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Abstract: Autumn is the transitional season when the atmospheric circulation pattern changes from
summer to winter. The temperature and precipitation in Southeastern China in autumn are signifi-
cantly influenced by the change in circulation patterns, and both show significant uniqueness. The
clustering method can be used to observe the changes of circulation patterns in detail and to observe
and analyze the transition from warm to cold seasons from a detailed view of the daily circulation
pattern perspective. This method may have important research implications on how to study the
generation and dissipation of extreme weather events. The Self-Organizing Maps (SOM) method
is used to a 500 hPa geopotential height and 850 hPa wind and sea level pressure for 1981–2020 to
identify the characteristic weather patterns (WTs) in autumn (September–November) over South-
eastern China. Characteristics of the captured WTs are also analyzed in terms of the distribution
characteristics of weather patterns, occurrence frequency, typical progression, precipitation and
extreme precipitation (EP), temperature and extreme high temperature (EHT), and the relationship
with atmospheric teleconnection. Nine WTs were identified in autumn, which represents a series of
weather situations consisting of troughs and ridges. On this basis, these WTs were used to carry out
the differentiation of seasonal differences between early and late autumn. The maximum mean and
extreme precipitation occur in several early season patterns (WT1, WT2, WT4, and WT7). It is highly
likely that extremely high temperatures occur in the WT1 and WT2 patterns. The most common
progression between WTs is WT7−WT1−WT2−WT4 in the early season. This seasonality allows
us to distinguish between early and late seasons based on daily weather types. A preliminary trend
analysis suggests that patterns in the early season occur more frequently and last longer in the early
season, and patterns in the late season occur less frequently and later. That is, the longer cool season
pattern is shifting to the shorter warm season pattern. In addition, the persistence of both cool and
warm patterns increased during 2001–2020 relative to 1981–2000, and the risk of both flooding and
drought occurrence is on the rise.

Keywords: weather regimes; precipitation; self-organizing maps; synoptic patterns; Southeast China

1. Introduction

Autumn is the transition season of the atmospheric circulation pattern of summer
to winter, and the atmospheric circulation of Southeast China will change significantly.
The influence of the subtropical high returns to the region to the ocean, and the winter
monsoon will gradually develop. In the process of these circulation changes, the autumn
extreme weather and climate events in Southeast China showed significant uniqueness [1].
Although autumn is a season of less rain than spring and summer, it is necessary to discuss
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the extreme weather and climate events in autumn and their causes for this region in the
face of the situation that the impact on autumn drought in this region is becoming more
and more intense and extensive and its indicating role in summer rainfall in the next year,
which is of great practical significance for disaster prevention and reduction [2–4].

However, the current research on extreme weather and climate events in Southeast
China is mainly focused on spring and summer, while the research on extreme weather
and climate events in autumn rarely involves the causes and physical processes of their
interannual and interdecadal changes, which is far from meeting the requirements for
forecasting extreme weather and climate events in autumn [1]. Extreme weather and
climate events can come from different sources (for example, there may be convective
precipitation and frontal precipitation), and the relationships between their frequencies
and weather pattern anomalies are very complex, especially in East Asia. There may be a
nonlinear correlation between many meteorological factors. The background condition of
the weather scale is one of the main sources of extreme weather and climate events [5–9].
A cluster analysis of such weather-scale conditions may be effective in understanding
the causes of extreme weather and climate events and improving the prediction effect.
Identifying weather patterns closely related to extreme weather and climate events can
enable us to determine the physical mechanism of extreme weather occurrence affected
by global change signals. Therefore, the relationship between regional extreme weather
climate events and large-scale weather phenomena has become the focus of scientific
research [10,11]. In this case, the clustering of weather patterns can be used as a bridge to
connect climate signals and extreme weather climate events.

Determining the characteristic weather patterns of a region is the purpose of a weather-
type (WT) analysis. Based on this, we can further analyze their variability, impact, etc. [12–15].
Most previous studies have used methods such as the covariance analysis [16,17] and multi-
channel singular spectrum analysis [18]. However, these linear methods are too restrictive [19].
As a result, nonlinear analyses have recently gained popularity.

Weather pattern clustering in the field of meteorology can be implemented with the
help of artificial neural networks because of their powerful learning mechanisms. There
is a technology called Self-Organizing Mapping (SOM) that is perfect for solving this
type of problem [20]. In the 21st century, SOM has been widely used in meteorology [21].
SOM plays an important role in synoptic climatology and weather patterns of atmospheric
circulation. It can project high-dimensional data onto a visual and easy-to-understand
two-dimensional graph [22–27].

The SOM method has been used in many fields, such as for oceanography studies [28–30],
climate characterization over the Northern Hemisphere [31,32], the identification of spatially
varying systematic numerical model errors [33], global climate model evaluations [34], rainfall
predictions in the monsoon systems [35–37], and examining the connection between the
circulation field and the weather element field [38–41].

In these studies, many scholars extracted visually clear weather patterns of complex
nonlinear data. The weather patterns obtained by the traditional clustering method are
independent of each other, and there is no specific relationship between weather patterns.
As the SOM method takes into account the continuity of the atmospheric process of clas-
sification, it can better simulate the evolution process of circulation, which is helpful to
discuss the relationship between the SOM method and precipitation climate characteristics
in combination with the evolution of weather patterns [42]. Therefore, SOM may be useful
in identifying the complex nonlinear relationship between meteorological factors and heavy
precipitation events [43].

There are not many studies related to changes in the fall circulation. In North America,
most of the results focus on the following aspects: for example, some studies deal with the
timing of frost staging [44,45], some studies revolve around the definition of seasons [46],
some studies analyze the circulation patterns in the Northern Hemisphere [47,48], and some
studies address the effects of climate change [49,50]. In South America, [51] delineated
the weather types for Northern Chile and analyzed the impact of these weather types on
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precipitation anomalies. Changes in the autumnal circulation patterns in China have also
received little attention. Previous studies have mostly focused on the following aspects: the
major atmospheric circulation systems affecting China′s autumn climate [52,53], important
external forcing factors [54,55], and dynamical downscaling [56].

