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Abstract: Coastal flooding compound events can be caused by climate-driven extremes of storm
surges and waves. To assess the risk associated with these events in the context of climate variability,
the bivariate extremes of skew surge (S) and significant wave height (HS) are modeled in a non-
stationary framework using physical atmospheric/oceanic parameters as covariates (atmospheric
pressure, wind speed and sea surface temperature). This bivariate nonstationary distribution is
modeled using a threshold-based approach for the margins of S and HS and a dynamic copula for
their dependence structure. Among the covariates considered, atmospheric pressure and related
wind speed are primary forcings for the margins of S and HS, but temperature is the main positive
forcing of their dependence. This latter relation implies an increasing risk of compound events of S
and HS for the studied site in the context of increasing global temperature.
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1. Introduction

Of the many human activities located on littorals, which are all at risk of coastal
flooding, nuclear power plants (NPPs) are among the most important given the potential
for disaster. The French Institute for Radiological Protection and Nuclear Safety (IRSN) is
charged with assessing the risk to the country’s coastal NPPs. As a concrete example, the
Blayais NPP, located in the estuary of the Gironde, one of France’s main rivers, was subject
to a coastal flooding during the winter of 1999, caused by simultaneous high tide, high
waves and storm surge [1]. The flood protection of french NPPs has since been upgraded,
but given the multivariate nature of coastal flooding and the context of climate change, risk
assessment remains an ongoing research subject, which is the purpose of the present study.

As in the Blayais example, coastal flooding events are more often produced by a
combination of several factors rather than a single one, and are thus compound events in
most cases [2]. Climate-driven extremes are among the main causes of coastal flooding
through storm surges and wind-waves [3]. Other major factors are high tides and sea level
rise. When these factors are positively correlated, analyzing them separately in a univariate
framework underestimates the associated risk [4]. Less- or un-correlated factors can also
simultaneously reach a high level and thus should be considered jointly. In the case of
coastal flooding, the potential causes are numerous, with some factors depending on the
site (e.g., fluvial flooding, rainfall, and rising water table). Vousdoukas et al. [3] analyzed
the main causes of coastal flooding common to any site for a global projection of extreme
sea levels, with sea level rise, tidal components and water level variations caused by climate
extremes—the latter regrouping storm surge and wave height. Rueda et al. [2] studied
climate-driven oceanic components with a joint analysis of storm surge, wave height and
wave period using a methodology based on spatial patterns of atmospheric pressure. The
present study considers only the storm surge (denoted ’S’ and referring to the skew surge
thereafter) and the significant wave height (HS). Since these two variables can combine
into compound events, their dependence must be taken into account. A copula was used
to model this dependence structure between S and HS.
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Extreme values analysis is done with either a block maxima (block of time, e.g., the
yearly maxima) or a threshold approach. The former is widely used, with the general-
ized extreme value (GEV) distribution of typically yearly maxima. The latter threshold
approach—using either the generalized Pareto (GP) distribution or the nonhomogeneous
Poisson process (NHPP)—is less employed, in part because of the difficulty of selecting an
appropriate threshold, but it allows better usage of data [5]. The block size choice in the
block maxima approach is analogous to the choice of the threshold [6], so the need to select
an appropriate threshold—with its associated uncertainty—should not be perceived as a
more arbitrary approach (even if the block size is constrained by the sample frequency, the
choice is then made in the sampling scheme). The NHPP model has the same parameteri-
zation as the GEV distribution, with parameters of location, scale and shape, whereas the
GP distribution only has a scale parameter dependent on the threshold value and a shape
parameter. This gives an advantage to the NHPP model for nonstationary modeling, which
is detailed in the next paragraph. Therefore, we use the threshold approach with the NHPP
model for the extremes of S and HS [7].

Since S and HS are the climate-driven components of coastal flooding, their analysis
needs to account for the nonstationarity induced by both climate oscillations at different
time-scales and the long-term trend of climate change. Nonstationary modeling of extreme
values is usually achieved by having the distribution’s parameters depend on covariates [8].
These covariates can be purely mathematical objects, such as a cosine wave to model a cyclic
variation or a low-order polynomial for a trend, but can themselves also be physical signals.
Such physical covariates can correspond to large-scale atmospheric/oceanic phenomenon,
for example an El Niño–Southern Oscillation index [8] or a large-scale circulation index
specially defined for the analysis of a given variable [9]. Instead of mathematical objects
or large-scale circulation indexes, we extract time series from gridded reanalysis data
of atmospheric parameters to use as covariates. We assume that if these atmospheric
parameters are drivers of S and HS, the eventual oscillations and long-term trends of these
parameters should also be present in the variables. When considering a nonstationary
model, establishing a link between such covariates and the variables let the former “carry”
the eventual oscillations and trends, making it unnecessary to explicitly introduce these
oscillations and trends in the model (e.g., if the wind is a forcing of the waves and both
have a marked seasonal cycle, introducing the wind as covariate to model the waves
also introduces seasonality in the model, making it unnecessary to introduce seasonality
as a cosine wave). This approach is prone to spurious associations that can be caused
by a frequency common to variables and covariates without a physical link between the
two, most notably with the seasonal cycle that is present in many geophysical signals.
Therefore, thorough exploratory analysis is required prior to modeling—which is also
true for any approach. The additional uncertainties that accompany the definition of
trends by mathematical objects (be it low-order polynomials or regime shifts) make this
approach subject to criticism [10]. We chose to let these trends be carried by atmospheric
parameters (or indexes) to leverage the rich work on climate reanalysis and projections.
Once a robust relation between a given variable and an atmospheric covariate has been
established, the projections of this covariate—which includes its eventual trend—can be
used for future inferences. Of course, this approach is also accompanied by numerous
sources of uncertainties, but it can give more physical meaning to the nonstationary analysis
and thus the inferences. The possible impact of atmospheric covariates on the extreme
values of S and HS is taken into account by letting the three NHPP model parameters
depend on these covariates. Similarly, these covariates could influence the dependence
between the variables, which can be accounted for by a dynamic copula (i.e., a nonstationary
copula). As in the nonstationary version of the NHPP model, the parameters of the copula
can depend on covariates.

