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Abstract: With the outbreak of COVID-19 in early 2020, China’s urban epidemic prevention and
control policies have caused significant changes in air pollution sources. In order to clarify the change
characteristics of urban air pollution in Yunnan Province before and after the epidemic, using statistics
and correlation analysis methods, Jinghong city was selected as the research object, and based on
the ambient air quality monitoring data (SO2, NO2, CO, O3, PM2.5, and PM10) and meteorological
data from 2017 to 2021, the concentration characteristics of air pollutants in Jinghong in the past five
years were analyzed, and the sources of air pollutants were analyzed using the local emission source
inventory and HYSPLIT model. The results show that: 1© The air quality in Jinghong was the worst
in 2019 before the outbreak of the epidemic, and then gradually improved, with an average 5-year
excellent and good rate of 91.8%. The pollutants are mainly particulate matter and O3. 2© Except
for SO2, the concentrations of other pollutants have similar seasonal changes, with the highest in
spring and the lowest in summer. 3© The air quality in Jinghong is mainly affected by the combined
effects of local emissions and external transportation. According to the local emission inventory,
biomass combustion sources have the largest contribution to CO, PM2.5, and PM10, mobile sources
have the highest share rate of NOx, and industrial enterprises are the largest emission sources of SO2.
Air mass backward trajectory research shows that the westward and southerly airflow are the main
transport direction of pollutants entering Jinghong, especially in spring, which significantly affects
the local pollutant concentration level. In addition, meteorological conditions such as temperature,
precipitation, and wind speed also have a great impact on the dilution, diffusion, and transfer of air
pollutants in Jinghong. The results of this study further improve the characteristics of the spatial and
temporal distribution of air pollutants and pollutant sources in the border areas of China and before
and after the epidemic, and also provide a theoretical basis for air environment management in the
border areas.
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1. Introduction

The rapid development of urbanization and industrialization not only brings conve-
nience to human life but also causes a series of pollution to the environment, especially the
serious deterioration of urban air quality. Air pollutants, including gaseous pollutants and
particulate matter, have important impacts on climate, the atmospheric environment, and
human health [1,2]. Long-term exposure to airborne PM2.5 and PM10 can result in cancer,
early death, weakened immune systems, chronic respiratory and cardiovascular disorders,
impaired lung function, and lung tissue damage [3]. O3 can cause urban photochemical
haze pollution, damage locals’ health, and interfere with plants’ normal physiological
processes, which can stunt plant growth and significantly lower crop yields [3,4]. Chroni-
cally high levels of CO, SO2, and NO2 can exacerbate cardiovascular conditions, lead to
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respiratory conditions, change the pulmonary defense system, and potentially harm the
central nervous system [5]. Therefore, the research on air pollutants has been highly valued
by the public and government departments.

In recent years, a large number of researches on air pollution have been carried
out both domestically and overseas. Su Hanxiao et al. used ambient PM2.5 samples
collected in the spring and winter of 2015 from Beijing and Tangshan city to analyze the
pollution characteristics and sources of PM2.5 [6]. They found that dust sources, mobile
sources, coal combustion sources, and biomass burning were the primary sources of
PM2.5 at each sampling location. By using a backward trajectory model, Zemmer et al.
investigated the invasion of ragweed pollen in Istanbul, Turkey [7]. Three time scales—
annual, quarterly, and monthly—were utilized by Xiao Yue et al. to study the spatial
and temporal distribution characteristics of air quality in China over the previous ten
years [8]. He et al.’s analysis and quantification of the influence of weather and regional
meteorological variables on variations in urban particulate matter concentrations used a
variety of statistical techniques [9]. Wang Shiqiang et al. [10] conducted a study on the
transport channel characteristics of atmospheric pollutants in the Guangzhou area. The
southwestern region has received less attention than the eastern and southeastern regions,
which have had significant economic growth and frequent human activities.

