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Abstract: Previous dendroclimatic studies have examined the relationship between total precipitation
amounts and tree radial growth in the southeastern USA, yet recent studies indicate that specific
precipitation event types and rainfall intensities influence longleaf pine (Pinus palustris Mill.) radial
growth unequally. It remains unknown if other pine species respond similarly regarding specific
precipitation types and intensities as most dendroclimatic studies have focused on precipitation
amounts on monthly-to-annual scales without examining either the event type or intensity nor
focusing on daily data. Here, we examine summertime climate–radial growth relationships in the
southeastern USA for four native pine species (longleaf, shortleaf, Virginia, pitch) during 1940–2020.
We examine and compare each species’ response to precipitation event types and intense rainfall
events (IREs) and address if the temporal sensitivity to these events is species specific. Distinct
temporal sensitivities exist among species, and there is a consistent association between convective,
stationary front, and quasi-stationary precipitation and radial growth. All species except Virginia
pine have significant (p < 0.001) associations between IREs and radial growth, even though IREs
account for ~49% of summertime rainfall. These results suggest precipitation-type sensitivity to
radial growth may have dendroclimatic implications.
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1. Introduction

The formal study of atmosphere–plant interactions is long established (e.g., [1]) and
many dendroclimatic studies have examined the relationship between climatic variables
and radial growth in southeastern USA pine (Pinus spp.) trees, including: longleaf pine
(P. palustris Mill.) (e.g., [2–11]); shortleaf pine (P. echinata Mill.) [12–19]; Virginia pine
(P. virginiana Mill.) [20]; and pitch pine (P. rigida Mill.) [20–23]. Generally, abundant current-
and prior-year precipitation and low-temperature stress are associated with increases in
radial growth in these species. However, less is known about the possible influence on
radial growth based on how precipitation is received (i.e., duration, amount, and intensity)
by trees. Recent work indicates that specific precipitation event types influence longleaf
pine radial growth unequally. For example, longleaf pine growing in the coastal plain
physiographic region of Florida and North Carolina principally respond to tropical cyclone
precipitation (e.g., [8,24–26]), while longleaf pine growing in the piedmont physiographic
region principally respond to a combination of convective and stationary front precipitation
(hereafter, “quasi-stationary precipitation”, [11]). Thus, regardless of precipitation event
type, the influence of infrequent high-intensity rainfall events appears to be the leading
modulator of longleaf pine radial growth, rather than total precipitation [27], even when
intense events represent less than half of the total rainfall amounts, which raises the question
if similar conditions exist for other pine species of the southeastern USA.
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Radial growth can be broadly defined in three different terms that capture growth
during distinct periods. Earlywood is radial growth produced during the early growing
season (i.e., spring and early summer, [28]), latewood is produced later in the growing
season (i.e., late summer to early autumn, [28]), and totalwood is the combination of
earlywood and latewood produced in one annual period of growth. Finer-scaled measures
of radial growth can provide greater detail in climate–growth analyses as the distinct
month(s) of precipitation that best influence radial growth can be determined. For example,
in the Pacific Northwest, USA annual variability of totalwood growth of western juniper
(Juniperus occidentalis Hook.) closely reflects (+) cool-season precipitation variability [29]
while for western Montana, USA totalwood growth for ponderosa pine (Pinus ponderosa
Laws.) was most strongly associated (+) with late spring–midsummer precipitation [30].
In eastern Colorado, USA ponderosa pine adjusted latewood growth best corresponds
to the highest 1-day precipitation amount in a 2-week period in July (+) [31]. Further,
a combination of tree species sourced from the International Tree-Ring Data Bank best
respond to distinct seasonal and sub-seasonal precipitation amounts in North America [32]
and the USA west coast [33], with improved model skill and specificity when compared to
either total precipitation or totalwood measurements. In the southeastern USA, a focus on
latewood radial growth would isolate the environmental influences that are active during
the late summer to early autumn as latewood growth of these four southeastern pine
species express substantial interannual variability (ranging from 40% (longleaf pine) to
44% (shortleaf pine, Virginia pine) of totalwood) and has a strong association with summer
moisture conditions (e.g., [5,18,19]).