The shape parameter of the extreme value distribution is the most important one, as
it governs the behavior of its tail, from which extrapolation is made. Most studies using
nonstationary models consider time-varying location and/or scale parameters but keep
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the shape parameter constant, sometimes justifying this by the difficulty of accurately
estimating this parameter, even when kept constant [11,12]. As an example, the manual
of the R package extRemes advises against using a covariate-dependent shape, but it
mentions that it could make sense in some situations [13]. Northrop et al. [7] demonstrated
their method while keeping a constant shape for simplicity, but they mentioned in their
introduction that a time-varying shape could be desirable, e.g., to account for seasonality.
They referred to the work of Coles and Pericchi [14], who modeled extreme rainfall using
a shape with different values for two seasons, resulting in a parameter taking a higher
positive value for the season associated with the most extreme events and thus a heavier
upper tail of the distribution for this season. More recently, Ouarda and Charron [15] also
advocated for a time-varying shape, demonstrating it with models improved by having
this parameter depend on large-scale climatic indexes. Therefore, we allowed the shape
parameter to be dependent on physical covariates in our modeling of the extreme S and HS,
similar to the location and scale parameters.

In summary, our methodology was (1) to extract time series from gridded atmo-
spheric/oceanic reanalysis data to serve as covariates; (2) to assess whether these covariates
could be forcings of the variables or would lead to spurious association by decomposing the
signals in various frequencies and comparing them; (3) to model a bivariate nonstationary
distribution of S and HS extreme values with the previously selected atmospheric/oceanic
parameters as covariates, using the NHPP model for the margins and a dynamic copula for
the dependence structure; and (4) to assess the coherence of the model by computing the
value of a high quantile given different meteorological conditions.

Our ultimate goal would be to build a multivariate model with all the relevant factors
of coastal flooding for a given site (here this site is Dieppe, but the methods should be
applicable elsewhere), accounting for nonstationarity and uncertainties, and using it for
future inferences. Realistically, the scope of this study is much more limited, and we
focused only on the climate-driven oceanic factors S and HS, taking into account the
nonstationary and compound aspects of these two variables. Despite this limited scope,
this subobjective is itself far from met, and our present results have numerous limitations.
We did not consider the uncertainties of our model or use it for future inferences because the
aforementioned limitations need to be addressed before reaching these steps. Nonetheless,
some progress has been achieved.

Section 2 presents the data and methods used for the nonstationary analysis of extreme
values of S and HS. The resulting model is presented in Section 3. Section 4 discusses
these results in light of other studies and how this work could be further developed.
Section 5 concludes the paper.

2. Materials and Methods
2.1. Data

The S time series was extracted from the sea level measured by a tide gauge located
in Dieppe, at 49.92917° N 1.08449° E. The skew surge is defined as the difference between
the maximal observed sea level and the predicted astronomical high tide, resulting in
an approximately 12 h and 25 min time step. Since this S time series had significant
gaps in measurements, regional information from neighboring tide gauges was used for
imputation. The extremogram approach was used to define a region of neighboring tide
gauges centered on the target site Dieppe with a proportion of common extreme events
above a given threshold. For this purpose, extreme events were defined as observations
above the quantile 0.99 [16], and the proportion threshold of common events was chosen
as 0.3 [17], meaning neighbor stations included in the region had at least 30% of extreme
events common with Dieppe (Figure 1). Once this region had been defined, its neighbor
stations’ S time series were used to impute Dieppe’s one with a multiple linear regression.
The spatial extremogram method for regionalization applied to S is presented in detail in
Hamdi et al. [16] and Andreevsky et al. [17]. The daily maximum S was then computed
and used for the extreme values analysis.
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Figure 1. Extremogram region grouping the stations (blue dots) with at least 30% of extreme surge
events in common with Dieppe (red dot). These stations are used for the imputation of Dieppe’s
surge time series with a regionalization approach. Stations in black have fewer than 30% of events in
common with Dieppe due to distance or different data availability.

The HS time series analyzed was extracted from the ERA5 reanalysis hourly dataset [18]
using the significant height of combined wind waves and swell. The spatial resolution of
this dataset is 0.5° × 0.5° for ocean waves. The HS time series was taken from the grid point
50°N 1°E, which is closest to Dieppe’s tide gauge. Similarly to the S, the daily maximum
HS was subsequently analyzed.

Both variables have a strong seasonal component, with their highest values in winter
(Figure 2).

The ERA5 reanalysis hourly dataset was also used to have fields of sea level pressure
(SLP), near-surface wind speed (NWS, computed from the u and v components of the
wind at 10 m) and sea surface temperature (SST). This dataset has a 0.25° × 0.25° spatial
resolution for atmospheric variables. These three fields were used to extract covariate
time series from specific coordinates. The daily mean values of the time series for a given
coordinate were then used for the nonstationary extreme values analysis.

The common period from 1 January 1971 to 17 January 2017 (46 years) was used for
all these time series. This choice was constrained by the S time series, for which reliable
regionalization results were obtained only between these dates.
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Figure 2. S (a) and HS (b) daily maxima along the seasonal cycle (the dots have some transparency to
improve readability).

2.2. Exploratory Analysis

It was necessary to select coordinates in the field data sets from which to extract
the covariate time series. Different coordinates were selected for each combination of
variables (S and HS) and covariates (SLP, NWS and SST). Since the joint distribution of
these variables was analyzed in addition to their margins, their product S × HS (HS being
strictly positive and both variables having their associated risk for their upper values) was
also used as their interaction for covariate selection. This selection was done by computing
the pointwise correlation coefficient (Pearson’s ρ) then extracting the covariate time series
from the coordinate of maximal absolute correlation. Since the seasonal cycle is strong in
most of these variables and covariates, it was subtracted from them by modeling it with a
cosine wave given by season = α cos(d) + β sin(d), where d is the day of the year scaled
to (0, 2π). The pointwise correlation was computed on these residuals, denoted ’A-d’ for
variable or covariate A. These coordinates were searched in the subdomain 40°–70° N 25°
W–12° E. We assumed that there were no coordinates with higher absolute correlations
than those selected outside this subdomain.