There are four national ports of entry in Jinghong: the Kunman International Corri-
dor, the Pan-Asian Railway Central Line, and the Lancang River–Mekong River, which
connects six nations (China, Myanmar, Lao, Thailand, Cambodia, Vietnam). Due to its
special location, it serves as a crucial hub for the national “Belt and Road” strategy, the
Lancang–Mekong cooperation mechanism, and the front of Yunnan Province’s radiation
center facing Southeast Asia. Home to China’s only tropical rainforest nature reserve,
which has won such awards as one of the world’s 12 hottest tourist destinations, Jinghong’s
pillar industry is tourism, but in spring, there are consecutive days of heavy pollution. The
study of air pollution and environmental regulation is, therefore, very important. The most
recent investigations about air pollution in Mengla County, Xishuangbanna Prefecture [11],
and studies on a variety of contaminants in Jinghong’s capital city are few. Therefore, using
data from SO2, NO2, CO, O3, PM2.5, and PM10 concentrations from 2017 to 2021 from two
environmental monitoring stations in Jinghong, as well as meteorological data from the
same period, this paper analyzed the characteristics of temporal changes in atmospheric
pollutant concentrations in Jinghong and their relationship with meteorological elements
and explored the causes of pollutant sources and concentration changes in an effort to
improve the atmospheric environment. The objective was to establish a scientific founda-
tion for enhancing Jinghong City’s atmospheric conditions and developing workable air
pollution management strategies.

2. Materials and Methods
2.1. Overview of the Research Area and the Monitoring Locations

Jinghong City, which is a part of the Xishuangbanna Dai Autonomous Prefecture of
Yunnan Province, is situated between 100◦25′ and 101◦31′ East longitude, 21◦27′ and 22◦36′

North latitude. It is in the southern part of Yunnan Province. It has a national boundary that
is 112.39 km long and a land area of 6867 square kilometers. It is bordered by Jiangcheng
County and Mengla County in the east, Menghai County and Lancang County in the west,
Pu’er City in the north, Myanmar in the south, and Laos and Thailand close by. At 2196.6 m
above sea level, Nanlejiaomei, the major peak of Lunan Mountain, is the highest point. The
lowest point is 485 m above sea level at the confluence of the Nan’a and Lancang rivers,
while the urban area is 552.7 m above sea level. The year-round heat is divided into a rainy
season and a dry season; the rainy season lasts for five months (May–October), and the
dry season lasts for seven months (October–May), with rainfall accounting for more than
80% of the annual precipitation. Jiangbei Station (100◦48′06′′ E, 22◦01′21′′ N) and Jiangnan
Station (100◦47′38′′ E, 22◦00′07′′ N) are two monitoring stations.
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2.2. Data Sources and Processing Methods

This study utilized the urban 24 h daily average and hourly data of six air pollutant
concentrations (SO2, NO2, CO, O3, PM2.5, and PM10) from two environmental monitoring
stations in Jinghong from 2017 to 2021. The National Environmental Monitoring Center
of China (http://106.37.208.233:20035/ (accessed on 27 September 2022)) provided the
pollution data. The Global Data Assimilation System (GDAS) data from NCEP (National
Center for Environmental Prediction) for the years 2017–2021 are the information used
in the backward trajectory model. The National Weather Science Data Sharing Service
(http://data.cma.cn/ (accessed on 12 March 2022)) was used to obtain the meteorological
data. The air pollutant emission inventory data come from the survey results of the local
environmental protection department.

According to the Technical Provisions of Ambient Air Quality Index (AQI) (Trial)
(HJ633-2012), the primary pollutant refers to the air pollutant with the largest IAQI when
AQI is greater than 50. The AQI was divided into 6 grades: 0–50, 51–100, 101–150, 151–200,
201–300, and more than 300, which corresponded to 6 grades of excellent, good, mild,
moderate, severe, and severe air quality, respectively. In China’s new Ambient Air Quality
Standards (GB3095-2012) issued in 2012, PM2.5, O3, and CO were added as air pollution
assessment factors, and the upper limit of the allowable concentration of fine particulate
matter in the atmosphere was established for the first time, and the emission thresholds
of other pollutants were adjusted. Based on the technical provisions of the ambient air
quality index (HJ633-2012) (2012) and ambient air quality standard (GB3095-2012) (2012),
the pollutant data and AQI (air quality index) were statistically calculated, and the primary
pollutants were determined. While using TrajStat software to look into the transport sources
of pollutants, the correlation study between AQI and contaminants was also carried out.

2.3. HYSPLIT Model

The Australian Bureau of Meteorology and the National Oceanic and Atmospheric
Center (NOAA) developed the integrated model system known as the HYSPLIT model
(BOM). Processes such as airflow movement, deposition, atmospheric pollution transport,
and dispersion trajectories may all be calculated and analyzed using this technology [12,13].
It has been extensively utilized to research the sources and transportation routes of air
pollution [14–16].