Among these studies, only a few scholars have examined weather modalities using
clustering methods [47,49,51]. Roller et al. [57] analyzed the North American winter circulation
and pointed out that cluster analysis is an effective tool for the identification of characteristic
weather patterns on the daily time scale. Coe et al. [58] pointed out that WTs obtained using
clustering methods can provide more information with a unique perspective during the
transition from warm to cool seasons. Some scholars have found that summer is becoming
longer as it starts earlier, and at the same time, autumn starts later [44,49]. It is still unclear
how these changes are reflected in the local circulation field in Southeastern China.

In addition to several basic meteorological elements, we also explore some possible
factors that influence changes in the climate patterns. Such as the characteristic daily weather
patterns and their connection with large-scale atmospheric teleconnections. Some of these
atmospheric teleconnections are mainly the following: Eurasian pattern (EU) [59], Western
Pacific pattern (WP) [59], Western Atlantic pattern (WA) [59], Pacific/North American pattern
(PNA) [59], North Atlantic Oscillation (NAO) [59], Antarctic Oscillation (AAO) [60], Arctic
Oscillation (AO) [61], Madden–Julian Oscillation (MJO) [62], and El Niño/La Niña [63]. These
are important predictable sources for climate predictions in Southeastern China and have
been the focus of attention and research by a wide range of scholars.

In this study, we use the SOM method to study the well-known and complex relation-
ship between weather modes and heavy rainfall events. We used nonlinear clustering of
autumn weather patterns in Southeast China and identified the typical weather patterns
(closely related to heavy rainfall events and hot wave events). This study analyzed the
characteristic weather patterns in autumn based on the WT clustering results in autumn,
focusing on intra-seasonal variations. The analysis was carried out in detail from various
aspects, including frequency, transitions, persistence, etc.

2. Materials and Methods
2.1. Study Area

Southeastern China is economically developed and is an important base for tropical
and subtropical crops and northern transportation of southern vegetables in China; the
Indian Ocean to the southwest and the South China Sea and the Western Pacific Ocean to
the east of the south, respectively, are influenced by the monsoon, typhoon, and subsurface
systems in the summer half of the year and by the interaction of the middle and low
latitudes; the winter half of the year is an important time of influence for the southward
invasion of cold air and an important area influenced by the interaction of cold air and warm
air masses of the ocean [1]. Autumn, as the transitional stage between summer and winter,
a combination of summer and winter weather characteristics, is even more complicated
in terms of weather changes. Therefore, the variability of weather in Southeastern China
during autumn and the associated causes of drought and flooding deserve further study.
In this study, we focus on the range of longitude from 100◦ to 130◦ E and latitude from
20◦ to 40◦ N (Figure 1).
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Figure 1. Study area in this study. The black rectangular box in the figure is the specific study area
chosen for this study (the range of longitude from 100◦ to 130◦ E and latitude from 20◦ to 40◦ N).

2.2. Data
2.2.1. SOM Training Input Data (Reanalysis Data)

To better understand how circulation is affected by surface pressure, midlevel heights,
and wind fields in low layers, we focus on the surface daily geopotential height and circu-
lation fields in the lower and middle tropospheres. In this study, the National Center for
Environmental Prediction (NCEP)—U.S. Department of Energy (DOE) AMIP-II (NCEP-2) [64]
reanalysis of the daily gridded atmospheric data was used. This set of data was provided
by the NOAA PSL, Boulder, CO, USA (https://psl.noaa.gov, accessed on 10 August 2021).
Four variables we selected were used for the cluster procedure: daily mean sea level pressure
(MSLP), 500-hPa geopotential height (H500), 850-hPa zonal component (U850), and meridional
component (V850) winds. In general, the altitude at the 500 hPa level is about 5500 m, and the
altitude at the 850 hPa level is about 1500 m. The resolution of the NCEP-2 reanalysis data is
2.5◦ × 2.5◦ (270 km × 240 km). We selected a 40-year period (1981–2020) for the analysis.

2.2.2. Analysis and Validation Data (Precipitation Grid Data and Temperature Grid Data)

In addition, there are two variables, precipitation and 2 m temperature, which do not
participate in SOM training and are only used to observe and analyze the results of SOM
clustering. These daily data were provided by the NOAA Climate Prediction Center (CPC;
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html, accessed on 10 August
2021). The resolution of the CPC data is 0.5◦ × 0.5◦ (55 km × 48 km). This spatial–temporal
resolution is enough to analyze the occurrence days of extreme precipitation (EP) and
extreme high temperature (EHT).

2.2.3. Teleconnection Indices

In this study, some atmospheric teleconnections that are relevant to the Chinese
region were selected. Specifically, these included: Eurasian pattern (EU), Western Pacific
Pattern (WP), Western Atlantic Pattern (WA), Pacific/North American Pattern (PNA), North
Atlantic Oscillation (NAO), Antarctic Oscillation (AAO), and Arctic Oscillation (AO). Some
of these atmospheric teleconnection data are available on the Climate Prediction Center′s
website (CPC; ftp://ftp.cpc.ncep.noaa.gov/data/indices, accessed on 10 August 2021).
Since the indices downloaded from the website are mostly monthly calculated results (daily
data are not very comprehensive), we finally recalculated several telecorrelation indices
(EA, PNA, WA, WP, and EU) closely related to China by using the NCEP-2 reanalysis daily
500 hPa geopotential height data following the methodology from Wallace and Gutzler [59].

In addition, MJO data information [62] is available on the Australian Meteorolog-
ical Bureau′s website (http://www.bom.gov.au/climate/mjo/, accessed on 10 August

https://psl.noaa.gov
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
ftp://ftp.cpc.ncep.noaa.gov/data/indices
http://www.bom.gov.au/climate/mjo/
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2021). Finally, the monthly Niño-3.4 index [65] was obtained from the Climate Predic-
tion Center (https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/
teleconnections.shtml, accessed on 10 August 2021).

2.3. Self-Organizing Maps Technique

Self-organizing mapping (SOM) is an unsupervised artificial neural network method.
The method was proposed by Kohonen [20]. The method is able to repeatedly self-learn and
train weather data based on the neural network principle and, finally, obtain the dominant
circulation pattern of the weather system, called the winning neuron. The analysis of the
daily evolution process of the weather system can be performed on this basis.