The relationship between the selected covariate time series and their correspond-
ing variables was then analyzed for different timescales by complete ensemble empir-
ical mode decomposition with adaptive noise (CEEMDAN) [19] using the R package
Rlibeemd (v. 1.4.2) [20]. This signal decomposition method is used to avoid spurious as-
sociation with covariates that would only have a seasonal frequency in common with the
variables (Figure 2), which would imply no relevant relationship. CEEMDAN is a modified
version of ensemble empirical mode decomposition (EEMD), a widely used method devel-
oped by Wu and Huang [21]. The signal is decomposed iteratively into several intrinsic
mode functions (IMFs) describing its different time-scales of variation of and a final residual
that is considered to be the overall trend [22]. EEMD is itself a modified version of empirical
mode decomposition that corrects the mode-mixing phenomenon when a given physical
frequency is separated into several IMFs, but it introduced new issues, such as an unreliable
number of IMFs produced and inexact reconstruction of the original signal, both caused
by the random part of the algorithm [23]. The modifications of the CEEMDAN algorithm
correct the issues of the EEMD while also producing a lower number of IMFs and a clearer
separation of the frequency contained within the signal between signals, allowing better
interpretability of their physical meaning. We compared the IMFs of the decomposed signal
for each combination of variable and covariate to access their co-oscillations at different
time scales. For the SLP, NWS and SST time series extracted from the field datasets to be
good candidates as covariates for S, HS or S × HS, it would require them to have noticeable
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co-oscillations at different time scales, including those of higher or lower frequency than
the seasonal cycle.

2.3. Modeling of S and HS Extremes

The margins of S and HS extremes were modeled by NHPP, which simultaneously
models the distribution of occurrences and excess values over a high threshold with a
two-dimensional point-process [24]. This model has three parameters—location µb, scale
σb and shape ξ—that correspond to the GEV distribution of the b-year largest value [6]. In
a nonstationary analysis, these parameters are dependent on a matrix of covariates X that
modify the response of the variable Y. Following the notation in Northrop et al. [7], t refers
to the time in days, xt is the value of the covariate vector for day t, and µb(xt), σb(xt) and
ξ(xt) are the covariates-dependent parameters, whose notation will be simplified as µt, σt
and ξt, respectively.

NHPP models the occurrences and excess values on {(t, yt) | t ∈ [0, T], yt ∈ [ut, ∞)},
with ut being a high threshold. Its intensity function is

λb(t, yt) = b−1σ−1
t

(
1 + ξt

yt − µt

σt

)−1/ξt−1

+
, (1)

where for the part between the parentheses, z+ = max{z, 0}. We used b = 1 by default.
The parametric regression used for the NHPP parameters were

µt = µ0 +
nµ

∑
i=1

µiUi, (2)

φt = φ0 +
nφ

∑
i=1

φiVi, (3)

ξt = ξ0 +
nξ

∑
i=1

ξiWi, (4)

where U, V and W are the matrices of normalized covariates for µt, σt and ξt, respec-
tively. The log link function log(σt) = φt keeps the scale parameter positive. The vectors
{µ0, . . . , µi}, {φ0, . . . , φi} and {ξ0, . . . , ξi}, of length nµ, nφ and nξ , respectively, are the
regression parameters of the three NHPP model parameters, and are thus referred to as
hyperparameters (i.e., parameters of parameters).

The threshold ut can also be covariate-dependent to be set at an appropriate level
given different values of the covariates and to have the exceedances spread over a large
range of the covariates’ observations, allowing more precise estimation of the covariate’s
effect than with a static threshold. As in Northrop et al. [7], this covariate-dependent
threshold was set by quantile regression, which estimates the p conditional quantile of a
variable Y as a function u(x, p) of covariates X. This function is estimated by minimizing

`u = p ∑
t|rt≥0

|rt|+ (1− p) ∑
t|rt<0

|rt| , (5)

with the residuals rt = yt − u(xt, p). Northrop et al. [7] used a constrained version of
quantile regression to avoid the possibility of crossing the thresholds set for different values
of p. This more consistent version of quantile regression was not used in our study. Since
the selection of the physical covariates for the NHPP parameters was based on likelihood, it
was more convenient to fix the time-varying threshold before the addition of these physical
covariates to the nonstationary model. Therefore we defined the covariates used for the
quantile regression threshold from the variables themselves, with d the day of the year
mapped to (0, 2π) and the trend extracted by CEEMDAN, accounting, respectively, for
the strong seasonal dependence and the long-term variability of each variable. These
thresholds gave an approximate probability p of exceedance throughout the period, inde-
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pendent of the season and the trend, and required no redefinition for different selections of
physical covariates.

The estimation of the hyperparameters of the nonstationary NHPP models was done
by generalized maximum likelihood (GML), which improves the stability of the estimation
by incorporating a Bayesian prior for the shape parameter [25]. The GML was extended to
the nonstationary case by El Adlouni et al. [26], who showed its improved performance over
the maximum likelihood (ML) estimation for a GEV model with varying location and scale
parameters. In our case, attempting to estimate the hyperparameters by ML gave unstable
results for some nonstationary models, which were corrected with the GML. Martins and
Stedinger [25] proposed a Beta(p = 9, q = 6) distribution with support [−0.5, 0.5] and
mean 0.1 as prior. This was not appropriate for our data since the shape parameter was
expected to be negative for both S and HS [2]. One reason to use the GML is to obtain a more
stable result despite a small sample size, but using a threshold approach resulted in our
sample size of exceedances to be slightly above a hundred for both variables. Therefore, a
uniform prior with support [−0.5, 0.5] was chosen to avoid the unstable results but without
additional constraint on ξ.

A mixed selection algorithm was used to find the best combination of covariates for
each NHPP parameter. This simple procedure starts with the stationary model defined
as the current model, then tests all the alternative models defined by the addition of a
covariate for a parameter. A likelihood ratio (LR) test is done between the current model
and each alternative model. The alternative model whose LR test yields the lowest p-value
less than or equal to a significance threshold α is accepted as the new current model,
and a new selection step follows, comparing newly defined alternative models to this
updated current model. These addition steps are alternated with removal steps, where the
alternative models are defined as the removal of one covariate for one parameter and the
alternative model whose LR test yields the highest p-value greater than α is accepted as the
new current model (if any). The final model is reached when two consecutive addition and
removal steps result in no update of the current model. The customary threshold α = 0.05
was used.