In this study, Jinghong’s backward trajectory was analyzed and studied using TrajStat
follow-up software [17]. The simulated height was set at 500 m because the wind field at
that height can more closely reflect the mean flow characteristics of the boundary layer [18].
The simulated reception location was chosen to be Jinghong (100◦47′ E, 22◦00′ N), and the
reverse trajectory was computed four times per day at 00:00, 06:00, 12:00, and 18:00 UTC
for a simulated length of 72 h. For each day of arrival at the receiving point in 2020, the
72 h backward trajectory was estimated to account for the airflow characteristics.

3. Results and Analyses
3.1. The Present State of Jinghong’s Air Quality

The total effective monitoring days of daily AQI in Jinghong from 2017 to 2021 were
1784 d (Table 1). the average value of AQI was 54.23, and the air quality was mainly
excellent and good, with 1638 d of good days and 91.8% of meeting the standard. The
number of days with mild pollution and above was 146 d, the exceedance rate was 8.2%,
and there was no level 6 (severe pollution) level. Between 2017 and 2021, the good air
quality rate in Jinghong was 94.07%, 97.69%, 85.87%, 88.64%, and 92.27%, of which the
highest good rate was in 2018, and the air quality in 2021 was level 1. For the highest
number of days, 239 days, in 2019 and 2020, the good rate was lower, and there was heavy
pollution. This is due to the fact that COVID-19 began to spread rapidly in the whole
province and cities in late 2019. Most areas of China have implemented traffic control,
factory shutdowns, banning of gatherings, school closures, and company closures [19] since
2020, and the duration and scale of impact are previously incomparable. The development
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of epidemic prevention work reduced the 2020 annual emissions of air pollutants. It shows
that the air quality in Jinghong decreased and then increased in the past 5 years, and
the air quality reached its lowest before the COVID-19 pandemic, and the air quality is
better overall.

Table 1. Statistics for Jinghong’s AQI level days from 2017 to 2021.

Year
Days/d

AQI Excellent
Rate

Pollution
Rate

Number of
Monitoring Days/dLevel 1 Level 2 Level 3 Level 4 Level 5

2017 219 114 18 3 0 50.86 94.07% 5.93% 354
2018 198 141 7 1 0 48.65 97.69% 2.31% 347
2019 151 159 39 9 2 62.25 85.87% 14.13% 361
2020 180 142 22 9 10 59.89 88.64% 11.36% 364
2021 239 95 23 4 0 49.22 92.27% 7.73% 362

In the previous five years, the monthly average of AQI patterns has been very consis-
tent, all of which exhibit a single-peak cycle type (Figure 1). The periods of rapid increase
and fall are January–March and March–June, respectively, and the period from June to
December exhibits a steady ascending tendency. The highest value of AQI in other months
typically occurs in 2020, which may be related to interannual emission of pollutants, ambi-
ent air pollution prevention and control measures of government departments, and weather
conditions in that year. The AQI in March and April of spring is significantly larger than
that in other months and reaches the highest in 2019. PM2.5 and O3 make up the majority
of the defining pollutants in Jinghong, each accounting for 96.47% of the total monitoring
days. PM10 was also the main pollutant for 7 days. In terms of season, the frequency of
primary pollutants PM2.5 and O3 is high in spring, and the pollution characteristics are
light in summer and autumn. In terms of inter-annual variation, the number of days with
PM2.5 as the primary pollutant decreased year by year, which may be related to the air
pollution control measures taken by Jinghong in the past two years. However, there was
a considerable increase in the number of days with O3 as the main pollutant, which may
have been caused by the ozone photochemical reaction in the spring, biomass burning, and
bad weather in the area.
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3.2. Characteristics of Air Pollution
3.2.1. Levels of Pollutant Concentration

