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Abstract: Currently, microplastic pollution poses a great threat to diverse ecosystems. Microplas-
tics can potentially change soil characteristics and impact soil microorganisms, and then affect
the production of CO2, CH4 and other greenhouse gases. However, experimental study on differ-
ent ecological soils is lacking. Herein, we experimentally analyzed the CO2 and CH4 production
potential affected by four types of microplastics in freshwater (Poyang Lake in Jiangxi province,
paddy soil in Hunan province) and saltwater (Salt marsh in Shandong province, mangrove soil
in Fujian province) ecosystems. Microplastics promoted CO2 production, of which polyethylene
terephthalate (PET) had the greatest impact. In our study, the microplastics that had the greatest
impact on CH4 concentration emissions were high-density polyethylene (1276 umol·g−1·L−1), fol-
lowed by polyvinyl chloride (384 umol·g−1·L−1), polyethylene terephthalate (198 umol·g−1·L−1),
and polyamide (134 umol·g−1·L−1). In addition, the largest impact on CO2 concentration emis-
sions was displayed by polyethylene terephthalate (2253 umol·g−1·L−1), followed by polyvinyl
chloride (2194 umol·g−1·L−1), polyamide (2006 umol·g−1·L−1), and high-density polyethylene
(1522 umol·g−1·L−1). However, the analysis results based on one-way ANOVA showed that CO2

emission was most significantly affected by soil properties rather than microplastics types. In com-
parison, the influencing factor on CH4 production changed from soil types to the interaction between
soil types and microplastics, and finally to the microplastics with the increase in incubation time.
Further, by comparing CO2 and CH4 production and Global Warming Equivalent (GWE) affected
by microplastics, freshwater ecosystems were more sensitive than saltwater. For all the soil types
used in this study, high-density polyethylene had the greatest impact on CH4 production potential.
In conclusion, our study provided basic data for further understanding the effects of microplastics on
soil greenhouse gas emissions from different sources.

Keywords: freshwater ecosystem; coastal ecosystem; soil; microplastics; CO2; CH4

1. Introduction

Greenhouse gases (GHGs) are one of the important drivers of global climate change [1].
GHGs emitted by soil mainly include CO2 and CH4. According to the IPCC (Intergov-
ernmental Panel on Climate Change), the increase in CO2 concentration greatly affects
the function and nature of terrestrial ecosystems [2]. Methane is the second largest green-
house gas after CO2, and although its atmospheric concentration is only 0.45% of CO2, its
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warming potential is 28–34 times higher [3]. According to recent statistics (2008–2017) [4],
greenhouse gas emissions are mainly from paddy fields, wetlands, oceans and the ex-
ploitation and combustion of fossil fuels. Studies have shown that natural factors include
climate [5], vegetation [6], substrate availability [7], temporal and spatial differences, and
anthropogenic factors including aerosols, nitrogen deposition, microplastics, and can all
affect GHG production.

Furthermore, some substances added by endogenous and anthropogenic activities in
the soil can affect greenhouse gas emissions. Examples include biochar, magnetite, and
microplastics [8–11]. As a spongy substance, biochar can adsorb and store organic mineral
nutrients for further feeding by microorganisms [4]. Studies have shown that biochar is
beneficial for methane production due to its characteristics of microbial immobilization,
pH buffering, availability of metal ions control and enzymatic processes [12–15]. Microbial
immobilization is controlled by the adsorption capacity of the material, which in turn
depends on the surface morphology, pore volume and size, hydrophobicity, and ion ex-
change capacity of biochar [16–18]. Especially on the rough surface with higher specific
surface area [19], volatile fatty acids (VFA) are convenient to form biofilms [20], which
provides sufficient feeding substrate for methanogenic archaea [21]. There was a positive
correlation between pH value and pyrolysis temperature of biochar [22], and biochar syn-
thesized below 700 ◦C increased methanogenesis [23]. In addition, biochar can alleviate
acid and ammonium stress, which is conducive to the colonization of methanogens such
as methanococcus, thus promoting the production of CH4 in anaerobic environments [24].
In fact, there are three known CH4 production pathways: hydrotropic methanogenesis
(MIET-CO2, DIET-CO2), acetoclastic methanogenesis, and Methyl-trophic methanogene-
sis [25–27]. Magnetite is a common iron-bearing mineral with high electrical conductivity.
It can improve CH4 production of direct interspecific electron transfer (DIET) by acceler-
ating intracellular electron transfer, interspecies electron exchange and enhancing redox
capacity [28]. Currently microplastic pollution as some exogenous substance poses a great
threat to diverse ecosystems.