The Akaike and Bayesian information criteria (AIC and BIC, respectively) are com-
monly used in model selection. In the case of nested models, these information criteria are
similar to LR tests with different α thresholds that depend on the difference in the number
of parameters between the models [27]. For the AIC, the corresponding α ≈ 0.16 with
one degree of freedom (i.e., one hyperparameter difference between the models, as in the
mixed selection procedure described previously). For the BIC, the corresponding α also
depends on the sample size; with n = 100, α ≈ 0.032 with one degree of freedom. Therefore
selecting among the nested models based on the LR test is equivalent to using one of these
information criteria, and the customary value α = 0.05 gives an intermediate significance
threshold compared to the AIC and the BIC with a sample size in the hundreds.

The peaks-over-threshold (POT) approach was used to deal with the short-term tem-
poral dependence caused by consecutive exceedances of the threshold during an extreme
event. This was done with the runs declustering method [13] with a run length of two
to consider a storm event duration of 3 days, as this duration was selected by Camus
et al. [28] for an analysis of extreme skew surge (but we used the same value for HS).
Note that the POT approach is not the only option for a threshold-based extreme values
analysis—for example Fawcett and Walshaw [29] showed that all the exceedances could be
analyzed instead of the cluster’s maxima if a correction is applied to the standard error of
the parameter estimates, and Li et al. [30] developed a self-exciting marked point process
that explicitly models the short-term temporal dependence. Nonetheless this declustering
approach was used in our study for simplicity.

The R package extRemes (v. 2.1-2) was used to fit the NHPP model [13].
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2.4. Modeling of the Dependence between S and HS

The dependence structure between S and HS was modeled with a dynamic cop-
ula. Copulas are multivariate distributions whose margins are all uniform with support
[0, 1] [31]. The simplest case of a bivariate distribution is given by

FXY(x, y) = C(FX(x), FY(y)), (6)

where C is the copula with parameter θ (here considering a single parameter copula). A
dynamic copula has a covariate-dependent θ to model a varying dependence structure
between the variables. Similar to the nonstationary NHPP model used for the margins,
this dependence on covariates can be modeled by a parametric regression. The value θ is
linked to Kendall’s τ with a specific expression per copula class. Thus, dynamic copulas
can be obtained by making τ itself dependent on covariates then computing a varying θ
from this dynamic τ [32]. Another option is to have θ directly dependent on covariates [33].
Using the former parameterization, the model considered is analogous to the parametric
regression used for the nonstationary NHPP parameters, with

τt = Λ

(
κ0 +

nκ

∑
i=1

κiZi

)
, (7)

where Z is the matrix of normalized covariates, and Λ(x) = (1 + e−x)−1 keeps τt ∈
[0, 1]—here only considering positive correlation between the variables—and {κ0, . . . , κi}
is the vector of hyperparameters of length nκ . The copula is fitted on the daily pseudo-
observations, which are the observations mapped to (0, 1) using their ranks [34].

The S and HS daily observations have a strong autocorrelation, which should be
partially accounted for by the dynamic copula [35], assuming it is caused by the physical
covariates’ influence to a certain extent.

Two copula classes with a non-null upper-tail dependence (UTD) and a single param-
eter, the Gumbel and Joe copulas, were tested because S and HS are positively correlated
and we studied their upper extremes [33].

Model selection for the dynamic copula was done with a mixed selection algorithm
similar to that used for the NHPP models. The best class between the Gumbel and Joe
copulas was selected prior to the mixed selection by comparing the results with those of
stationary copulas.

A rolling window (also called running window) Kendall’s τ was computed from the
observations of S and HS with a one year window span to compare it to the covariate-
dependent copula parameter θ (and its corresponding τ) obtained with the dynamic
copula [33]. The high frequencies of both time series were filtered by locally estimated
scatterplot smoothing (LOESS) for readability. For the model to be adequate, the empirical
varying τ obtained with the rolling window and the dynamic copula parameter should
correspond for the low frequencies (i.e., fluctuations of pluriannual time scale).

The R packages VineCopula (v. 2.4.4) [34] and copula (v. 1.1-0) [31] were used to fit the
copula and assemble the multivariate distribution.

2.5. Definition of the p-Level Curves

Since the marginal distributions correspond to yearly probabilities, whereas the copula
distribution correspond to daily probabilities, one or the other must be converted to
assemble a bivariate distribution with a common time referential. We chose to use a yearly
probability, as this is the most common choice and is implemented in the R package extRemes
(v. 2.1-2) [13], but using daily probabilities could be more sensible since our variables and
covariates all have a daily time-step. The yearly probability p was converted to the copula
daily referential with pday = p1/365.25.
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The definition of the p-level bivariate quantile used is

p := P[X ≤ x ∩Y ≤ y] = FXY(x, y), (8)

which considers a hazard scenario to be defined as both variables simultaneously reaching a
high quantile [36] and is sometimes called the “and” scenario. A resulting p-level curve has
an infinite number of points with the same probability of simultaneous non-exceedance but
different probabilities of occurrence since this curve intersects the bivariate distribution’s
density isolines. The highest density point along a p-level curve was estimated numerically
using the conditional distribution of Volpi and Fiori [37] for each day of the observation
period to assess how climate variations affect the p-level obtained with the nonstationary
distribution. Doing this with the full p-level curves instead, or even a subset of the curve
aggregating (1− α)× 100% of its density, would not produce a readable result with 46
years of daily observations.

3. Results
3.1. Pre-Selection of the Physical Covariates

The maps of Figure 3 show the spatial variability of the correlation between the
variables S, HS and their interaction S × HS and the two covariate fields SLP and NWS.
The black dots indicate the points of maximal absolute correlation from which the covariate
time series were extracted. For SLP, this point is located in the southeast part of the North
Sea for both variables and for their interaction, with a negative correlation strongest for
S. For NWS, this point is located close to the variables’ stations for HS (indicated by the
grey dot), but is further in the continent for S and the variables’ interaction, with a positive
correlation in each case but highest for HS. The seasonal frequency was removed from both
the variables and the covariates, indicated by the −d subscript. For these two covariates,
the coordinates of highest absolute correlation are not much different if this frequency is
not removed.