The ranges of AQI, SO2, NO2, CO, O3, PM2.5, and PM10 concentrations in Jinghong
from 2017 to 2021 were AQI (10 to 295.5), SO2 (1.5 to 47.5 µg·m−3), NO2 (4 to 58 µg·m−3),
CO (0.2 to 1.8 mg·m−3 ), O3 (9 to 221 µg·m−3), PM2.5 (2 to 247.5 µg·m−3), and PM10 (9 to
230 µg·m−3) (Table 2). Each pollutant’s concentration values vary greatly throughout the
year. Seasons and weather play a role in how pollutants are dispersed, but there may also
be significant correlations between boundary layer dispersion, dust from nearby biomass
burning [18], and that burning, which significantly raises particulate matter concentra-
tion [20]. During the 5-year period, the average concentrations of SO2, NO2, CO, O3,
PM2.5, and PM10 were ( 7.38 ± 2.70) µg·m−3, (19.26 ± 9.01) µg·m−3, (0.64 ± 0.22) mg·m−3,
(79.03 ± 38.19) µg·m−3, (29.47± 26.65) µg·m−3, and (52.53 ± 36.15) µg·m−3, respectively.
The concentrations of SO2, NO2, and CO all met the norm, and O3 concentration values
peaked in 2019 before gradually declining over the following years. In 2019, PM2.5 sur-
passed the annual average limit of the secondary concentration, and PM10 exceeded the
annual average limit of the national ambient air pollutant primary concentration by 0.96
and 0.31 times, respectively. These pollutants did not satisfy the threshold for five years.
In relation to all government initiatives to reduce emissions and promote environmental
protection in the context of national urban environmental promotion, the average annual
levels of SO2, NO2, and CO fluctuate less and change in a similar trend with a “W” pattern.
The PM2.5/PM10 ratios in Jinghong were 0.52, 0.53, 0.57, 0.62, and 0.54 over five years,
which is due to Yunnan Province’s lengthy borderline, which borders numerous agricul-
tural countries and is influenced by the southwest monsoon, and the airflow is the first to
pass through the border area of Yunnan, resulting in poor air quality [21]. PM2.5/PM10 was
used to identify the sources of different sizes of atmospheric particles [22]. According to
research by Chang Jiacheng on the periods of high pollution in Yunnan Province, 67.18% of
the PM2.5 pollution was caused by emissions from burning biomass across international
borders in Southeast Asia [23]. Qingjian Yang used the air quality model WRF-Chem to
simulate a pollution process in Xishuangbanna in the spring of 2017 and discovered that
biomass combustion accounted for up to 97% of the air pollution in Jinghong, with an
external contribution of more than 90% [24]. The NO2/SO2 ratios were 2.11, 2.91, 3.61, 2.80,
and 2.11 in the five-year period, indicating that the contribution of mobile traffic sources
first increased and then decreased.

Table 2. AQI and major air contaminants’ concentration levels.

Year Statistical
Values AQI SO2/

(µg·m−3)
NO2/

(µg·m−3)
CO/

(mg·m−3)
O3-8 h/

(µg·m−3)
PM2.5/

(µg·m−3)
PM10/

(µg·m−3)

2017
Average ± S.d 50.86 ± 26.20 8.38 ± 2.81 17.65 ± 7.71 0.52 ± 0.20 73.72 ± 39.77 25.53 ± 18.76 48.67 ± 27.40

Measured value 14–162 3.5–31 4.5–42.5 0.2–1.4 15–219 2–114.5 9–164.5

2018
Average ± S.d 48.65 ± 21.98 6.84 ± 2.46 18 ± 7.02 0.63 ± 0.17 71.63 ± 30.74 25.61 ± 18.36 48.11 ± 25.52

Measured value 15.5–151.5 2.5–32.5 6.5–37.5 0.3–1.2 9–159 55–114.5 10.5–139.5

2019
Average ± S.d 62.25 ± 34.32 6.05 ± 2.34 21.82 ± 9.46 0.66 ± 0.23 89.93 ± 37.39 36.42 ± 27.69 63.59 ± 42.01

Measured value 16.5–211 1.5–23 4–44 0.2–1.6 17–185 6–164 11.5–230

2020
Average ± S.d 59.89 ± 43.75 6.99 ± 2.08 19.59 ± 8.92 0.76 ± 0.21 82.56 ± 42.52 34.43 ± 36.87 55.58 ± 39.99

Measured value 11–295.5 3–15 5.5–52.5 0.2–1.8 10.5–221 6–247.5 10–230

2021
Average ± S.d 49.22 ± 29.70 8.64 ± 2.80 19.11 ± 10.75 0.63 ± 0.22 76.88 ± 36.37 25.14 ± 24.21 46.51 ± 39.07

Measured value 10–178.5 4.5–47.5 7–58 0.2–1.5 20.5–187.5 5.5–136 9.5–224

Annual
Average

Average ± S.d 54.23 ± 32.69 7.38 ± 2.70 19.26 ± 9.01 0.64 ± 0.21 79.03 ± 38.19 29.47 ± 26.65 52.53 ± 36.15
Measured value 10–295.5 1.5–47.5 4–58 0.2–1.8 9–221 2–247.5 9–230