To initialize the reference vector, some random vectors are used. The first step is to
define the neighborhood, i.e., the area around the winning node. In this study, the input
vectors are processed as follows: MSLP, H500, U850, and V850 are all sorted into row vectors
and standardized. Each column represents one day′s data. The goal of training is to find the
winning neuron. The specific method is to repeatedly calculate and compare the Euclidean
distance between the reference vector and the input vector. The node with the smallest
Euclidean distance is the winning node. Then, update the other nodes in the winning
node and its surrounding neighborhood. Keep repeating this process, and keep narrowing
the neighborhood in the process of repeated calculations. For more specific schemes,
refer to the literature [20]. After the training, each day′s data will have a corresponding
category number. Each category can be called a weather pattern. The average value of all
samples corresponding to the meteorological elements in each category is the value of the
meteorological elements corresponding to each weather pattern. Reference vectors that
are close to each other on the graph represent similar weather patterns, while reference
vectors that are farther apart represent less similar weather patterns. In this way, SOM uses
the similarity in the extracted patterns on the graph to visualize the data by implementing
dimension reduction and dividing the input data onto a two-dimensional plane. The
obtained clustering results are ordered, and similar classes are spatially close to each other.
More details can be found in other related studies [20,22,42,66–68].

The SOM can realize the visualization of reduced dimension data, which is very
effective for high-dimensional meteorological data. However, it is an objective clustering
method, and the size of the clustering category cannot be determined by itself, so it needs to
be specified manually. In addition, the weather modes close to each other in the clustering
results will have a high similarity to each other, so there are some deficiencies in the physical
interpretation. The purpose of determining the minimum number of types is so that the
data can be considered well-divided. Therefore, the minimum number of types of clusters
are determined before clustering.

The selection of the cluster number needs to consider several factors comprehensively:
on the one hand, the proportional relationship between the sample size and the number of
categories, and on the other hand, the complexity of weather types in the study area. The
number of types is small, which cannot fully reflect all weather conditions in the region,
especially the evolution process of the weather system. If the number of classifications is too
large, the differences in the weather classification results will be small and unrepresentative.
It would make the differences in the weather typing results small and not representative. If
only 4 (2 rows by 2 columns) types were used, it would be unable to capture all the weather
conditions in the area, so this solution is not used. Comparing several solutions, such as
4 (2 rows by 2 columns), 9 (3 rows by 3 columns), and 16 (4 rows by 4 columns), it was found
that using more than 9 types will make the clustering results unrepresentative. Therefore, in
this study, 9 types of schemes were finalized, and all 9 types were used in the following study.

Each SOM clustering result was considered as a weather type. Since this study used
multiple variables for the combined analysis, the data had to be normalized before use.
The goal was to make all variables equally weighted. Standardize distance-level fields
were created on each grid point in the following manner: remove the long-term seasonal
average, regional weights (latitude), and divide by the standard deviation.

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/teleconnections.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/teleconnections.shtml
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We use these de-seasonalized averages so that the different modes can be more clearly
defined and show greater similarity in the days within these patterns.

2.4. Validity of the Clustering Algorithm

To assess how representative the various types are for individual days and to fur-
ther test the validity of the clustering method, following Coe et al. [58], we used spatial
correlation (R) and the root mean square error (RMSE) analysis to perform a quantitative
assessment. This calculation provides a quantitative assessment of the relationships and
a comparison of their relationships outside of the categories. Spatial correlation (R) can
measure the degree of aggregation and dispersion of samples in the same category. The
root mean square error (RMSE) is used to measure the deviation between each sample
and the true value in the same category. These two indicators were calculated between
the weather modalities represented by the nine clustering results and each individual day.
Since each day is assigned to a type and there are only 9 types, there may be considerable
intra-class variations in the spatial modalities of the 4 variables.

2.5. Monte Carlo Analysis

To estimate the significance, i.e., the likelihood of a given WT occurring under given
conditions (e.g., in a given month, given teleconnection, etc.), continuing to follow Coe et al. [58],
we apply Monte Carlo methods to random resampling. It is used for comparisons with randomly
occurring sampling. Its confidence level was set to 95% in this experiment.

Each day in the fall of 1981–2020 was assigned to a category. Then, on all days,
each cluster value was reshuffled (keeping the monthly and annual frequencies of the
observations). The monthly and annual frequencies of each WT are to be kept constant
throughout the calculations. Reshuffle and resample the results and repeat 1000 times.
Finally, the results are sorted, and the 2.5th percentile and 97.5th percentile values of the
results are picked out, and these two values are set as the confidence interval thresholds
(2.5% and 97.5%). These were then compared, and if the values fell outside of that interval,
they were considered significant at the 95% level.

2.6. Markov Chain Analysis

A Markov chain is a stochastic process in which the transition between two states
in the state space is memoryless. The probability of a state transfer at a given moment
depends only on its previous state. None of the events preceding it in the time series are
relevant. The transition patterns between different weather patterns in meteorology can
also be analyzed using Markov chains [69]. In the clustering results, if the number of days
in each WT is not equal, the conditional probability model needs to be used instead of
the equal probability model. This conditional probability does not represent the absolute
likelihood that a type will occur. The equal probability model implies the same likelihood
of occurring on the next day for each pattern. It leads to a bias of the results in favor of the
class of more elements. For example, in this study, WT2, WT4, and WT8 contain elements
with >450 days, while WT1, 3, 5, 6, 7, and 9 all contain elements with <450 days. Therefore,
the results of the equal probability model will be biased towards WT2, WT4, and WT8.

To perform this analysis, here, we follow the methodology from Coe et al. [58] and
Vautard et al. [69], and the transfer matrix X of the original data is calculated. At the
beginning of each calculation, a new transfer matrix is recalculated and recorded as Y.
Then, compare Y with X. If Y < X, it means that conversion has occurred, and the M count
increases by 1. On the contrary, if Y > X, it means that there is no conversion, and the N
count increases by 1. In this way, the calculations are repeated 10,000 times to complete the
Monte Carlo simulation. After all calculations are completed; if the value of M or N is less
than or equal to 500, it can be considered significant (at the 95% level).
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3. Results
3.1. Weather Types
3.1.1. Validation of Clustering Results

Figure 2 shows the calculated results of the R and RMSE analyses (histogram). The
calculated results from the individual days and each type to which they were assigned is
shown in yellow. The calculated results from the individual days and the types to which
they were not assigned are shown in blue.
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Between each individual day and the type to which they belong, a wide range of vari-
ations exist in the results of the calculations of the spatial correlation R for the four variable
fields. For the different variables, the percentage of correlation coefficients greater than 0.5
that existed on the individual days and the types to which they belonged varied, being
98.6% (H500), 89.6% (MSLP), 84.1% (U850), and 47.2% (V850). Although the proportions
of H500, MSLP, and U850 are all high; the lower proportion of V850 results in only about
40% of days when all four variables can have R greater than 0.5 at the same time. Between
each individual day and the type to which they do not belong, the proportion of days with
a correlation coefficient greater than 0.5 between the individual days and the category to
which they belong differed from the different variables, being 97.3% (H500), 78.8% (MSLP),
50.9% (U850), and 22.1% (V850), respectively. However, the low percentage of U850 and
V850 resulted in only 13.6% of days when the four variables could have R greater than 0.5
at the same time. The above results indicate that many days represented by the common
state of the four variables can be represented by these types.

