into each segment, resulting in a better-fitted transfer function.

2.6. Mann—Kendall Trend Test (MK)

The non-parametric trend test, Mann-Kendall [12,13], has been extensively used in
hydrology and climatology studies to investigate significance slope or trend since it is
simple and robust. Let X = (x7, x2, X3 ..., x,) be the time series dataset; the Mann-Kendall
statistics S can be computed as follows:

S = 2 Z sgn (xj — x;) (6)
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where
+1 lf (xj —xi) >0
sgn(xj—x,'):{ 0if (xj—x;) =0 7)
-1 lf (xj —xi) <0

The variance for the Mann- Kendall trend test can be calculated as follows:
1
Varg = 18 |f’lA71i —-1)(2n; +5) — Z tip (tip - 1) (Zfl’p + 5) (8)

where:

n;: is the number of data points;
gi: is the number of tied groups for the i month;
tip: is the number of data in the p'" group for the i’ month.

S—1
ifS>0
v/ Vars if
Z= 0ifS=0 ©)
S+1

if 5<0
v/ Vars f
It is revealed that, when following the null hypothesis (no trend) Hy, S will follow a
normal distribution and thus can be used to test the hypothesis with a confidence level
of 1 — «/2. The overall projected trend of slope 3, which is the Theil-Sen slope [42,43],
is calculated as the measured dataset Y over time X. The individual slope estimator is
calculated as follows:
%oy,
X - X

Qi (10)

The Mann-Kendall trend test will be carried out using R statistical package rkt [44].

3. Results
3.1. Statistical Comparison between Observed and Modelled Precipitation

The skewness—kurtosis graph (Cullen and Frey plot) technique is employed to check
whether the average areal rainfall of observations and CMIP5 models are drawn from the
same family of theoretical distribution. The monthly time series for the observations and
the 18 models of CMIP5 are evaluated against eight theoretical distributions. As can be
seen in Figure 6, the observed rainfall lies within the region of beta distribution. Further
assessment of the observed rainfall against the beta distribution is conducted using the
Q-Q plot, p-p plot, empirical and theoretical PDFs and CDFs. The results show that the
observation fits well to the beta distribution seen in Figure 7, as indicated by the parameters
of both the observed data and the bootstrapped data (i.e., via resampling the observed
data), being situated well within the shaded area representing the beta distribution. This is
further confirmed by Figure 7, which shows an overall good fit of the beta distribution to
the observation dataset.

The 18 model-simulated precipitations are evaluated based on their ME, MAE, RMSE,
correlation coefficient (r) and fitting of theoretical distribution for the monthly areal aver-
age rainfall of Iraq, as illustrated in Table 3. The comparison reveals that the bcc-csm1-1,
bec-csm1-1-m, CCSM4, MIROCS5 and MRI-CGCM3 models have a relatively better repre-
sentation of rainfall than the other models.
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Table 3. GOFs of CMIP5 monthly areal average rainfall models against observed data.
Model Fit Theoretical =1\ R ME RMSE
Distribution
bce-csm1-1 Beta 12.8 0.38 =27 19.36
bce-csm1-1-m Beta 9.98 0.48 4.86 16.54
CCSM4 Beta 12.19 0.34 0.39 18.69
CESM1-CAMS5 — 12.02 0.25 5.28 18.89
CSIRO-MK3-6-0 — 10.34 0.41 6.01 17.41
GFDL-ESM2M — 12.97 0.17 6.77 20.65
GISS-E2-H — 13.49 0.38 —3.75 19.75
GISS-E2-R Beta 14.82 0.28 —4.95 22.2
HadGEM2-AO — 14.46 0.41 —6.97 25.11
HadGEM2-ES — 12.41 0.4 -2.71 20.74
IPSL-CM5A-LR — 10.82 0.39 4.75 18.27
IPSL-CM5A-MR — 10.76 0.41 6.96 17.96
MIROC5 Beta 11.49 0.42 0.35 16.96
MIROC-ESM Beta 14.59 0.3 —4.11 20.44
MIROC-ESM-CHEM Beta 14.25 0.37 —4.41 20.19
MRI-CGCM3 Beta 12.35 0.33 0.07 18.8
NorESM1-M — 12.03 0.3 1.87 18.39
NorESM1-ME — 12.03 0.3 1.92 18.39

The areal average of the cumulative rainfall of the observed data and simulated
outputs of CMIP5 is shown in Figure 8. The comparison reveals that MRI-CGCM3, CCM4
and MIROCS have better qualitative estimation than the others, as illustrated in Figure 8,
and the statistical comparison in Table 3 also supports this.
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Figure 8. Cumulative areal average of observed and modelled precipitation in Iraq.
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The quantile mapping bias correction is applied to the monthly rainfall time series of
the five selected models, bcc-csm-1-1, becc-csm-1-1-m, CCM4, MIROC5 and MRI-CGCMS3.
Model simulations at the locations of the 30 rain gauges are corrected against the observed
time series. The corrected model simulations are then used to produce the areal average
time series. The density plots of the areal average of the corrected modelled precipitation
and the observations reveal a general good agreement between the simulated and observed
precipitation in terms of the shapes and the parameters, as shown in Figure 9. However, it
is interesting to see that the mode and the skewness of the observed data are not captured
well by the modelled data, which may be due to the bias correction applied.