3.2.2. Seasonal Variations of Air Pollutants

Figure 2 illustrates the “–” pattern of the seasonal variation in SO2, CO, O3, PM2.5,
and PM10 concentrations in Jinghong, with spring > winter > autumn > summer. Due to
unfavorable meteorological conditions such as winter heating, low boundary layer height,
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weak winds, and low precipitation, SO2 concentrations peaked in northern cities while
SO2 concentrations peaked in southern cities without winter heating, ranging from 5.84
to 8.16 µg·m−3 10.85 to 32.18 µg·m−3, 0.48 to 0.95 mg·m−3, 9.43 to 65.66 µg·m−3, and
24.83 to 102.35 µg·m−3 Without heating, the seasonal variability of SO2 concentrations in
southern cities are minimal [25], with only minor variations in concentrations and inter-city
differences, and no discernible seasonal variations. It is hypothesized that anthropogenic
combustion sources and traffic sources, such as motor vehicle exhaust emissions, have an
impact on Jinghong that is consistent with earlier studies. The highest monthly concentra-
tions of the first four were found in March, likely as a result of the concentration of biomass
combustion in Southeast Asia from February to April and the predominating southwesterly
winds, particularly during the 8-day period of heavy pollution from 29 March to 9 April,
2020, when the main pollutant was primarily PM2.5. However, the year-round trends of
NO2, CO, PM2.5, PM10, and SO2 were significantly different [26]. June marks the beginning
of the rainy season in Yunnan, and 41% of days above 30 ◦C occurred in the spring. The
local O3 concentration rises as a result of the quicker photochemical reaction rate and faster
O3 generation.
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3.2.3. Daily Variations of Air Pollutants

Figure 2 shows the daily changes in six air pollutants. Among them, the SO2 con-
centration started to increase slowly from 6:00 in the morning, reached the highest value
(7.74 µg m−3) at 19:00 in the evening, and then slowly decreased, reaching a high value at
2:00 in the morning, and the SO2 concentration in the afternoon was higher than other time,
its diurnal variation is bimodal. The highest and lowest values of O3 appeared at 15:00
pm and 8:00 am, respectively, showing a unimodal characteristic. The diurnal variations
of NO2 and CO concentrations were both morning and evening bimodal, with peaks at
10:00 in the morning and 21:00 in the evening and low peaks at 16:00 in the afternoon; the
hourly peaks of NO2 concentrations at night were higher than the daytime peaks. The
morning rush hour is mainly influenced by human activities and peak motor vehicle traffic.
In the afternoon, with the change in solar radiation and the increase in temperature, NOx
(NO + NO2) and O3 in the air produce a photochemical reaction, which consumes NO2 and
reaches the highest value at 16:00 in the afternoon; with the arrival of the evening peak of
traffic, the weakening of the solar radiation intensity and the photochemical reaction in the
air produced a large amount of NO2 accumulation, so the phenomenon that the evening
peak was higher than the morning peak appeared. In addition, the diurnal variations
of PM10 and PM2.5 also showed a morning and evening bimodal pattern, and the peak
concentrations at night were higher than those during the day. Such diurnal variation
characteristics are similar to NO2, indicating the importance of traffic pollution sources on
particulate matter.

3.3. The Relationship between Meteorological Elements and Pollutants

A number of factors can affect and control a region’s ambient air quality and pollutant
concentrations, but because the urban environment’s overall subsurface variation is not
significant in the short term, pollutant concentrations are primarily influenced by pollutant
emissions and meteorological elements [27]. Significant factors in the change in air pollu-
tant concentrations are influenced by meteorological parameters, including temperature,
precipitation, and wind speed. The processes of dilution, dispersion, migration, and trans-
formation of pollutants in the atmosphere are largely dependent on meteorological factors
in the case of relatively stable pollutant sources [28].

Variations in temperature have a direct effect on changes in dust and gas pollutants [29].
While the opposite is true when the ground temperature is low, high convective activity in
the near-ground layer reduces the concentration of pollutants in the near-ground layer by
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influencing the turbulent mixing of the atmosphere, which in turn affects the diffusion of
atmospheric pollutants and their upward transport. The average temperature in Xishuang-
banna is 20.64 ◦C. As depicted in Figure 3, there is a sizable negative association between
temperature and PM2.5 concentration. The pollutant concentration steadily rises as the
temperature drops, peaking in the spring and falling to its lowest point in the summer of
each year.
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In the process of cleaning up pollutants, precipitation is crucial. Precipitation can
continually dissolve and wash-away water-soluble SO2, NO2, and suspended particulate
matter, which lowers the concentration of air pollutants. Figure 3 illustrates how pol-
lution concentrations are comparatively low during precipitation occurrences. Statistics
demonstrate that on days with precipitation, as opposed to days without precipitation, the
concentration values of pollutants are substantially lower. While it has the least amount
of scavenging power for ozone, precipitation has the greatest wet scavenging effect on
particulate matter.