Similarly, the RMSE shows the affiliation minimum and the affiliation maximum. Be-
tween each individual day and the type to which they belong, the RMSE is generally smaller.
Between each individual day and the type they do not belong to, the RMSE is generally larger.

In general, the highest R corresponds to the lowest RMSE. For H500, which is the
variable field with the least spatial variation, the R is the highest and the RMSE is the
lowest. The calculation results of the two wind field components are slightly poor. The
above results show that it is reasonable and effective to use these two indicators to measure
the quality of the clustering results.

3.1.2. Clustering Results

Before we go into any further analysis, the most basic thing to do was to identify a set
of WTs to describe autumn weather in Southeastern China. In order to identify the WTs
that can describe autumn weather in Southeastern China, we selected H500, MSLP, U850,
and V850 of NCEP-2 reanalysis as the input data for SOM training. After SOM training, we
obtained nine WTs.
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In order to display the SOM clustering results in detail, we plot MSLP and 850 hPa
wind fields and H500 and 850 hPa wind fields, respectively, in Figure 3a,b. The temperature
(2 m temperature) and precipitation corresponding to various WTs are, respectively, plotted
in Figure 4a,b. The frequencies of all the WTs are 10.5%, 12.9%, 11.0%, 14.3%, 11.7%, 8.3%,
7.9%, 12.9%, and 10.4%, respectively. The frequency of occurrence of each weather type
ranged from 7.9% (WT7) to 14.3% (WT4), with a mean value of 11.1%.
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input data of the SOM and the time range of the study are consistent with Figure 3.

The distribution of the pressure distance-level field is similar for the neighboring
weather patterns, and the distribution of the pressure distance-level field differs greatly
for the distant weather patterns, which is mainly reflected in the strength and location
differences of the high- and low-pressure systems. WT1, WT2, WT4, and WT7 are mainly
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dominated by trough, while WT9, WT8, and WT6 in the lower right corner and WT3 in
the upper right corner differ greatly from the upper left corner, mainly dominated by high
pressure. The middle WT5 is a transitional type with no obvious features.

In WT1, a trough is exhibited with higher land surface pressure, a low-pressure system
from the southeastern ocean, the temperature and precipitation more than the average. On
the one hand, low-pressure convergence tends to form updrafts. On the other hand, wind
from the north and south directions converge in the region, which tends to bring sufficient
rain. WT4 and WT7 are similar to WT1, except for the location and intensity of the fronts.
WT2 has a different wind direction, with southerly winds prevailing and basically covering
the whole region.

In WT9, a strong high-pressure system (Mongolian high pressure) is exhibited, with a
high land surface pressure, and the high-pressure system comes from low-level winds from
the northwest, with below-average temperatures and below-average precipitation over the
whole area. In contrast to WT1, this type of high-pressure radiation dissipates, and sinking
air flows are prevalent; on the other hand, there is no convergence of cold and warm air
flows, and precipitation does not form easily. WT6 is similar to WT9. WT8 and WT3 are
different in that the prevailing wind direction in these two types is different from WT9.

3.2. Temperature and Precipitation Distribution Characteristics in Each WT

Temperature and precipitation are expressed in two forms, one in the form of the daily
average distance level (Figures 3 and 4) and the other in the case of extremes (Figure 5). EP
is defined as precipitation above the 99th percentile of the grid point of any given day [70].
EHTs were analyzed for heat wave days. A heat wave day was defined as the highest grid
point temperature above the 95th percentile [71].

For the average precipitation distance level (Figure 3a), WT1, WT7, and WT2 have
the highest precipitation rates (3.7, 3.6, and 3.4 mm/day). WT6, WT9, and WT3 have the
lowest precipitation rates (1.0, 1.1, and 1.3 mm/day). WT1, WT2, and WT7 have the largest
positive precipitation anomalies, while WT3, WT6, and WT9 have the largest negative
precipitation anomalies. WT1, WT7, and WT2 have positive precipitation anomalies over
the entire region, spanning two-thirds of Southeastern China. The reason can be attributed
to widespread and persistent frontal rain. WT6, WT9, and WT3 have mainly negative
precipitation anomalies across the region. The cause can be attributed to the long-term
control of Mongolian high pressure.

Regarding the average temperature of each WT (Figure 4), the hottest are WT1 and
WT2, which appear early in the season. The coldest are WT9 and WT6, which appear late
in the season.

For EP days, WT1 and WT2 contain the most (26% and 19%, respectively). EP is more
likely to occur due to the occurrence of these two modes (Figure 5a), and EP is most likely
to occur at inland grid points. WT1 is closer to the surrounding area, while WT2 is the
whole area.

WT3, WT6, and WT9 have the least number of EP days (7%, 8%, and 1%, respectively).
EP is less likely to occur when these patterns occur. Likewise, in these patterns, EP occurs
mainly at coastal grid points. This depends on the location of the ridge.