Microplastics are an important contributor to the greenhouse gas cycle. For example,
the presence of polyethylene terephthalate (PET) can affect CH4 emissions. According
to Han et al. [29], the addition of PET will increase soil redox potential (Eh). Due to the
improvement of soil Eh, the abundance of pmoA and pmoB involved in CH4 oxidation
increased, while the abundance of mcrA and mcrB involved in CH4 formation decreased.
Moreover, microplastics can affect CO2 emissions by influencing the microbial community
structure in sediments [30–32]. In polyethylene-contaminated soil, bacterial abundance was
much higher than fungal abundance [33]. Low molecular weight polyethylene (LDPE) can
pass through the biofilm of microorganisms, and as such it can be absorbed and degraded
by microorganisms [34]. High molecular weight polyethylene microplastics cannot directly
cross the cell membrane into microorganisms due to the large molecular chain. Under
the action of a series of abiotic factors such as light, temperature and biological factors,
they are gradually transformed into small molecules, and the degraded small molecules
or ethylene monomers are absorbed and degraded by microbial cells to generate CO2 and
CH4, etc. [35]. Therefore, the impact of microplastics in soil on greenhouse gas emissions
cannot be ignored.

At present, the research content of microplastics covers many fields. Most microplastics
research focuses on oceans [36–38], beach sediments [39–41] and terrestrial waters [42,43].
The results of these studies attracted wide public attention. By contrast, terrestrial systems,
especially soils, remain to be studied [44–46]. In particular, the influences of microplastics
and the ecological environment on CH4 and CO2 are not clear yet. In this study, four kinds
of microplastics (HDPE, polyvinyl chloride (PVC), polyamide (PA), PET), two saltwater
(salt marsh, mangrove, and two freshwater (paddy soil, Poyang Lake)) were selected to
investigate the effects of microplastics on CH4 and CO2 production in soils. As the largest
freshwater lake in China, the submerged plant area in Poyang Lake is in an anaerobic
environment all year round. Its distribution area accounts for nearly 50% of the total
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vegetation of Poyang Lake, which is regarded as an important source of CH4 release [47].
Rice paddies are a complex ecosystem that both emits CH4 and absorbs CO2, and they
play an important role in the global water–carbon cycle and carbon balance [48]. The
Yellow River Delta wetland is a unique ecosystem due to the multiple influences of saline
environment, freshwater environment and tidal action at the same time, and it is of great
theoretical importance to study this area to reduce CH4 release from coastal wetlands [49,50].
Mangroves, as one of the most carbon-intensive forest ecosystems, play an important role
in the carbon biogeochemical cycling process. Therefore, we hypothesize that microplastics
are a non-negligible influencing factor for greenhouse gas emissions in different ecosystems,
and then proceed to collect soils from for representative sampling sites to study the impact
of microplastics on their greenhouse gas emissions.

2. Materials and Methods
2.1. Samples Collecting

Soil used in this experiment was collected from the Dahuchi Conservation Station
of Poyang Lake, the National Nature Reserve in Jiangxi (PY: 29◦8′4.3′′ N–29◦8′6.79′′ N,
115◦58′56.09′′ E–115◦59′1.38′′ E) [51], the Long-term Positioning Test Station of Ningxiang
County from Hunan Province (PS: 28◦07′ N, 112◦18′ E) [52], from the Yellow River Delta
Field Observation and Research Station of Coastal Wetland Ecosystem, Dongying city,
Shandong Province (CJ: 37◦34′45′′ N, 118◦56′39′′ E) [53], and Minjiang Estuary Wetland
(HS: 26◦2′0′′ N, 119◦37′0′′ E) [54]. The sedimentary material land of Poyang Lake is mainly
divided into sandy soil and sandy loam, and the soil as a whole is alkaline [47]. The collected
paddy soils were slab shale-developed paddy soils [55], the planting system used was an
early rice—late rice winter leisure mode, and the soil nitrogen, phosphorus and potassium
supply conditions at the sampling points were based on the expected crop demand [56].
The soils of a salt marsh are different due to the different parent matter and land formation
time, and the distribution of fluvo-aquic and saline soils is the most widespread [49]. In
mangroves, the pH of sediment pore water in tidal flat profile was basically neutral, and
the frequency of flooding and electrical conductivity gradually increased. There is great
spatial heterogeneity of iron and sulfur in high-, middle- and low-tidal flat profiles [57].
Four microplastics were applied to the soils: high-density polyethylene powder (HDPE),
polyvinyl chloride (PVC), polyamide powder (PA), and polyethylene terephthalate (PET).