The maps of Figure 4 are similar for SST, but this time, removing (bottom row) or
retaining (top row) the seasonal frequency resulted in a different location of highest absolute
correlation. The highest correlation is negative for both variables and their interaction when
the raw signals were used. The coordinate picked for S is located in the Atlantic, but those
for HS and the variables’ interaction are located on coasts, at locations that appear to have
little physical meaning (e.g., on the coast of Iceland for the interaction and Germany for HS).
When the variables and the covariates were instead analyzed with their seasonal frequency
removed, the coordinates of maximal absolute correlation are similar for S but appear to
have more physical meaning for HS and the interaction, with a point also in the Atlantic for
the former and one close to the east end of the English Channel for the interaction, this time
with a positive correlation. The S-d and HS-d residuals have a positive correlation in this
area, but it is stronger in the interaction’s residual. The SST time series used as covariates
were extracted from this second set of coordinates (bottom panel of Figure 4).

The decomposed variable, interaction and covariate time series are presented in
Figures 5 and 6 (the Figure for HS is not shown but is very similar to the one for S). The
grouping of the IMFs in three subplots is for readability only—we chose to present only
one year for IMFs 1 to 5 and five years for IMFs 6 to 10, as displaying the full 46 years for
these frequencies would render the oscillations unreadable. The group of IMFs 1–5 shows
the year with highest value of S or S × HS, as this date gives the clearest example of the
eventual co-oscillations at high frequencies between covariates and variables during an
extreme event. Similarly, the group of IMFs 6–10 also includes this date. To no surprise,
the S and HS signals have co-oscillations of similar amplitudes to those of SLP and NWS
for both high and low frequencies (with reference to the annual frequency), since these
atmospheric parameters are major forcings of both variables (Figure 5; a similar figure is
obtained for HS). These co-oscillations with SLP and NWS are also clearly visible for the
interaction of the variables (Figure 6). Similar co-oscillations are not visible for the two
variables and the SST covariate, and the amplitude of the IMFs are different, which does
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not imply any clear link. However, the variable interaction displays clear co-oscillations
with SST of similar amplitudes for IMFs 11 and 12 during certain periods—the 1980s and
1990s for both IMFs, then during the 2010s for IMF 11 (Figure 6). On the one hand, these
co-oscillations with SST being only visible for the variables’ interaction is potentially due to
the fact that the selected covariate coordinates are much closer to the variables’ coordinates,
but on the other hand, the area and the amplitude of the positive correlation around the
English Channel increases for the interaction compared to each separate variable (Figure 4,
bottom). Overall, this indicates that the SST is a valid covariate to test for the dynamic
copula. Furthermore, to impact the interaction of the variables, the SST would necessarily
have to impact them separately to an extent, so it was also tested as a covariate for the
nonstationary NHPP models of the margins.

The residual of the decomposition for S reveals an overall downward trend for the
period (Figure 5).

Figure 3. Correlation (Pearson’s ρ, color coded) between the variables’ residuals (with the season
removed) S−d, HS−d and (S×HS)−d (columns) and the covariate fields’ residuals SLP−d and NWS−d

(rows). The grey dot indicates the locations of both Dieppe’s tide gauge and the HS time series, while
the black dot indicates the point of maximal absolute correlation for each combination of variable
and covariate field.
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Figure 4. Similar to Figure 3 between the full variables and the covariate field SST (top) and their
residuals (with the season removed, bottom). Note that the color scale is different than that in
Figure 3, as the correlations with SST and SST−d are much weaker.

3.2. Nonstationary NHPP for S and HS Extremes

The POT approach resulted in 245 and 261 exceedances of the time-varying thresholds
after declustering for S and HS, respectively, for the 46 years of data, corresponding to
approximately 5.3 and 5.7 exceedances per year. This higher-than-usual rate of exceedances
is obtained for a seasonal-dependent threshold, so a similar number of exceedances during
winter (i.e., the season associated with higher values) could be obtained with a constant
threshold and lower rate of exceedances.

Table 1 presents the best NHPP model at each step of the mixed selection for S. The
final model obtained (Model 5) has a location parameter µ dependent on the three covariates
SLP, NWS and SST, a scale parameter σ dependent on SLP and SST, and a constant shape
parameter ξ. Table 2 is similar for HS, with a final model with only µ dependent on NWS.
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Figure 5. Decomposition by CEEMDAN of the S variable and the SLP, NWS and SST covariates taken
at the coordinates of maximal absolute correlation with S-d in Figures 3 and 4. For readability, IMFs 1
to 5 are displayed for one year only and IMFs 6 to 10 are displayed for 5 years. Signals are scaled
to have zero mean and unit standard deviation before decomposition. The vertical scale is constant
between IMFs inside each duration group only. The maximal S observation of the analyzed period
was on 16 October 1987, which explains the abnormal spikes.
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Figure 6. Similar to Figure 5 for S × HS. The maximal S × HS value of the analyzed period was on
16 October 1987 (the day of the maximal S observation).
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Table 1. Hyperparameter estimates and corresponding covariates for the best model at each step of
the mixed selection for the S nonstationary NHPP model when the scale parameter is kept constant.
The rightmost column gives the p-value of the likelihood ratio test with the preceding model. The
covariate added at each step is indicated in bold 1. These results correspond to the parametric
regressions of Equations (2) to (4). Information criteria are not reported in this table because in this
case of nested models, using them would be equivalent to having likelihood ratio tests with different
α thresholds.

Model µ0 µ1 U1 µ2 U2 µ3 U3 φ0 φ1 V1 φ2 V2 ξ LR p-v.

0 0.643 −1.792 −0.021 -
1 0.494 0.171 NWS −2.045 −0.009 ≈0
2 0.402 −0.173 SLP 0.054 NWS −2.219 −0.051 ≈0
3 0.413 −0.154 SLP 0.051 NWS −0.034 SST −2.283 −0.049 10−4

4 0.406 −0.162 SLP 0.047 NWS −0.073 SST −2.300 −0.153 SST −0.050 10−5

5 0.359 −0.222 SLP 0.039 NWS −0.061 SST −2.395 −0.189 SLP −0.079 SST 0.047 7× 10−8

1 For readability, a hyperparameter and its corresponding covariate can have their index increased to keep them
vertically aligned between steps.

These two mixed selection models were obtained by keeping the shape parameter
constant, because otherwise the results were incoherent with the observations. For both S
and HS, when covariates were tested for ξ, the final model obtained had a negative effect of
NWS on this parameter but a positive impact of this same covariate on µ. For HS, NWS also
had a negative effect on σ. These results are cases of overfitting, with a covariate having
an effect on a parameter that is compensated for by an effect of an opposite sign on the
same—or a similar enough—covariate on another parameter. Since the NWS has a strong
seasonal component, these models would result in a higher ξ in summer, which contradicts
observations (Figure 2). These issues are not specific to the physical covariates we used
and can also be encountered, for example, with seasonal-dependence of the parameters
modeled by a cosine wave (see Appendix A).