Heat wave days mainly occur on WT1, WT2, WT4, and WT7. Among them, WT1 and
WT2 are the most likely patterns of experiencing heat waves (Figure 5b). Heat wave days
occur in most of the areas during the days experiencing WT1 and WT2. Heat wave days
were rare in WT9, WT8, WT6, and WT3. Interestingly, although temperature variables are
not considered in the clustering, the WT perspective view is able to capture the traditional
heat wave patterns in Southeastern China (e.g., WT9 has strong ridges). This further
confirms the SOM circulation-based WT clustering approach.
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3.3. Teleconnection Relationship to WT Frequency

Perhaps there is an effect of various remotely correlated potential phase changes on
the frequency variations of WTs [58]. For the qualitative analysis, we further merged the
clustering results from two main categories: one is wet/hot (WT1, WT2, WT4, and WT7),
which often occurs to the early fall (also called the early season pattern), has summer
characteristics, and is prone to high temperatures and precipitation. The other category is
the dry/cold (WT9, WT8, WT6, and WT3) pattern, which often occurs in the late fall (which
can also be called the late season pattern) and possesses winter characteristics and is prone
to causing low temperatures and droughts. In this way, the calculation results are clearer
and more conducive to our qualitative analysis.
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We selected several common atmospheric teleconnections. The main results are shown
in Figure 6a. The monthly phase of El Niño/La Niña are also shown in Figure 6a. The
threshold for the division of positive, neutral, and negative phases is [−1, 1], in which
the neutral phases are neutral, greater than 1 are positive, and less than −1 are negative.
Significance analysis was performed by the Monte Carlo method, and we did not care for
all teleconnection neutral phases. Therefore, the results in the neutral phase are not shown.
In addition, the MJO is also one of the important factors affecting the eastern part of China,
and we analyzed the relationship between the eight different loci of the MJO and the WT
frequency as well (as showed in Figure 6b).
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Figure 6. Autumn season WT frequency during various teleconnections (AO, AAO, NAO, PNA,
WA, WP, EU, El Niño/La Niña, and MJO). (a) Various Teleconnections (AO, AAO, NAO, PNA, WA,
WP, EU, El Niño/La Niña), (b) Various MJO Phases (phase 1–8). Red indicates a positive phase, and
yellow indicates a negative phase. Asterisks indicate significance at the 95% level.

In Figure 6a, we found that AO, AAO, and NAO have similar relationships with the
WT frequency. This can be attributed to the close association with these three indicators [72].
Early season modalities (wet/hot) are more likely to occur in the negative phase (22% and
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21% WT days) of the three indicators. Conversely, positive loci in two indicators are much
less likely to occur (4% and 3%). The opposite also applies to the late season pattern
(dry/cold) (5% and 8% for the negative phase and 15% and 13% for the positive phase). The
early season pattern is typical of the negative phase circulation pattern of AO, AAO, and
NAO, with a trough in Eastern China, below the mean H500. The temperatures are above
average, and the precipitation is above average. Late season patterns have distinct positive
phase features (AO, AAO, and NAO), accompanied by below-average precipitation and
below-average air temperature. The correlation between PNA and WA is weaker than that
of AO, AAO, and NAO (PNA has a similar pattern, while WA is the opposite). It may be
because of their weaker correlation between the Chinese region.

It is important to note that the effect pattern is most pronounced for WP and EU. We
can find that there is a law that different phases of WP and EU have opposite effects on the
various patterns. That is, the same pattern corresponds to a positive (negative) phase of
WP and a negative (positive) phase of EU. The pattern is reversed for the early season and
late season patterns. In the positive (negative) phase of WP, the early (late) season patterns
are often present. On the contrary, the late (early) season patterns occur frequently in the
positive (negative) phase of EU.

WT frequencies were less correlated with ENSO than other teleconnections. Although
all eight WTs are in phase with at least one ENSO locus of statistically significant changes
(not shown), only one WT6 and WT9 have substantial but very insignificant changes. WT4
and WT8 are more likely to occur in a negative phase of ENSO (La Niña). When El Niño is
in its positive phase, WT3 and WT5 are the two more common patterns. El Niño does not
have a great impact on Eastern China. This less significant link between ÜWT frequencies
is not surprising. Both the early season pattern and the late season pattern are likely to
occur to both the positive and negative phases.

The relationship between the 8 bit phases of the MJO and WT frequencies is shown in
Figure 6b. Among them, the fourth and fifth phases of the MJO are most likely to occur in
the early season pattern, while the late season pattern is scattered among the remaining six
phases of the MJO.

3.4. Progressions of Early and Late Season WTs

Differences between WTs throughout the fall were examined in the following forms:
the monthly frequency, daily average evolution, and typical evolution. The evolution
between WTs, individual WTs, and WTs was characterized in the early and late seasons
based on the variations in frequency of occurrence over a 3-month-long season.

3.4.1. Monthly Frequency

To measure the monthly rate of change of WT frequencies, monthly totals of WT
frequencies were calculated for all years (Figure 7). On this basis, several WTs that occurred
most frequently in each month were identified.

(1) WT1, WT2, WT4, and WT7 in the month of September.
(2) WT4, WT5, and WT8 in the month of October.
(3) WT3, WT6, and WT9 in November.

WT2 and WT1 had the greatest incidence of decline. WT9, WT3, and WT6 had the largest
rate of increase, from 0% in September to 28.8%, 26.4%, and 23.5% in November, respectively.
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Figure 7. Frequency statistics for each weather modality during the three months of autumn.
(a) September, (b) October, and (c) November. This figure helps to observe the intra-seasonal
variations in the frequency of occurrence of the WTs.

3.4.2. Daily Evolution

In order to more carefully observe the change of the occurrence frequency of each
mode over all of autumn, we carried out a careful inspection, and the results are shown in
Figure 8. All WTs are divided into two categories; one frequently appears in the early stage
(Figure 8a), and the other frequently appears in the late stage (Figure 8b). Their respective
trends are represented by their respective 5-day moving averages. The intersection of
the two 5-day moving averages is considered to be the turning point of the trend (or the
midpoint of autumn—specifically, 16 October). On this day, the probability of occurrence
of the two types of WTs was equal at 50% (equal chance of occurrence.) October is a period
of significant change, with dramatic changes in the frequency of occurrence of both types
of WTs, the early and late season. Early season WTs often occur on days greater than
50% before October 16 and then rapidly drop to less than 25% of the remaining days of
October, then less than 5% of the days in November (almost close to 0 at the latest). The
frequency trend of the late season WTs shows that less than 5% of the days were in the early
part of September, and greater than 50% of the days were in the late season after October
16. This pattern was evident throughout the 40-year period 1981–2020, with only slight
variations in the specifics of each year (Figure 8d). The change of the early and late seasons
is a gradual process, with no very clear cut-off point. A small fraction of late season WT
also occurs before 16 October, and similarly, a small fraction of early season WT occurs
after 16 October.
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Figure 8. The distribution characteristics of the frequency of various weather patterns. (a) Wet/hot
patterns generally occur in the first half of autumn. (b) Dry/cold patterns generally occur in the
second half of autumn. (c) Five-day moving average of the frequencies is used to find the threshold
of the alternation of warm and cold in autumn. (d) Frequencies of various WTs over time for the
40 years from 1981 to 2020. The figure helps to understand the transition from the warm to cool
season in the fall in Southeastern China.