Variations in wind direction and wind frequency have a significant impact on the
transport and concentration changes in pollutants, and wind speed plays a significant role
in the diffusion of atmospheric pollutants. The multi-year monthly average wind speed in
Jinghong is between 0.6 and 1.2 m/s, with the maximum wind speed occurring in June. In
general, the wind speed in Jinghong is low throughout the year, which is not conducive to
the diffusion of atmospheric pollutants. From 2017 to 2021, the multi-year annual average
wind speed in Jinghong is 0.8 m/s, and the annual average wind speed is between 0.7 and
1.0 m/s, with small changes (Table 3).

Table 3. Monthly average wind speed from 2017 to 2021.

Month 1 2 3 4 5 6 7 8 9 10 11 12 Annual
Average

Wind speed m/s 0.7 0.9 0.9 0.9 1.0 1.2 0.9 0.9 0.7 0.6 0.6 0.7 0.8

4. Source Apportionment
4.1. Estimation of Source Inventories for Emissions of Air Pollutants

With 2021 as the base year, based on pollution source census data, field research,
emission factor accounting, and other methods, the source emission information of major air
pollutants in Jinghong is counted, and an air pollution emission inventory that can be used
for problem diagnosis, pollution source emission control, and assessment is constructed
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(Table 4). According to the Table 4, Xishuangbanna Prefecture emits a total of 2296.70 t,
12,591.36 t, 34,572.67 t, 5342.15 t, and 9774.06 t of SO2, NOx, CO, PM2.5, and PM10 in
2021. According to the contribution of various emission sectors to air pollutants, industrial
enterprises account for 54% of the SO2 produced by stationary combustion of fossil fuels;
78% of NOx produced by mobile sources and 49% by road-based mobile sources; 45% and
31% of CO produced by biomass combustion sources and mobile sources, respectively;
and PM2.5 and PM10 produced primarily by sources of dust (which also produces a large
amount of particulate matter).

Table 4. Xishuangbanna State Air Pollution Inventory for 2021. Unit: ton.

Source of Pollution SO2 NOx CO PM2.5 PM10

Industrial companies 1233.62 948.74 8098.84 409.06 1168.75
Resident source 485.12 231.74 83.43 238.41
Mobile Sources 411.39 9879.27 10,751.41 470.62 494.83

Agricultural sources 529.30
Dust sources 1878.26 5234.31

Biomass combustion 166.57 917.73 15,683.14 2134.04 2178.04
Restaurant Fumes 84.58 39.28 366.74 459.72

Total pollutant emissions 2296.70 12,591.36 34,572.67 5342.15 9774.06

Jinghong City is dominated by tourism, the contribution of local air pollutant emis-
sions to high concentrations of air pollutants is limited, and the local government has
implemented relevant policies such as the “Xishuangbanna State Polluted Weather Re-
sponse Work Plan”. However, there is still continuous heavy polluted weather in spring,
which may also be related to the regional transmission of pollutants.

4.2. Correlation Analysis of AQI and Air Pollutant Concentration

Table 5 shows Spearman correlation analysis revealed that there is a strong correlation
between AQI and particulate matter, with the correlation coefficient with PM10 reaching
0.95 and the correlation with particulate matter ranging from large to small in each season:
spring > autumn > winter > summer. This suggests that particulate matter, particularly
PM10, has a long-term impact on Jinghong’s air quality year-round. In spring, AQI is
significantly correlated with PM2.5 and PM2.5 but weakly correlated with SO2 and CO,
mainly because PM2.5 and PM2.5 are the primary pollutants most often in spring. The
correlation between AQI and O3-8 h and NO2 is higher than that between SO2 and CO
for almost the whole year, indicating that compared with SO2 and CO, the air quality of
Jinghong City is more affected by O3-8 h and NO2, which echoes the research results of
NO2 as the second pollutant mentioned above.

Table 5. Pollutant correlation analysis.

AQI SO2 NO2 CO O3-8 h PM2.5 PM10

Year-round

AQI 1
SO2 0.265 ** 1
NO2 0.799 ** 0.229 ** 1
CO 0.307 ** 0.078 * 0.414 ** 1

O3-8 h 0.876 ** 0.226 ** 0.630 ** 0.140 ** 1
PM2.5 0.938 ** 0.234 ** 0.840 ** 0.387 ** 0.782 ** 1
PM10 0.950 ** 0.267 ** 0.845 ** 0.357 ** 0.763 ** 0.938 ** 1
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Table 5. Cont.