When ξ is kept constant, the models obtained are consistent with observations and
what is expected from these covariates for both variables. The probability of extreme S is
greater when SLP is low, along with low SST but high NWS. This NWS covariate is added
first for µ during the mixed selection for S, but the absolute value of its hyperparameter
decreases at each subsequent step (Table 1). An alternative model corresponding to Model
5 but without µ was tested, but an LR test indicated that the inclusion of this covariate
remains significant (p-value of 6× 10−7).

The quantile–quantile plots for each model of the mixed selection for S show that
despite it having eight hyperparameters, the fit of the final Model 5 is poor, with most
points being overestimated by the model, except the largely underestimated last point
(Figure 7). The difficulty of modeling the extreme surge on the French coast of the English
Channel is known, which is why Hamdi et al. [16] used both a regionalization approach for
missing data imputation and additional historic information to obtain better estimations
(with a stationary model). Despite using the same regionalization approach in our study,
the final Model 5 obtained with a constant ξ could also be a case of overfitting—the
numerous hyperparameters potentially compensating for the difficulties of modeling the
extreme surge.

For HS, the final model obtained when ξ is kept constant is Model 1 of Table 2, with
only a positive dependency of µ on NWS. The quantile–quantile plots of the mixed selection
for HS show that this addition of NWS for µ greatly improves the model compared to the
stationary case (Figure 8). This Model 1 for HS has the advantage of being parsimonious,
with only one covariate and four hyperparameters, which, by comparison, reinforces the
suspicion that Model 5 for S with its eight hyperparameters could be a case of overfitting.

For both variables, the shape parameter is higher for the nonstationary final model
compared to the stationary case, and even becomes positive for S (Tables 1 and 2). This
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indicates that independent of the meteorological conditions, the highest possible value
attained for an extremely rare event could be underestimated in the stationary framework.

Table 2. Similar to Table 1 for HS.

Model µ0 µ1 U1 φ ξ LR p-v.

0 4.652 −0.186 −0.221 -
1 2.289 1.515 NWS −0.730 −0.101 ≈0

The SST covariate has a strong seasonal component, but its clear influence on S has not
been established by the exploratory analysis (Figure 5). The residual of the covariate with
the seasonal frequency removed (i.e., SST−d) was therefore tested for NHPP models of S to
confirm that the variations of SST at frequencies different from the seasonal cycle signifi-
cantly impact the variable’s extremes. A model analogous to the final Model 5 for S (Table 1)
is defined, but with SST−d instead of the full covariate signal, resulting in the parameteri-
zation µt = µ0 + µ1SLP + µ2NWS + µ3SST−d, φt = φ0 + φ1SLP + φ2SST−d, ξt = ξ. This
model is compared to a simpler one without the covariate SST−d for µ and σ. An LR test be-
tween these model yields a p-value of 1, indicating that SST−d does not add any significant
information to the model, therefore implying that the inclusion of SST in the nonstationary
NHPP model for S was a spurious association. The test was conducted anew without SLP,
with a model parameterized µt = µ0 + µ1NWS + µ2SST−d, φt = φ0 + φ1SST−d, ξt = ξ,
which is compared to another model with only NWS for µ. The LR test for these models
yields a p-value of 0.003, this time indicating a significant improvement of the model with
the SST−d covariate (with α = 0.05). The lack of significance of the first test is therefore
attributed to the loss of explanatory power when using the SST−d residual instead of the
full signal. These tests give extra support for having SST as a covariate for the margin of S.
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Figure 7. Quantile–quantile plots for the best NHPP model for S at each step of the mixed selection
with a constant shape parameter (i.e., Models 0 to 5 of Table 1).
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Figure 8. Similar to Figure 7 for HS.

3.3. Dynamic Copula for S and HS

The best stationary copula between the Gumbel and the Joe copulas is the latter, having
AICs of −4253.16 and −4536.45, respectively. The Joe copula was then subsequently used
in the mixed selection. Table 3 presents the steps of this mixed selection, with the best
model obtained when all three covariates are included.

Table 3. Hyperparameter estimates and corresponding covariates for the best model at each step of
the mixed selection for the dynamic Joe copula between S and HS.

Model κ0 κ1 Z1 κ2 Z2 κ3 Z3 LR p-v.

0 −1.023 -
1 −0.977 0.299 SST ≈0
2 −1.010 0.056 NWS 0.318 SST 7× 10−5

3 −0.980 0.127 SLP 0.119 NWS 0.322 SST 3× 10−11

As for the mixed selection of the NHPP models for S (Table 1), the order in which
the covariates are added to the dynamic copula indicates the importance of their impact.
Whereas SST was added at later steps for S, as this variable is much more dependent on
SLP, the SST covariate is added first for the dynamic copula. Furthermore the SST hyperpa-
rameter of the dynamic copula has the highest absolute value, showing its greater influence
on the interaction of S and HS compared to the other two covariates (the hyperparameter
values being comparable because the covariates are normalized). This is consistent with
the exploratory analysis, which showed that the dependence on SST was only visible for
the variables’ interaction when using the CEEMDAN decomposition (Figures 5 and 6). The
effects of SLP and NWS on the copula parameter θ would partially cancel each other in
meteorological conditions associated with a higher p-level (i.e., low SLP but high NWS),
leaving SST as the main driver of the dependence structure. Surprisingly, the SLP and
NWS effects have the same sign, despite these covariates being negatively correlated. This
indicates that having NWS in addition to SLP in the nonstationary model provides relevant
extra information.

To avoid any spurious association and to be consistent with the methods used for the
margins, a dynamic Joe copula with only the residual SST−d as covariate was compared to
a stationary copula. An LR test between those two models yielded a p-value of 3× 10−13 in
favor if the nonstationary one, confirming an increase of the dependence between S and HS
as the SST increases.