2.2. Experimental Process

The soils were mixed with water at a ratio of 1:4 (m:v), while impurities such as plant
roots were removed. Nitrogen was injected to eliminate the internal air. The microcosm
experiments consisted of a 5 mL soil–water mixture and 0.01 g microplastics (glass beads
were added as control) in 12 mL serum vials. In order to ensure the uniformity of microplas-
tics in the soil, shock and nitrogen blowing were used to distribute the microplastics evenly
in the soil sample. Three cycles of vacuum/charging high-purity N2 were applied to the
system to create anaerobic conditions. All the experiments were performed in triplicate
and kept at 30 ◦C in the dark without shaking.

On the basis of previous studies on GWP [3,58,59], this paper analyzed GWE. The
gas concentration measured was calculated to obtain global warming equivalent (GWE,
i.e., CO2 equivalent), which was used to study the production of CO2 and CH4 under the
condition of adding microplastics and to make a simple analysis of the influencing factors
of global climate change. GWE of different ecosystems was calculated using the following
formula (Formula (1)):

GWE = CCO2 × 1+ CCH4 × 34 (1)

CCO2 represents the concentration of CO2, and CCH4 represents the concentration
of CH4.
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2.3. Statistical Analyses

The data analyses are implemented using the SPSS 26.0 software. To investigate the
effects of different ecosystem soil types and microplastics on greenhouse gas production,
one-way ANOVA and Tukey’s honestly significant difference (HSD) test were performed.
The graphs were drawn in Origin 2021.

3. Results and Discussion
3.1. Production of Greenhouse Gases in Freshwater Ecosystems Affected by Microplastics
3.1.1. Concentration of CO2 in Poyang Lake and Paddy Soil

In the freshwater ecosystem, HDPE significantly increased soil CO2 production from
1468 umol·g−1·L−1 to 2713 umol·g−1·L−1 within 49 d to 70 d in Poyang Lake. At the same
time, PA and PET significantly increased the CO2 production concentration of paddy soil
on 49 d, after which it then decreased (Figure 1). Machado et al. [60] studied the effect
of different types of microplastics on soil enzymes, finding that the addition of HDPE
increased the activity of FDA hydrolase, while PET, PA, PS, etc. reduced the activity of
microorganisms. Compared to the impact of various microplastics on CO2, the effects of
soil type on CO2 were more significant (Table 1), and significant at the 70 days of culture
except for 49 d (o < 0.01). Studies have shown that the main factors affecting soil CO2
emission flux are soil temperature and soil moisture content [32]. For example, in the study
of Poyang Lake wetland, the increase in soil water content will increase soil organic carbon
content [61]. Anaerobic environment slows down microbial activity, reduces the utilization
of activated organic carbon by microorganisms, and reduces carbon output [62]. Therefore,
in freshwater ecosystems, under the condition of adding microplastics, the soil still has a
greater impact on CO2 production, and CO2 is not sensitive to microplastics.
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Figure 1. CO2 concentrations in freshwater ecosystems after microplastics (HDPE, PVC, PA, PET)
added. (a) Poyang Lake. (b) paddy soil.

Table 1. One-Way ANOVA of soil and microplastics on CO2 yield.

Factors
Incubation Days

3 8 14 22 28 35 49 58 70

soil
F 22.786 9.551 20.834 20.574 14.064 16.234 2.402 26.778 13.032
P <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.078 <0.01 <0.01

microplastics F 0.565 1.663 1.087 1.318 1.221 2.111 0.174 11.045 10.621
P 0.690 0.169 0.370 0.272 0.311 0.090 0.951 <0.01 0.010

soil ×microplastics F 0.779 0.446 0.964 0.363 1.208 1.450 1.210 4.020 7.348
P 0.637 0.938 0.492 0.972 0.298 0.168 0.302 <0.01 <0.01

The F is the statistic of the F test, which is the ratio of the sum of squared deviations between and within groups to
the degrees of freedom. The P means that the p value is the probability of a sample observation or a more extreme
outcome when the null hypothesis is true. The smaller the p value, the more obvious the result. p < 0.01 indicates
a significant difference.
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3.1.2. Concentration of CH4 in Poyang Lake and Paddy Soil