3.4.3. Typical Evolution

To further examine the development of WTs within seasons, we examined the WT
progression (Tables 1 and 2 and Figure 9). First, the dataset of the number of clusters
was partitioned into a 40 × 91 matrix, with 40 representing 40 years and 91 representing
a total of 91 days in the three months of autumn. Then, persistence was removed to
enable counting the number of modalities. Those containing multiple consecutive class
numbers (e.g., the forms “xyx” and “xxyyyxx” are equivalent) that occurred in each year
with evolving numbers of lengths two, three, or four are counted. The sum of each year
was also put together to obtain a total (Table 1). Note that, due to the length, only the top
10 results for each evolution are shown, while the evolution of lengths greater than four is
not shown. This is because the highest counts of these evolutions are very few (less than
10) in the 40-year dataset.

From the table, we can find that, overall, the evolution appearing in the early season
occupies the majority and has an absolute numerical advantage. In the evolution of length
four, the first four are all early season, and only from the fifth place in the late season
do modalities start to appear (3−8−9−6). Similarly, in the evolution of length three, the
first five are all early season. In the evolution of length two, the top 10 are occupied by
early season ones in 7 of the top 10. The above results indicate that inter-modal evolution
is extremely common and frequent in the early autumn with a clear summer character.
In contrast, modal evolution rarely occurred in the late autumn, and the evolutionary
characteristics of the modalities are closer to those of the winter season.
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Table 1. Statistical results for the progression sequences of length two, three, and four, respectively
(top 10 are listed separately).

Top 10
Statistics Results

Progression
(Length 2) Amount Progression

(Length 3) Amount Progression
(Length 4) Amount

1 7−1 69 4−7−1 35 7−1−2−4 13
2 8−5 65 1−2−4 26 4−7−1−2 12
3 5−8 61 7−1−2 25 2−4−7−1 12
4 2−4 60 7−1−4 18 1−2−4−7 7
5 1−2 56 2−4−7 18 3−8−9−6 7
6 3−6 51 8−5−3 18 7−1−2−5 6
7 4−7 49 4−8−5 18 2−4−8−5 6
8 5−3 46 3−6−9 16 5−3−8−9 6
9 4−2 44 2−7−1 15 1−2−4−5 5

10 6−3 42 5−3−8 14 5−8−7−1 5

Table 2. Markov chain was used to analyze possible versus impossible transitions, and the results are
shown in the top and bottom halves, respectively. Values below 500 are shown in bold, indicating
that they are significant at the 95% level.

1 2 3 4 5 6 7 8 9
Likelihood of Transition

1
Se

p–
15

O
ct

1 10,000 0 5688 0 0 10,000 0 0 10,000
2 0 10,000 1341 0 0 10,000 0 0 10,000
3 2061 1396 10,000 4290 9987 10,000 3402 6073 10,000
4 0 0 1261 10,000 239 10,000 5 397 10,000
5 0 0 9852 4 10,000 10,000 0 9976 10,000
6 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
7 9266 0 3361 0 0 10,000 10,000 0 10,000
8 0 0 9217 10 8384 10,000 9 10,000 10,000
9 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

16
O

ct
–3

0
N

ov

1 10,000 9715 4010 5315 1812 1520 7570 8698 110
2 9696 10,000 569 9906 6280 95 9436 1037 23
3 1901 156 10,000 1 0 211 121 0 0
4 8749 9888 0 10,000 1447 0 9998 863 0
5 361 4073 26 742 10,000 0 3724 265 0
6 370 3563 8 189 0 10,000 462 0 2
7 10,000 6842 12 9438 114 90 10,000 2192 16
8 193 32 0 163 4114 0 242 10,000 0
9 150 188 0 1 0 4 18 0 10,000

Likelihood of no transition

1
Se

p–
15

O
ct

1 0 10,000 10,000 10,000 10,000 10,000 10,000 10,000 0
2 10,000 0 8739 153 10,000 10,000 10,000 10,000 10,000
3 10,000 10,000 0 9862 10,000 9996 9754 10,000 10,000
4 10,000 1012 9998 0 10,000 10,000 63 10,000 10,000
5 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
6 10,000 10,000 10,000 10,000 10,000 0 10,000 10,000 10,000
7 10,000 3966 9994 2563 10,000 9998 0 10,000 10,000
8 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
9 0 10,000 10,000 10,000 10,000 10,000 10,000 10,000 0

16
O

ct
–3

0
N

ov

1 0 2312 8064 10,000 9625 9679 10,000 2834 10,000
2 2333 0 9848 485 5846 10,000 3191 9709 10,000
3 9373 9976 0 10,000 10,000 9878 9989 10,000 10,000
4 4659 506 10,000 0 9271 10,000 16 9586 10,000
5 10,000 7944 9984 9699 0 10,000 8150 9831 10,000
6 10,000 8254 9996 9957 10,000 0 9931 10,000 9999
7 0 10,000 10,000 2265 10,000 10,000 0 9089 10,000
8 10,000 10,000 10,000 9937 6542 10,000 9973 0 10,000
9 10,000 9977 10,000 10,000 10,000 9997 10,000 10,000 0
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Four frequently occurring evolutions of length four were found from September 1
to October 15 (Table 1). In the first half of the season, the four evolutions were specified
as follows: 7−1−2−4 (E1), 4−7−1−2 (E2), 2−4−7−1 (E3), and 1−2−4−7 (E4). Late fall
includes 3−8−9−6 (L1) and 5−3−8−9 (L2). Some subsets also appear frequently (Table 1).
The most frequent occurrence of E1 in the early season was 13 times. The most frequent
occurrence of L1 in the late season also occurred only seven times. In the evolution of
length three and length two, the number of occurrences was significantly higher. For
example, in the early season, the number of occurrences of 4−7−1 is 35, while the number
of occurrences of 7−1 is 69. In the late season, although less frequent, a similar pattern is
shown. For example, 8−5−3 appeared 18 times, and 8−5 appeared 65 times.