Figure 9 compares the empirical varying Kendall’s τ between S and HS obtained
by rolling window to the varying copula parameter θ and its corresponding τ. The low
frequencies (lower than the annual frequency) of the rolling window τ and the copula
θ are overall similar for the period, with oscillations corresponding, for the most part,
and a common increasing trend. These co-oscillations are the most evident during the
1980s and 1990s, which corresponds to the main period of co-oscillation between SST and
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the variables’ interaction S × HS seen on the decomposed signal (Figure 6). However,
the dynamic copula τ (computed from θ) has variations of much lower amplitude than
the empirical τ, implying that, although the covariates used for the dynamic copula are
appropriate, their simple linear effect on θ could not describe the varying dependency well
enough.
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Figure 9. Rolling-window Kendall’s τ between S and HS (solid blue line), copula parameter θ (dashed
red line) and the corresponding copula τ (dashed blue line). The rolling window has a duration of
365 days; thus, the first year of observation (1971) is not displayed. The time-series were smoothed
with LOESS with a span of 5/45 (i.e., a span of 5 years, which was selected for readability).

3.4. Climate-Dependent p-Level of S and HS

The bivariate nonstationary distribution FXY is obtained by the association of the mar-
gins FX and FY given by the NHPP Models 5 and 1 for S and HS, respectively (Tables 1 and 2),
and the dynamic copula C Model 3 (Table 3), via Equation (6).

The effect of the NWS covariate increases both the levels attained by each variable
separately and the probability of simultaneous high levels. On the contrary, the low values
of SLP and SST increase the level attained by S but decrease the probability of simultaneous
high levels of both variables. Therefore, strong wind conditions appear as the main driver
of compound events of S and HS from the perspective of our model. The positive effect of
SST on the variables’ dependence implies that this risk of compound events would increase
in the context of climate change.

Figure 10 shows the points of highest density along the 0.99 quantile level curves
computed for each day of the observations and the corresponding (normalized) covariate
values. This illustrates that the climate-dependent p-level obtained is consistent with what
is expected from these covariates—the highest bivariate levels were attained for the lowest
SLP but highest NWS and low SST. The strong correlation of SLP and NWS results in a
similar pattern of variability of these two covariates for the p-levels. This pattern is quite
different for SST, with a main direction of variability somewhat orthogonal to that of SLP
and NWS, adding support to the idea that SST is complementary to the other covariates.
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Figure 10. Normalized covariate values for the highest-density points of the 0.99 quantile level curve
for each day of the observation period. The covariate values are displayed for the coordinates selected
for the variables’ interaction S × HS only (i.e., the middle columns of Figures 3 and 4), which explains
why the levels attained for some covariate values seem incoherent.

4. Discussion

Despite its numerous limitations, which will be discussed further below, the bivariate
nonstationary model of S and HS is consistent with the results of other studies. Of the
three covariates—SLP, NWS and SST—the latter is the most affected by climate change,
and therefore introduces its trend in the model. This positive trend is visible both in the
SST data we analyzed from 1971 to 2017 (not shown here, but can be seen, for example,
in [38] for 1980–2019) and in climate projections (e.g., CMIP6 climate projections), with
its future rate of increase depending on the scenario considered. The NHPP model for S
has both the location µ and the scale σ parameters dependent on SST and with a negative
relation, resulting in a decrease of the level attained for a given probability of exceedance
(p-level) over time. Calafat et al. [39] found a similar negative trend during the period
1960–2018 for the extreme surge in the English Channel using a robust spatial approach
for trend detection in extremes. This decreasing trend for S in the English Channel could
also be explained by the decreasing trend of NWS in the region for the period 1980–2010,
but this trend has inverted since that period [38]. Opposite to this decreasing marginal risk
associated with S, the positive influence of SST on the dependence of S and HS increases
the probability of compound events in the context of climate change. As stated in the
introduction, Vousdoukas et al. [3] analyzed he extreme sea-level projections by separating
sea-level rise, tidal, and climate-driven extreme components, the latter regrouping both
storm surge and waves. They predicted an increase in these climate-driven extremes in
the English Channel by 2050 and 2100 under both RCP4.5 and RCP8.5 (Representative
Concentration Pathways), with which our results are also consistent thanks to the dynamic
copula. The storm surge and wave analysis of Rueda et al. [2] found significant variations of
the correlation between S and HS given different spatial patterns of SLP, which is consistent
with our dynamic copula having SLP as a covariate, but also with NWS, since these
covariates are strongly related.

Many aspects of the present model need major improvements before using it for
inferences. The method used for the imputation of the S at a site with the information of
neighboring stations relies on multiple linear regression [16], but this could be improved.
The threshold of 30% of common events used to define the homogeneous region when
using the extremogram method was chosen to be low enough to include observations in
the neighboring stations for each time step and because this value was already used for
the same data by Andreevsky et al. [17]. The uncertainties related to this threshold were
not taken into account, but they require further consideration. In the case of [17], testing
different values of the threshold did not significantly change the results of a subsequent
extreme values analysis. Once the homogeneous region was defined, one alternative
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approach instead of multiple linear regression could be to use a vine copula to model the
multivariate distribution of S for all the stations in a homogeneous region, including the
target station. Vine copulae allow convenient modeling of complex dependence structures
using only bivariate copulae [40]. Ahn [41] used this method for streamflow imputation,
showing its improved performance over various other approaches. A vine copula can also
be dynamic [42], which could further improve the imputation over a static one by using
relevant covariates, such as SLP for the surge. Another option for the imputation would
be to use flow duration curves [41]. The model of S can also be improved with the use
of historic information, which was outside the scope of our study, but the most recent
advance on this front for surge in the English Channel is the work of Saint Criq et al. [43].
For HS, we extracted a time series from the ERA5 reanalysis, taking the coordinate closest
to Dieppe, but a time series obtained from a buoy and propagated via a robust physical
model to Dieppe would be required for practical applications.

Once these improvements have been made and the uncertainties have been considered,
then the model could be used for future inference. We used a bivariate definition of the p-
level (see Section 2.5), but the risk of coastal flooding could be more meaningful if expressed
in one dimension corresponding to the transient water elevation. This could be achieved
with the “structure-based” probability of non-exceedance of Volpi and Fiori [44]. It is
defined by

p := Pr[g(X) > z] = 1− FZ(z), (9)

where X = {F1, . . . , Fk} are the marginal distributions of all the forcing variables (in our
case only S and HS, but more coastal flooding factors could be considered), and g is a
functional relationship linking these variables with the design response Z = g(X) (here,
the total water level) [36].