. bce-csm1-1 CCsm4
Average_Rain
bee-csm1-1-m CGCM3

MIROCS
Observed

0.0075

ity

0.0050 1

dens

0.0025 1
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100 200 300
precipitation

bce-csm1-1 1724 175.0354 47.50496
bcec-csm1-1-m  176.1  175.3169 49.75659
CCsm4 1717 177.8185 66.21259
CGCM3 1746 174.8262 49.27791
MIROC5 177.7 175.6477 52.22638
Observed 163.9 171.8523 47.68269

Figure 9. Density plots of the areal average of observed and modelled monthly precipitation in Iraq
after bias correction.

3.2. Trend Analysis of Precipitation

The trend of annual precipitation is evaluated using the Mann—-Kendall test for the
observed rainfall and the five selected models. The comparison is carried out both in a
point-by-point fashion (as demonstrated in Figures 10-13) and for the areal average of
the study area (Figure 14). The point-by-point trend comparison at 30 locations shows
that some models, e.g., bcc-csm-1-1, bee-csm-1-1-m and CCM4, demonstrate the same
trend direction (decreasing trend) at 19 locations, as revealed in Figure 10. Meanwhile,
the MIROC5 model reveals the same trend direction (mix of positive and negative trends)
at eight locations, and the MRI-CGCM3 model shows the same trend direction at eight
locations, as shown in Figure 10.

The trends over various zones of the study area are also compared. The spatial
distribution of the annual trend is revealed in Figure 11, where the modelled rainfall trends
have a different pattern from the observed one. It is also clear from the same figure that
there are mixed trends over the study area with a range of (—1.2-0.84) mm/year. Models
such as MIROC 5 (Figure 11e) and MRI-CGCM3 (Figure 11f) reveal approximately the
same range; however, the spatial distribution is different from that of the observed dataset.
The other models (e.g., bcc-csm-1-1, bee-csm-1-1 m and CCM4 models) exhibit trends of
decreasing precipitation over the study area.
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¢ Downward trend s Kilometers
0 220 440 880
+ Upward trend

Figure 10. Spatial variation in upward and downward annual rainfall trend using Mann-Kendall
test for (a) observed precipitation, (b) bcc-csm-1-1 model, (¢) bee-csm-1-1-m model, (d) CCM4 model,
(e) MIROC5 model and (f) MRI-CGCM3 model.

Figure 12 shows the comparison of the Mann-Kendal tests of zone 2 for the observed
precipitation and the five selected models of CMIP5; it can be concluded that most of the
modelled time series are able to demonstrate the same trend direction. In the meantime, for
zones 3 and 4, four out of the five selected models produce the same trend direction, as
illustrated in Figure 13.

Furthermore, the trend of the average areal precipitation (Figure 14) shows that most
models (bcc-csm-1-1, bee-csm-1-1-m, CCM4 and MIROC5) demonstrate the same trend of
decreasing rainfall as that seen for the observed rainfall, except the MRI-CGCM3 model,
which shows the opposite trend (positive).
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N e ilometers
0 220 440 880

Figure 11. Spatial distribution of rainfall trend (mm/year) for (a) observed precipitation, (b) bcc-
csm-1-1 model, (¢) bec-csm-1-1-m model, (d) CCM4 model, (e) MIROC5 model and (f) MRI-CGCM3
model (circular dots represent significant trend).
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Figure 12. Linear trends of annual rainfall for the observed and simulated time series using the
Mann-Kendall trend test for the median condition in zone 2.
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Figure 13. Linear trends of annual rainfall for the observed and simulated time series using the
Mann-Kendall trend test for the median condition in zones 3 and 4.
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Figure 14. Linear trends of areal average annual rainfall for the observed and simulated time series
using the Mann-Kendall trend test.

4. Conclusions

In this paper, the focus was set on investigating the annual trend of precipitation over
Iraq. The monthly precipitation of 30 rain gauges stations over 65 years, as well as the
18 models from the CMIP5 project with different spatial resolutions, have been collected and
used to represent the typical projected climate data in this study. A non-parametric trend
test, the Mann-Kendall method, is implemented to test the trends in both datasets, followed
by another analysis of the underlying probability distributions. The point-by-point annual
rainfall trend comparison reveals that some models (bcc-csm-1-1, bee-csm-1-1-m and CCM4)
are able to capture the trend direction (decreasing trend) at 19 locations. While the MIROC5
model reveals the same trend direction at only eight locations, the MRI-CGCM3 model
shows the same trend direction at eight locations. It can be reasonably concluded from the
findings that the projected precipitation shows substantial bias and low correlation with
the observed data.

However, an agreement is also seen between the observed and modelled annual
precipitation time series with respect to the direction of the trends (positive or negative).
Furthermore, the preliminary analysis reveals that the observed data can be fitted well with
a beta-type probability distribution. For the modelled precipitation, 8 out of 18 models were
able to be fitted using the same type of distribution. It may as well be worth waiting until
the resolution of climate models progresses even further to the catchment scale to reduce



Atmosphere 2022, 13, 1869 17 of 18

this scale gap so as to make the climate change impact study more reliable. Nevertheless, the
findings of this study cast doubt over the practice of directly using projected precipitation
for the study of climate change impact on hydrological processes.
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