In Poyang Lake soil, the concentration of CH4 was lower than 8.704 umol·g−1·L−1

in the first 35 d of culture. When HDPE was added and cultured for 49 d, the concentra-
tion increased rapidly, and the highest concentration reached 1276 umol·g−1·L−1 on 70 d
(Figure 2a). In paddy soil, similar to Poyang Lake, the variation of CH4 concentration
was small, except for HDPE addition (Figure 2b). Paddy fields are one of the important
sources of methane emissions, accounting for about 10% to 20% of the global total annu-
ally [38]. Studies have shown that soil characteristics and climatic factors are the main
factors affecting CH4 emission from paddy soils [6,63–65]. Table 2 showed that soil had
a significant effect on CH4 during the first 14 d of cultivation (p < 0.01). The source and
abundance of microplastics are closely related to human activities [66]. Due to intensive
and complex human activities in the Poyang Lake basins, microplastics in sediments are
mainly debris [38]. With the extension of culture time, the significant influencing factors
of CH4 gradually changed from soil type to interaction between soil and microplastics,
and finally, microplastics had the greatest influence (Table 2). Therefore, in the freshwater
ecosystem, CH4 was more sensitive to the addition of HDPE in Poyang Lake soil, but with
a delayed response.
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Figure 2. CH4 concentrations in freshwater ecosystems after microplastics (HDPE, PVC, PA, PET)
were added. (a) Poyang Lake (b) paddy soil.

Table 2. One-Way ANOVA of soil and microplastics on CH4 yield.

Factors
Incubation Days

3 8 14 22 28 35 49 58 70

soil
F 164.071 18.658 8.898 1.154 2.340 5.823 1.728 1.386 2.591
P <0.01 <0.01 <0.01 0.334 0.081 0.001 0.170 0.254 0.069

microplastics F 3.779 1.264 0.441 1.267 1.394 4.556 1.295 3.571 4.637
P 0.008 0.293 0.778 0.291 0.245 0.003 0.281 0.011 0.002

soil ×microplastics F 5.139 2.922 1.002 1.105 2.502 4.981 2.192 1.217 1.575
P <0.01 0.003 0.457 0.371 0.009 <0.01 0.022 0.290 0.120

The F is the statistic of the F test, which is the ratio of the sum of squared deviations between and within groups to
the degrees of freedom. The P means that the p value is the probability of a sample observation or a more extreme
outcome when the null hypothesis is true. The smaller the p value, the more obvious the result. p < 0.01 indicates
a significant difference.

3.2. Concentrations of Greenhouse Gases in Saltwater Ecosystems
3.2.1. Concentration of CO2 in Intertidal and Mangrove Forests

In the intertidal soil, the CO2 concentration increased rapidly after the third day of
self-cultivation, and then the CO2 concentration fluctuated between 548 umol·g−1·L−1–
1446 umol·g−1·L−1 (Figure 3a). The mangrove soil also fluctuated with the incubation
days, and the CO2 concentration ranged from 979 umol·g−1·L−1 to 1534 umol·g−1·L−1

(Figure 3b). As in freshwater ecosystems, CO2 production was related to soil type, and
was not significantly affected by the addition of microplastics. The distribution, transfer
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and accumulation of microplastics had little influence on the sampling sites. In addition,
according to data analysis in this study, microplastics have no significant impact on the salt
marsh and mangrove soil (Table 1). Soil texture significantly affects soil greenhouse gas
emissions [66]. Therefore, CO2 in saltwater ecosystem is not sensitive to microplastics, like
when it is in a freshwater ecosystem, and is greatly affected by soil type.
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3.2.2. Concentration of CH4 in Intertidal and Mangrove Forests

The concentrations of CH4 were lowest in saltwater ecosystems. Compared with
mangroves, the addition of HDPE had an effect on CH4 concentration in salt marsh, and the
concentration increased the most at the 35th day of culture (Figure 4a). The concentration of
CH4 produced by mangrove soil after microplastics addition fluctuated little and produced
low concentration (Figure 4b). CH4 emissions from intertidal wetlands are affected by
plant biomass, water level, temperature, salinity and SO4