The four pine species are both temperature and moisture sensitive throughout their
ranges, and studies have examined the influence of climate on latewood radial growth. Lon-
gleaf pine latewood is associated with previous August–September maximum temperature
(+), current July–October maximum temperature (−), current March–October precipitation
(+), previous August–December precipitation (−), current August–September PHDI (+),
and previous September–December PHDI (−) in south Alabama, USA [5], June–October
PDSI (+) and precipitation (+) along a physiographic gradient in North Carolina [9], and
summer–fall precipitation in Texas and South Carolina [7]. Shortleaf pine latewood is
associated with July–September precipitation (−) and temperature (+) in Arkansas [13],
July–September PDSI (+) and July precipitation (+) in central North Carolina [19], and
June–September precipitation (+) and temperature (−) in eastern Oklahoma [18]. Pitch
pine latewood growth is associated with previous July and current August precipitation (+)
near the species’ northern range limit in central Maine [23]. Comparatively less research
has examined climate–growth relationships of Virginia pine (e.g., [20]), likely because
the lack of trees > 100 years old limits the species’ value for dendroclimatic studies. To
our knowledge, no studies have examined relationships between Virginia pine latewood
and climate.

Results from finer-scale analyses of precipitation–growth relationships have impli-
cations for tree ecophysiology, as the specific mode of precipitation that influences radial
growth can be better understood (e.g., [34–37]) and for climate reconstructions and precipi-
tation models using tree-ring data as an input source. Particularly, finer-scale precipitation
measures may reduce the likelihood of false drought identification (i.e., a year with reduced
radial growth, yet above-mean overall precipitation) inferred from tree-ring precipitation
reconstructions. Understanding how different species respond to specific modes of precipi-
tation can increase model specificity and provide information about interspecific responses
to drought, or a lack of intense rainfall events, which has been demonstrated as an area
in need of further research (e.g., [38]). It remains unknown if other pine species respond
similarly to longleaf pine regarding specific precipitation types and intensities as most
dendroclimatic studies in the southeastern USA have focused on precipitation amounts
on monthly-to-annual scales without examining either the event type or intensity nor
focusing on daily data. Thus, to better understand climate–radial growth relationships
in the southeastern USA, our objectives were to examine and compare how each species
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responds to: (1) distinct precipitation event types and (2) intense rainfall events. Addition-
ally, we address if (3) the temporal sensitivity to these events varies among species during
the summer.

2. Materials and Methods
2.1. Study Area
2.1.1. Uwharrie Mountains/Uwharrie National Forest

We sampled longleaf, shortleaf, and Virginia pine in Uwharrie National Forest in
central North Carolina, USA (35.411, −80.061) growing on steep south-facing slopes to
maximize climate sensitivity. The Uwharrie National Forest elevation ranges between 150
and 250 m with 15–45% slopes and “extreme bouldery” soil (NRCS Soil Survey Staff 2019,
Figure 1), factors which co-vary to produce a strong climate–radial growth relationship on
the landscape [10]. The most prevalent coniferous species in the Uwharrie Mountains are
shortleaf pine and Virginia pine, with remnant (i.e., ~60 ha, [39]) longleaf pine populations
dispersed throughout the forest on exposed south-facing slopes. The sampled trees are
located in an area of historic fire suppression with no prescribed burning until 2010 [11].
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Figure 1. Rocky south-facing slope in (a) the Uwharrie Mountains, Uwharrie National Forest, NC,
USA; and (b) the Sauratown Mountains, Pilot Mountain State Park, NC, USA. Longleaf, shortleaf,
and Virginia pine co-occur in (a), and pitch pine occurs in (b).

2.1.2. Sauratown Mountains/Pilot Mountain State Park

We sampled pitch pine on south-facing slopes in Pilot Mountain State Park in central
North Carolina, USA (36.339, −80.474). The Sauratown Mountains range between 300 and
780 m in elevation with 25–90% slopes characterized by “stony”, and “rubbly”, to “extreme
bouldery” soils (NRCS Soil Survey Staff 2021, Figure 1). Pitch pine is the most prevalent
pine species on steep slopes except in areas of rocky outcrops where lower fuel densities
provide a more suitable habitat for Table Mountain pine. The sampled trees are located in
an area of historic fire suppression (i.e., ~1930–2014, [40]), which reduced fire recurrence
frequency by approximately 50% from ~2.4 years to ~4.5 years [40].

2.2. Tree-Ring Data

At each location, we collected two core samples per tree using a 5.15 mm diameter
increment borer following standard dendrochronological sampling techniques [28]. Ad-
ditionally, we recorded stem diameter, crown height, and geographic location for each
tree. After field data collection, we processed and sanded samples with progressively
finer grit sandpaper until the cellular structure was apparent. We scanned samples at high
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resolution (i.e., DPI ≥ 1200), measured at 0.001-mm precision using WinDENDRO (Regent
Instruments Inc., Quebec, Canada 2013), and crossdated. We assessed crossdating accuracy
using COFECHA [41] and we created standardized chronologies using ARSTAN [41] and
dplR [42] using negative exponential detrending.