The issues encountered with a covariate-dependent shape parameter have already
been addressed in the results section, but it is worth mentioning that similar inconsistencies
can be seen in [2], despite their methodology based on weather patterns being much
different from ours. Further examples where the seasonality is modeled through a cosine
wave are presented in the appendix. Northrop et al. [7] did not provide an example of their
approach with a covariate-dependent shape, but their model with nonstationary location
and scale is parameterized with µt = ηt and σt ∝ µt, where ηt is the time-varying predictor
dependent on covariates. A model with ξt ∝ µt, and forcing this proportionality to be
positive, could be tested to prevent opposite variations of ξ and µ. Alternatively, the signs
of the hyperparameters could be constrained to remain physically consistent: for example,
forcing NWS to have a positive effect (if any) on a parameter.

We used covariates extracted from a reanalysis dataset, but most nonstationary anal-
yses with physical covariates use climate indexes instead. Wahl and Chambers [9] de-
fined tailored indexes from reanalysis data to obtain custom climate indexes, which were
able to explain more of the variability of extreme sea levels than general indexes not
specifically designed for extreme values, such as a North Atlantic Oscillation (NAO) in-
dex. Castelle et al. [45] constructed an index based on SLP that targeting winter wave
height along the western coasts of Europe. This other tailored index has higher ex-
planatory power for the variability of winter sea waves compared to general indexes.
Agilan and Umamahesh [46] tested both local covariates, such as local temperature anoma-
lies, and global covariates, such as an El Niño–Southern Oscillation index, to model non-
stationary intensity–duration–frequency curves for rainfall. They found that the local
covariate was more appropriate for short durations, whereas the global one was better
for long durations. We chose to use local daily reanalysis data to explain the short-term
variability of S and HS, but this approach neglects the long-term climate variations (such as
the NAO) described by the general climate indexes. The tailored indexes defined by [9,45]
capture the relevant part of these long-term variations but do not account for the short-term
and more local variations driving extremes. Another important aspect is that the physical
covariates we extracted from the most-correlated coordinate considers this coordinate to be
static, which is unlikely in a dynamic system. As a comparison, the simplest NAO indexes
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are defined by stations—which are static by definition—whereas more advanced ones are
defined by principal component analysis over an SLP field and are therefore able to track
the displacement of the NAO centers of action [47]. Therefore, defining tailored covariates
accounting for both the local and global relevant variability of a physical parameter while
also considering the spatial dynamism of the relation could improve our model.

A Bayesian approach could improve the model with prior information and would pro-
vide a solid framework to take the uncertainties into account. El Adlouni and Ouarda [48]
developed a birth–death Markov chain Monte Carlo model that allowed for the simultane-
ous selection of the covariates and estimation of parameters. Replacing our mixed selection
method with this Bayesian algorithm could be a subject of further research.

5. Conclusions

The extreme values of skew surge (S) and significant wave height (HS) have been
modeled for a site in the English Channel with a bivariate and nonstationary approach.
The sea level pressure (SLP) and near-surface wind speed (NWS) covariates are the main
drivers of both variables when the margins are considered. The sea surface temperature
(SST) is the main driver of the time-varying dependence between S and HS, which could
result in more frequent compound events of coastal flooding in the context of increasing
temperature (consistent with the results of Vousdoukas et al. [3]). The many limitations
of our results have been highlighted, but we believe that this study, nonetheless, provides
some advances for the nonstationary analysis of climate-driven sea level extremes in the
English Channel.

Author Contributions: Conceptualization and methodology, A.C. and Y.H.; software, validation,
formal analysis, visualization, validation, investigation, data curation and writing, A.C.; resources,
supervision, project administration and funding acquisition, Y.H. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ERA5 hourly data, from which the HS time series and the covariates
are extracted, are available at https://doi.org/10.24381/cds.adbb2d47 (accessed on 9 May 2022). The
skew surge data are available upon request.

Acknowledgments: The authors thank Yves Deville for recommending the NHPP model and for
other advice. They also thank Taha B. M. J. Ouarda for his advice, especially his recommendation of
the GML method.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The inconsistent models that can be obtained with a varying shape parameter are
further illustrated by having it vary along the seasonal cycle. These models have ξ vary
with a cosine wave parameterized ξ = ξ0 + ξ1 cos(d) + ξ2 sin(d), where d is the day of
the year mapped to (0, 2π). We tested different models with the other parameters either
dependent or not on the season and with a similar parameterization. Figure A1 compares
the variations of the shape parameter for the stationary model, another one with only ξ
dependent on the season, one with both µ and ξ dependent on the season, one with σ
and ξ, and a last model with the three parameters being season-dependent, for the HS
data. The model with only ξ dependent on the season results in higher (lower) values of
the parameter during winter (summer), which is consistent with observations (Figure 2b).
However, when µ and/or σ are season-dependent together with ξ, the resulting variations
of ξ along the seasons are inconsistent with the observations, with higher values during
summer. For the models with {µ, ξ} and {µ, σ, ξ} dependent on the season, µ and σ have
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higher values during winter, which is compensated for by ξ having lower values during
this season. The model {σ, ξ} has both parameters with higher values during summer,
which is not a case of parameters compensating each other, but is nonetheless inconsistent
with observations. These inconsistent models illustrate some issues that can occur between
the parameters when ξ in addition to µ and/or σ are dependent on the same covariates,
or similar enough in the case of physical signals having frequencies in common (notably
the seasonal frequency). This example shows that the issue is not specific to the physical
covariates we used. The seasonal model obtained by Coles and Pericchi [14] was consistent
with their observations, with a higher ξ value during the season with higher observations,
but similar compensation between the parameters was visible for µ, this parameter having
a slightly higher value during the season of lower ξ. In the case of [14], this inconsistency
is only minor and does not concern the shape parameter; therefore, their seasonal model
offers a great improvement over the stationary case. As said in the introduction, numerous
references warn against using a covariate-dependent shape parameter, but others argue
that a varying shape can result in a better model [7,14,15]. Our results are an example of
some modeling difficulties that can arise when ξ is covariate-dependent along µ and/or σ.

0.0

0.5

1.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
season

x

model
stationary

x
m, x
s, x

m, s, x

Figure A1. Shape parameter as a function of the season for different NHPP models for HS with
season-dependent parameters. The models’ names indicate which parameters depend on the season.
Comparison with Figure 2b reveals the incoherence of the last three models.
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