2− content [65]. It was found
that microplastics affected the process of soil methane production to a certain extent [6,67].
In particular, microplastics, as carriers of other pollutants, have large comparative area
and strong hydrophobicity, all of which can interfere with or inhibit methanogenesis in
collaboration with other pollutants [68,69]. For example, PVC microplastics can dissolve
bisphenol A in the anaerobic digestion process, thus weakening the reaction activity of key
enzymes in the reaction system and inhibiting the process of sludge hydrolysis, acidification
and CH4 production [70]. As an important sink of microplastics and pollutants, mangroves
produce complex pollution from combined environmental pollutants on their surfaces
in addition to the plastic particles themselves [41]. Mangrove wetlands, as coastal zone
wetlands, contain a certain amount of salinity in the tidal water, and salinity further affects
CH4 fluxes by influencing the activity of methanogens [71]. A study by some scholars
found that CH4 fluxes in marshes were significantly inhibited above a certain range of
salinity (salinity > 18 × 10−3). In this study, the addition of HDPE has a certain degree of
influence on the CH4 production of intertidal soil in saltwater ecosystems, while mangroves
are insensitive to microplastics addition.
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3.3. Global Warming Equivalent in Different Ecosystems

The increasingly serious problem of global warming, caused by greenhouse gas emis-
sions, has been widely discussed [35]. CH4 emissions during the growing season were
converted into a CO2 equivalent by multiplying CH4 concentration by 34 (based on a
100-year time horizon).

This study investigated the relative trends of GWE in brackish and freshwater ecosys-
tems affected by microplastics. Studies have shown that HDPE has a significant effect on
GWE in freshwater ecosystems, with GWE values increasing significantly after 49 days
of culture. CH4 concentration in paddy soil increased significantly on 22 d and remained
stable on 35 d when HDPE was added. The GWE of HDPE increased from 17.36 to 387.94
after 49 days of culture (Figure 5b). In Poyang Lake soil, there was a steady fluctuation
trend from 35 days to 35 days. PVC fluctuated significantly after 35 days of culture. The
GWE of HDPE increased from 19.11 to 460.98 after 49 days of culture (Figure 5a). Different
from freshwater ecosystem, GWE fluctuated greatly in saltwater ecosystem from the initial
stage of culture. In the salt marsh, the upward trend was most obvious on the 8th day of
culture, and then tended to a steady fluctuation state. On the 35th day of culture, excluding
HDPE, which increased significantly, the other three microplastics showed a downward
trend. Among these, PVC decreased most obviously (Figure 6a). In mangrove forests, the
overall fluctuation range is large. The minimum value appeared on the 35th day of PA
cultivation, GWE was 12.25; the maximum value was the GWE of PET, 17.07 at day 70 of
culture (Figure 6b). In addition, the GWE maximum value for freshwater ecosystems is
11.23 higher than the maximum value for saltwater ecosystems. Compared with saltwater
GWE, it was found that the greenhouse effect of soil in freshwater system was more signifi-
cant than that in saltwater under the condition of microplastics. In addition, HDPE has the
highest methane concentration in soil compared with PVC, PA and PET, and so HDPE has
the most significant impact on greenhouse gases.
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4. Conclusions

In this study, we demonstrated that CO2 production was most significantly affected
by soil characteristics (Table 1). However, we observed that CH4 production changed from
being most affected by soil to being most impacted by interactions between soil and mi-
croplastics with time elapsing, and finally was most significantly affected by microplastics
(Table 2). In the soil of different ecosystems, the highest concentrations of CH4 and CO2
were found in Poyang Lake (PY), which were 1276 umol·g−1·L−1 and 2713 umol·g−1·L−1,
respectively (Figure 1a, Figure 2a). Furthermore, PET had the most significant effect on
CO2, and HDPE had the most significant effect on CH4. However, mangrove soil was
not sensitive to the addition of microplastics. The concentration of CO2 emitted from
mangroves ranged from 980 to 1534 umol·g−1·L−1 (Figure 3b), and the concentration of
CH4 was even lower, ranging from 5 to 19 umol·g−1·L−1 (Figure 4b). Compared with the
saltwater ecosystem, CO2 and CH4 production in freshwater ecosystem increased sharply.
The GWE maximum value for freshwater ecosystems is 11 times higher than the maximum
value for saltwater ecosystems (Figure 5). Therefore, the GWE of a freshwater ecosystem
was higher than that of a saltwater ecosystem, which may produce more greenhouse gases
and contributed more to global climate change. Finally, it is hoped that the data analysis of
CH4 and CO2 in different ecosystems of the four microplastics, HDEP, PVC, PA and PET,
will provide value for future GHG-related research.
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