We created latewood chronologies and based our analyses on latewood as it is the
most responsive to climate in the study area when compared to either earlywood or
totalwood [10,43]. We used adjusted latewood chronologies for analyses to account for the
influence of earlywood on latewood variance (“adjusted latewood” [44]). We created full
and reduced chronologies for each species based on each standardized sample’s response
to precipitation. The reduced chronology is comprised of the most climatically sensitive
trees (i.e., a significant, p < 0.05, relationship to precipitation).

2.3. Climate Data

We selected daily precipitation data during 1940–2020 from weather stations with
high daily data completeness (i.e., >95%) that are located nearby to sampling locations
(Figure 2). We selected Albemarle, North Carolina (Station ID: USC00310090), Randle-
man, North Carolina (USC00317097), and Siler City, North Carolina (USC00317924) as the
Uwharrie Mountain stations and Mount Airy, North Carolina (Station ID: USC00315890)
and Yadkinville, North Carolina (USC00319675) as the Pilot Mountain stations (Figure 2).
We visually classified precipitation event types similar to prior research [11] using daily
weather maps from NOAA (available online at: library.noaa.gov/Collections/Digital-
Collections/US-Daily-Weather-Maps, accessed on 10 September 2022) to classify each
day with precipitation as either convective (no visible frontal or tropical activity), frontal
(cold, stationary, warm), or tropical (a tropical cyclone within 223 km of the study area as
indicated by IBTrACS [11,45]).
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Figure 2. Location of the field collection sites (triangles), Uwharrie National Forest (purple triangle)
and Pilot Mountain State Park (green triangle), and weather station sites (circles) in North Carolina
(NC), USA.

We calculated intense rainfall event (hereafter, “IRE”) frequency and precipitation
amounts as days where the 24 h precipitation total was >2.0 standard deviations above
the daily mean for each station for each selected month, which corresponds to approxi-
mately the 90th percentile of the distribution [27]. We separated precipitation data into:
(1) total precipitation; (2) precipitation associated with IREs; and (3) non-IRE precipitation
(i.e., precipitationtotal−precipitationIRE) and calculated the mean values of these variables
from the mean values from three Uwharrie Mountain stations and the two Pilot Moun-
tain stations for use in analyses. Additionally, we created low, medium, and high-IRE
frequency groupings for each species to analyze each species’ radial growth responses
during these years.

2.4. Statistical Analyses

We tested the relationship between combinations of single and multiple months of
precipitation data with the tree-ring chronologies using Pearson’s correlation coefficient

library.noaa.gov/Collections/Digital-Collections/US-Daily-Weather-Maps
library.noaa.gov/Collections/Digital-Collections/US-Daily-Weather-Maps
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to select the month(s) which best corresponded to radial growth for the four species.
Once the most responsive month was selected, we tested the association between specific
precipitation event types and IRE frequency and precipitation and radial growth for each
species for that (those) selected month(s). We tested for significant differences in radial
growth for each species during years with low, medium, and high-IRE frequency using
one-way ANOVA with Tukey’s HSD test.

3. Results and Discussion

The full longleaf pine chronology is comprised of 80 samples from 60 trees with
a series intercorrelation of 0.576, a mean sensitivity of 0.497 spanning 1740–2020, and
the full shortleaf pine chronology is comprised of 47 cores from 31 trees with a series
intercorrelation of 0.592, a mean sensitivity of 0.428 spanning 1775–2020. The Virginia pine
chronology is comprised of 20 cores from 13 trees with a series intercorrelation of 0.439, a
mean sensitivity of 0.359 spanning 1929–2020, and the pitch pine chronology is comprised
of 49 cores from 27 trees with a series intercorrelation of 0.626, a mean sensitivity of 0.435
spanning 1844–2020. The reduced chronologies contain 64 samples from 47 trees (longleaf
pine, interseries = 0.584, mean sensitivity = 0.502, 1740–2020), 34 samples from 25 trees
(shortleaf pine, 0.597, 0.437, 1775–2020), and 35 samples from 22 trees (pitch pine, 0.632,
0.446, 1844–2020). The Virginia pine sample size was too small for a reduced chronology to
be used for analyses.