In the process of using Markov chains for analysis, a transition matrix is required.
This was then run through a Monte Carlo method to find an evolution that made sense
of the 95% confidence level. Initially, our analysis was built on the entire fall dataset.
The evolutions “WT7−WT1” and “WT8−WT5” did not appear to be significant (at the
95% confidence level), although they occurred frequently (Table 1 and Figure 9). It is one
of the features of this study to analyze and study the evolution of the alternating cold
and warm autumn processes in the form of circulation modal transitions. The month-by-
month analysis failed to capture this transition (not significant at the 95% level), so the
entire fall season was analyzed by dividing it into two halves (1 September–15 October
and 16 October–30 November). This could be seen at the 95% significance level (Table 2).
We divided autumn into two parts on October 16 (Figure 8c, with a 50% probability of
occurrence for both the early and late WT modes). It is reasonable to divide autumn into
two halves in this way.

In Figure 9, we plotted the conversion relationships of the four WTs in the early season
and the five WTs in the late season separately. The transitions to two of the various WTs are
basically significant at the 95% level. Only individual transitions are significant at the 90%
level (e.g., WT7−WT1 in Figure 9a and WT8−WT5 in Figure 9b).

3.4.4. Continuity of WT

Persistence is shown in the clustering results as multiple consecutive occurrences of
the same class number. From Figure 10a, it can be found that all WTs show the same pattern:
the longer the duration days, the lower the frequency of occurrence. However, the ones
with only 1 day of duration are not the ones with the highest proportion. It indicates that all
kinds of patterns will have some persistence, but the duration is generally not too long. As
can be seen in Figure 10b, the longer the duration, the lower the likelihood of occurrence of
each type of WT. The proportion lasting 2 days is the highest, with most modalities lasting
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at least 2−3 days after their appearance. The proportion lasting 9 days is the lowest, and
the proportion lasting more than 9 days is very low. It is unlikely that a particular modality
will keep appearing continuously and will always switch to other modalities after a long
period of time.
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Figure 10. Autumn season WT persistence. (a) WT persistence, (b) WT spell length. The results of
this figure mean that the shorter the duration, the higher the frequency, and the longer the duration,
the lower the frequency. Similar results are obtained for any WT. The duration is from 2 to 9 days.

3.5. Characterization of Two Typical Progressions (One Representative from Each of the Front and
Back Halves of the Fall)

The progressions of the WTs shown in Figures 11 and 12 are synthesized from the
days that occur in these evolutions. The synthetic fields of these modes have been redrawn
for ease of observation. Evolutions between weather types reflect the movement of the
weather system in the region. The more persistent they are, the slower they move (one
weather type followed by the same weather type). The transition between patterns can be
understood as a change in the troughs and ridges in the circulation field. This change can
be manifested both as a change in the strengthening or weakening of the intensity and as a
change in the position of the same circulating field as it appears in space.

E1 is characterized by the convergence of high and low pressures here (Figure 11).
This process causes the transition zone of two different natural air masses to fall in the
southeastern part of China. It starts from WT7 and moves northward and eastward to
WT2 and then retreats southwestward to WT4. This is a reciprocal movement. This
process brings positive precipitation and positive temperature anomalies to the region.
This is one of the wettest and warmest progressions, and the precipitation brought by this
evolutionary process is extensive and persistent, because the fronts included in this process
are large-scale weather systems in the coastal areas of Guangdong and Guangxi Provinces,
where the highest anomalies were observed. Almost the whole region has above-average
temperatures. Thus, this progression represents a shift in the circulation patterns and
weather in the early season (the first half of autumn).

L1 is characterized by the southeastern part of China being controlled by the Mon-
golian high pressure (Figure 12). The circulation situation is characterized by a clockwise
anticyclone. Its evolution is characterized by a process starting from WT3 that first in-
tensifies, reaches its maximum strength at WT9, and then weakens (WT6). This leads to
negative precipitation and temperature anomalies across Southeastern China, where dry
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and cold weather is prevalent, and several patterns are relatively similar. The change
in the position of the high-pressure ridge is not very pronounced, but only the intensity
alternates regularly in strength and weakness. Thus, this progression represents a shift in
the circulation patterns and weather in the late season (second half of autumn).
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temperature anomalies (shaded; ◦C).
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Figure 12. Autumn late season progression (L1: 3–8–9–6). This figure corresponds to the WTs in
Figures 3 and 4. Drawing them together is helpful to understand the mutual evolution between
WTs. Characteristics of each WT in this progression: (top row) U850 and V850 (arrow; m/s), MSLP
(contour; hPa), and precipitation anomalies (shading; mm). (Bottom row) H500 (contour; m) and 2 m
temperature anomalies (shaded; ◦C).
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3.6. Comparison of the Frequency of WT Occurrence in the Anterior and Posterior 20 Years of the
Last 40 Years (1981–2020) between the Anterior and Posterior Halves of the Autumn

The clustering results provide a basis on which we can study the trend of seasonal
variability in the form of daily circulation patterns for different periods. Differences in the
occurrence frequency of the anterior and posterior seasons (between the anterior 20 and
posterior 20 years of the 1981–2020 record) are considered.

In Figure 13, the difference between the average monthly frequencies in the first and
second halves of fall is plotted. In the first half of fall, the frequency increased significantly
in the first two months and decreased slightly in the last month. In the second half of fall,
the situation was completely opposite, with a significant decrease in the first two months
and a slight increase in the last month. This result implies a clear interdecadal variation in
the frequency of the circulation patterns. The warm and wet patterns are more frequent
and persistent, while the dry and cold patterns are less frequent and occur later.
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Figure 13. Changes in the monthly occurrence frequencies (differences in the monthly occurrence
frequencies from 1981–2000 to 2001–2020).

The change in the persistence of WTs within the two periods was further observed
(Figure 14). Overall, the frequency of occurrence was higher for the shorter duration and
lower for the longer duration of both periods. The highest frequency of occurrence in
the period 1981–2000 was not for WTs of 1-day duration, but the highest frequency of
occurrence of those of 2-days duration. Similarly, the most frequent occurrence in the
period 2001–2020 was the one lasting 3 days, reflecting that the persistence of WT has
intensified in the latter 20 years.