AQI SO2 NO2 CO O3-8 h PM2.5 PM10

Spring

AQI 1
SO2 0.347 ** 1
NO2 0.811 ** 0.370 ** 1
CO 0.242 ** −0.014 0.258 ** 1

O3-8 h 0.883 ** 0.335 * 0.657 0.071 1
PM2.5 0.948 ** 0.278 ** 0.831 ** 0.404 ** 0.785 ** 1
PM10 0.948 ** 0.353 ** 0.859 ** 0.380 ** 0.791 ** 0.960 ** 1

Summer

AQI 1
SO2 0.125 ** 1
NO2 0.487 ** 0.017 1
CO 0.230 ** −0.096 0.522 ** 1

O3-8 h 0.764 ** 0.139 ** 0.361 ** 0.144 1
PM2.5 0.742 ** −0.083 0.512 ** 0.273 ** 0.532 ** 1
PM10 0.844 ** 0.079 0.562 ** 0.277 ** 0.493 ** 0.742 ** 1

Autumn

AQI 1
SO2 0.056 1
NO2 0.718 ** −0.053 1
CO 0.178 ** −0.029 0.244 ** 1

O3-8 h 0.820 ** 0.059 0.495 ** 0.132 1
PM2.5 0.880 ** 0.024 0.782 ** 0.214 ** 0.677 ** 1
PM10 0.920 ** 0.067 0.763 ** 0.199 * 0.632 ** 0.902 ** 1

Winter

AQI 1
SO2 0.112 * 1
NO2 0.435 ** −0.395 ** 1
CO 0.181 * 0.005 0.278 ** 1

O3-8 h 0.720 ** −0.008 0.178 ** −0.092 1
PM2.5 0.921 ** 0.78 0.467 ** 0.293 ** 0.617 ** 1
PM10 0.866 ** 0.149 ** 0.681 ** 0.188 * 0.458 ** 0.852 ** 1

Note: ** Significant correlations at the 0.01 level (bilateral); * significant correlations at the 0.05 level (bilateral).

Pollutant correlation analysis revealed a significant correlation between particulate
matter and SO2, NO2, and CO, indicating that these pollutants share a common source.
Particulate matter can act as a carrier for these pollutants, providing a reaction interface
for the development and formation of sulfuric and nitric acids. It may also carry some
metal elements, catalyzing the reaction process [30]. The fact that PM2.5 and PM10 have
a substantial association shows that their origins are the same or very comparable. The
relationships between PM10 and SO2, NO2, and CO are stronger than the relationship
between PM10 and PM2.5, demonstrating that particulate matter, particularly respirable
particulate matter, is produced during the emission process of gaseous pollutants. Normal
SO2, NO2, and CO emissions are frequently accompanied by the generation of secondary
aerosol particles such as PM2.5 [31]. These gaseous pollutants are also frequently linked to
the emission of particulate matter. However, O3 is not significantly associated with SO2,
NO2, or CO. This is likely because O3 is depleted throughout the oxidation process [32].

4.3. Backward Trajectory and Cluster Analysis

The backward trajectory was used to analyze the air pollutant concentrations in
Jinghong, and the year 2020, with the highest number of heavily polluted days, was chosen
for analysis and discussion in order to better understand the impact of the trajectory of
pollutant transport air masses on changes in air pollutant concentrations in Jinghong.