The longleaf pine (r = 0.65, 95% CI [0.51, 0.76], p < 0.001) and shortleaf pine (r = 0.59,
95% CI [0.42, 0.71], p < 0.001) chronologies best respond to the same months of precipi-
tation (i.e., July–September) during 1940–2020 suggesting similar temporal sensitivities
between the two species. The Virginia pine chronology responds best to August–September
precipitation (r = 0.37, 95% CI [0.17, 0.55], p < 0.02) while pitch pine responds to August
precipitation (r = 0.40, 95% CI [0.20, 0.57], p < 0.002). Generally, more variance is explained
when using the reduced chronologies for longleaf (r = 0.59, 95% CI [0.42, 0.71], p < 0.001),
shortleaf (r = 0.63, 95% CI [0.47, 0.74], p < 0.001), and pitch pine (r = 0.51, 95% CI [0.33, 0.65),
p < 0.001). The reduced chronologies consistently respond to either convective (longleaf
pine, shortleaf pine), stationary front precipitation (all pine species), or a combination
of convective and stationary front precipitation, quasi-stationary precipitation (all pine
species) (Table 1), which is consistent with previous work for longleaf pine [11] and empha-
sizes the importance of precipitation intensity on radial growth. No species significantly
responded to tropical cyclone precipitation.

All pine chronologies except Virginia pine have significant (p < 0.001) relationships
with IRE precipitation, which on average represents 49.2% of total precipitation amounts
(Figure 3, Table 2) and is most commonly associated with stationary front precipitation
events. Virginia pine has a near significant (p = 0.052) relationship with August–September
IRE precipitation (r = 0.32, 95% CI [0.11, 0.51], p = 0.052), a coefficient that, while non-
significant, is similar to its overall precipitation response (r = 0.37). Longleaf pine (r = 0.55,
95% CI [0.37, 0.68], p < 0.001) and shortleaf pine (r = 0.54, 95% CI [0.36, 0.68], p < 0.001)
adjusted latewood is associated with July–September IRE precipitation while pitch pine is
associated with August IRE precipitation (r = 0.50, 95% CI [0.31, 0.65], p < 0.001). Non-IRE
precipitation (i.e., precipitationtotal−precipitationIRE) is not significantly associated with
the pine chronologies during 1940–2020, emphasizing a distinct association between IRE
rather than total precipitation (Figure 3, Table 2). Further, the use of IRE precipitation
in climate–growth analyses produces a similar response to total precipitation measures
and ranges from representing 98.0% (pitch pine, Table 2) to 85.7% (shortleaf pine, Table 2)
of the total precipitation correlation coefficient, despite accounting for approximately
half of the total precipitation amount. Mechanistically, we posit that IRE precipitation is
more efficient at saturating the soil-moisture column at depth compared to lower-rainfall
amount events that may only superficially increase soil moisture. These results particularly
emphasize the influence of IRE precipitation on tree radial growth and suggest that climate–
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growth models, and their resultant climate reconstructions, should account for precipitation
intensity rather than total precipitation amounts.

Table 1. Correlations between convective, stationary front, and quasi-stationary precipitation with
each species and the ratio of quasi-stationary precipitation to total precipitation during 1940–2020.
Quasi-stationary precipitation is the combination of convective and stationary front precipitation.

Species *
Correlation with

Convective
Precipitation

Correlation with
Stationary Front

Precipitation

Correlation with
Quasi-Stationary

Precipitation

Quasi-Stationary
Precipitation/Total
Precipitation Ratio

Longleaf pine
0.35 0.40 0.50

[0.14, 0.53] [0.19, 0.57] [0.31, 0.65] 86.4%
p < 0.05 p < 0.01 p < 0.005

Shortleaf pine 0.40 0.44 0.54
[0.19, 0.57] [0.24, 0.61] [0.36, 0.68] 86.4%

p < 0.01 p < 0.01 p < 0.005

Virginia pine
0.17 0.36 0.41

[−0.06, 0.38] [0.15, 0.54] [0.20, 0.58] 83.0%
p > 0.99 p < 0.03 p < 0.01

Pitch pine 0.26 0.37 0.40
[0.03, 0.46] [0.15, 0.55] [0.19, 0.57] 90.3%
p = 0.568 p < 0.03 p < 0.01

* All r-values are for July–September for longleaf and shortleaf, August–September for Virginia, and August
for pitch.