Next, we look at the difference in persistence of the two different patterns of the early
and late seasons in the two preceding and following 20 years (Figure 14c,d). In general, the
frequency of shorter persistence decreased, while the frequency of longer persistence increased.
The specific performance of the two different patterns differed slightly from the early and
late seasons. The frequency of occurrence of those with a duration of 7 days or less decreased
significantly in the early season, and the frequency of occurrence of those with a duration of
8 days or more increased significantly. The frequency of those with a duration of less than
4 days decreased significantly in the late season, and the frequency of most of those with a
duration of 5 days or more increased significantly. It reflects that the persistence of different
types of patterns increased in the period 2001–2020. It means that the risk of occurrence of
flooding and occurrence of drought are both on an increasing trend.
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4. Summary and Discussion

By using the SOM clustering algorithm, nine different WTs were determined for
daily time scales of Southeastern China during 1981–2020 using wind field information on
NCEP2 data of four variables: 500 hPa geopotential high, MSLP, and 850 hPa zonal and
meridional (u and v) component winds. The occurrence of WTs was analyzed for each
month of the calendar. The results show that there are two different groups of WTs during
the period 1981–2020. Four WTs (1, 2, 4, and 7) occurred more frequently in September
than in November. Five WTs (3, 5, 6, 8, and 9) were more likely to occur in November than
in September. These WTs showed a progression of priority to each other. The Markov chain
analysis played an important role in our analysis. Applying this method, we successfully
captured two different occurrence sequences that occurred in autumn. These two sequences
represented the different weather characteristics in the early and late phases of autumn.
The earlier sequence is closer to the summer season and is more likely to produce extreme
weather. The late season weather is characterized by systems with longer single pattern
durations and higher intensities, similar to winter weather characteristics. The analytical
methods of the WTs also show some value in the analysis of extreme weather based on their
relationship with standard teleconnection indices. Their seasonal variations are further
discussed. The apparent seasonality of weather types on the daily scale of autumn shown
here suggests that there may be additional value not only in terms of mean temperature [46].

In our clustering results, the closer the modalities are to each other, the more similar
they are, and the more distant the modalities differ from each other. This is due to the
characteristics of the SOM clustering method. Therefore, two sets of modes with opposite
properties are located at the farthest distance, e.g., WT1 and WT9 are two modes with
exactly opposite properties, and they are located at opposite ends of the diagonal. Among
them, the modalities in the upper-left corner (WT1, WT2, and WT4) exhibit high temper-
atures and rainfall in nature and often occur in early autumn (early season pattern). In
contrast to the upper-left corner, the lower-right patterns (WT9, WT8, WT6) are cold and
dry in nature and often occur in late autumn (late season pattern). The middle WT5 is a
transitional type of no distinct characteristics.
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The early season pattern is clearly characterized by above-average surface tempera-
tures and above-average precipitation. WT4 and WT7 are similar to WT1, except for the
location and intensity of the fronts. WT2 has a different wind direction, with southerly
winds prevailing and basically covering the entire region. The early season pattern is
clearly characterized by below-average temperatures and below-average precipitation over
the entire region. Represented by WT9, the land surface pressure is high and is controlled
by the Mongolian high pressure. WT6 is similar to WT9. WT8 and WT3 are different in that
the prevailing wind direction in these two categories is different from WT9.

Next, the incidence of EP and heat waves associated with WTs was analyzed. WT1
and WT2 contained the most, and WT3, WT6, and WT9 had the least number of EP days.
EP can occur to any of the WTs, and the distribution of heat wave days is more dispersed.
WT1, WT2, WT4, and WT7 cover most heat wave days, not WT3, WT6, WT8, and WT9.
WT1 and WT2 have the most frequent heat wave days.

The relationship between AO, AAO, NAO, PNA, WA, WP, EU, ESNO, and MJO
teleocorrelations and the frequency of WTs was examined next. The pattern of influence
was the most evident for WP and EU, with the early season pattern (wet/hot) more likely
to occur in the positive phase of WP, and the negative phase of the EU. AO, AAO, and
NAO has similar relationships with the WT frequencies, and the wet/hot pattern is more
likely to occur in the negative phase of all three atmospheric teleconnections. In addition,
wet/hot patterns are most likely to occur to the fourth and fifth phases of the MJO, while
dry/cold patterns are scattered among the remaining six phases of the MJO.

The transformation law between WTs can be analyzed by Markov chains. The trans-
formation law shows a certain seasonality. Some progress occurs easily in the early autumn,
while others occur frequently in the late season. The transformation between patterns is
essentially a periodic change in the position and strength of the grooves and ridges. One
of the most frequent early season evolutions (processes) contains four WTs (7, 1, 2, and
4). All four WTs are likely to occur in September, while they are very unlikely to occur in
November. One of the most frequent late season evolutions also contains four WTs (3, 6, 8,
and 9), in contrast to the early season; they are less likely to occur in September and more
likely to occur in November. Something equally important to note is that each WT has the
potential to transition back into itself the next day, i.e., for two days.

We compared the characteristics of two decades in the 40 years from 1981 to 2020.
Patterns of the early season appear more frequently and last longer in the early season,
and those in the late season appear less frequently and later. That is, the longer cool
season pattern shifts to the shorter warm season mode. In addition, the persistence of
both cool and warm types of patterns increased from 2001 to 2020 relative to 1981 to 2000,
with an increasing trend in the risk of both the occurrence of floods and the occurrence
of droughts. This suggests that the observed changes in temperature are associated with
significant changes in the daily circulation in regional seasonal variations. This provides a
new perspective in considering seasonal changes.

This study still does not fully address the problem, and there are still some questions
that need to be further explored. For example, the frequency of weather patterns occurring
in the early and late seasons has changed, and whether their internal structure also changes
over time. This issue also needs to be further investigated.

The relationship between regional circulation patterns and large-scale circulation
changes still needs to be further explored and studied. We plan to further address these
outstanding questions in our future work. In addition, similar to autumn, spring is also a
season of alternating warm and cold conditions. Our concerns include: what is the same or
similar between spring and fall, what are the characteristics of the regional weather patterns
in the spring, etc. What are the characteristics of changes of different modes throughout
the year and whether the weather mode itself will change when the season changes; these
issues are to be discussed in our next work. For the prediction of future climate scenarios,
we also hope that these findings will be applied and can be successfully extended to the
rest of the world.
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