According to Figure 4, westerly and southerly airflow made up the majority of airflow
in 2020, and Jinghong was primarily affected by these winds. In spring, westerly and
southwesterly airflow (tracks 1, 2, and 3) account for a close proportion, while southeasterly
airflow (track 4) accounts for the least. These airflows are mostly influenced by the northern
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Myanmar air mass. Because of the burning of biomass in northern Myanmar, the overall
air pollutant concentrations conveyed were also much greater than during other seasons.
There were only minor fluctuations in the number of fire points in early April, with daily
high fire points lasting until mid-April, then declining sharply after May, and low values of
daily fire points from June to September. The number of fire points started rising slowly in
November and intensified into January, peaking at the beginning of late March with nearly
13,000 fire points/d. The western air flow (track 1) accounted for the largest proportion
(36.80%), and the transmitted atmospheric pollutant concentrations were lower than those
of track 2 except O3. The westerly air flow (track 2) accounted for 26.40%, which moved the
fastest and transported the longest distance, and the atmospheric pollutant concentration
transmitted was lower than that of track 3. Southwest airflow (track 3) accounted for 28.37%,
and the transmitted NO2, CO, O3, PM2.5 and PM10 concentrations were the highest in the
whole year. Were 31.38 µg·m−3, 1.09 mg·m−3, 70.70 µg·m−3, 92.65 µg·m−3, 78.78 µg·m−3,
respectively (Table 6). In summer, the contribution of air masses from the South Asian
continent is reduced, and most of the movement tracks originate over the Bay of Bengal
and Myanmar, transporting lower concentrations of atmospheric pollutants than in other
quarters. In autumn, the trajectory starting from the Bay of Bengal is less than that in
summer, and there is an air mass in each direction. The proportion of eastern air flow and
southwest air flow is close to each other. The concentration of SO2 transmitted by eastern
air flow (track 1) is the highest in the whole year, which is 8.04 µg·m-3, indicating that
biomass combustion has little influence on SO2 concentration [33]. Bein et al. found that
biomass combustion was not the cause of SO2 pollution [34]. In winter, almost all tracks
originate from South and Southeast Asia, with the air mass (track 1) passing over northern
Vietnam accounting for the largest proportion and transporting the lowest concentration of
air pollutants.
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Table 6. Clustering results of four-season backward trajectories in Jinghong in 2020 and the accompa-
nying average concentrations of pollutants.

Quarter Track Frequency SO2/
(µg·m−3)

NO2/
(µg·m−3)

CO/
(mg·m−3)

O3/
(µg·m−3)

PM2.5/
(µg·m−3)

PM10/
(µg·m−3)

Spring

1 36.80% 5.88 19.97 0.84 62.14 63.27 51.85

2 26.40% 6.27 29.43 0.97 52.17 80.64 66.11

3 28.37% 6.36 31.38 1.09 70.70 92.65 78.78

4 8.43% 4.52 19.73 0.80 27.98 19.60 24.23

Summer

1 83.66% 5.43 13.15 0.52 15.99 11.11 25.97

2 1.11% 3.60 11.8 0.48 18.80 11.10 18.80

3 14.13% 4.46 11.9 0.52 24.81 10.77 24.81

Autumn

1 21.39% 8.04 20.76 0.78 10.85 16.71 42.68

2 46.39% 6.94 18.82 0.72 9.82 16.87 42.97

3 31.11% 7.68 21.57 0.80 10.59 19.87 49.27

4 1.11% 7.00 11.75 0.61 9.63 11.50 30.00

Winter

1 14.44% 6.38 17.51 0.61 39.05 24.22 35.58

2 17.78% 6.31 21.55 0.71 47.23 31.25 46.16

3 32.22% 5.60 22.71 0.79 44.61 35.72 50.29

4 35.56% 6.82 20.34 0.78 40.36 35.08 51.32

Only a few trajectories start in China and most of the air masses that arrive at this study
site come from Southeast Asia (Sichuan and Guizhou Provinces). Figure 5 demonstrates
that the fire locations are once more mostly concentrated in eastern Myanmar, northwestern
Thailand, and northwestern Laos between the months of February and April. Additionally,
air quality is significantly impacted by biomass combustion [35]. In the study, the cross-
border transfer of air pollutants from Southeast Asia significantly influenced air pollutant
concentrations in Jinghong and was particularly significant in spring. Local air pollution
emissions in Jinghong contributed a little to high air pollutant concentrations.
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5. Conclusions

Jinghong’s ambient air quality has been improving over the last five years after initially
declining, with a 91.8% overall excellent rate. In 2019, PM2.5 exceeded the annual average
limit of the secondary standard; particulate matter and O3 were the primary pollutants
in Jinghong.

There is no discernible seasonal change in SO2 concentration, although there are
similar seasonal variations in NO2, CO, O3, PM2.5, and PM10 with a “~” pattern, indicating
that particulate matter and SO2, NO2, and CO have comparable sources.

The main factors affecting the air quality in Jinghong are local emissions and the out-
side movement of pollutants. The westerly and southerly airflow with more anthropogenic
pollution sources (biomass burning) in Southeast Asia is probably the most important
transport pathway affecting the concentration of air pollutants in Jinghong, especially
significant in spring. Local meteorological parameters also affect the dilution, dispersion,
and transmission of pollutants in the urban atmosphere (temperature, precipitation, wind
direction, etc.).
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