Table 2. Correlations with total precipitation, IRE precipitation, non-IRE precipitation for each species,
and the proportion of total precipitation correlation coefficient explained by IRE precipitation. Ratio
of IRE precipitation to total precipitation during the selected month(s).

Species * Correlation with
Precipitation

Correlation with
IRE Precipitation

Correlation with
Non-IRE

Precipitation

IRE
Precipitation/Total
Precipitation Ratio

IRE Correlation/Total
Precipitation
Correlation

Longleaf pine
0.59 0.55 0.19

[0.42, 0.71] [0.37, 0.68] [−0.03, 0.39] 50.2% 93.2%
p < 0.001 p < 0.001 p > 0.99

Shortleaf pine 0.63 0.54 0.28
[0.47, 0.74] [0.36, 0.68] [0.06, 0.47] 50.2% 85.7%
p < 0.001 p < 0.001 p = 0.345

Virginia pine
0.37 0.32 0.18

[0.17, 0.55] [0.11, 0.51] [−0.04, 0.38] 53.3% 86.5%
p < 0.02 p = 0.052 p > 0.99

Pitch pine 0.51 0.50 0.24
[0.33, 0.65] [0.31, 0.65] [0.02, 0.43] 43.2% 98.0%
p < 0.001 p < 0.001 p = 0.262

* All r-values are for July–September for longleaf and shortleaf, August–September for Virginia, and August
for pitch.

There are significant differences in radial growth for each species in summers with
different IRE frequencies during 1940–2020. For each species, group thresholds were es-
tablished based on the number of months of precipitation to which the species responded
significantly. For longleaf pine and shortleaf pine, low- (years with <3 IREs), medium-
(≥3 but ≤5), and high-frequency (>5) groupings were used to classify each summer during
1940–2020. For Virginia pine, low-(<2), medium (≥2 but ≤4), and high-frequency (>4)
groupings, and for pitch pine, low (<1), medium (≥1 but ≤3), and high-frequency (>3)
groupings were selected. The three pine species growing in the Uwharrie Mountains
have significant differences during low- and high-IRE frequency years (Figure 4) such
that radial growth is reduced by −0.298 (−0.465–−0.131 95% CI, longleaf pine), −0.234
(−0.379–−0.089 95% CI, shortleaf pine), and −0.190 (−0.370–−0.010 95% CI, Virginia pine)
during low-IRE frequency years. Additionally, longleaf pine radial growth is significantly
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different during medium- and high-IRE frequency years (Figure 4a) such that growth is re-
duced by −0.203 (−0.346–−0.061 95% CI) during medium-IRE frequency years. Pitch pine
also exhibits this difference between medium- and high-IRE frequency years (Figure 4d)
such that radial growth is reduced by −0.153 (−0.282–−0.025 95% CI) during medium-IRE
frequency years.
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Figure 3. Scatterplot of adjusted latewood, IRE precipitation (a), and non-IRE precipitation (b) for
each species during 1940–2020. All pine species except Virginia pine have significant (p < 0.001)
associations with IRE precipitation (a) while no species have significant associations with non-IRE
precipitation (b). No significant (p < 0.05) trends in either IRE or non-IRE precipitation occurred
during the study period.
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Figure 4. Adjusted latewood (x-axis) distribution density (y-axis) during low-, medium-, and high-
IRE frequency summers for (a) longleaf pine, (b) shortleaf pine, (c) Virginia pine, and (d) pitch
pine. The three pine species growing in the Uwharrie Mountains (a–c) have significant growth
reductions during low-IRE frequency years when compared to high-IRE frequency years displayed
by a significant distribution density shift. Longleaf pine (a) and pitch pine (d) have significant growth
reductions during medium-IRE frequency years when compared to high-IRE frequency years.
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4. Conclusions

Here, we examined how four pine species native to the southeastern USA responded
to distinct precipitation event types and intense rainfall events. We found that precipitation
event types are distinctly associated with radial growth with a consistent association
between convective (longleaf pine, shortleaf pine), stationary front, and quasi-stationary
(all pine species) precipitation, emphasizing the importance of a focus on finer-scaled
measures of precipitation when analyzing climate–growth relationships. All species, except
Virginia pine, have a significant (p < 0.001) relationship with IRE precipitation, which on
average represents 49.2% of total summertime precipitation amounts. This finding suggests
that precipitation–growth relationships in similar environments in the southeastern USA
may better reflect specific types and/or intensities of precipitation, and the importance of
ground-soaking rainfall events, rather than total precipitation variability. Thus, with an
increasing emphasis on how trees respond to moisture deficit and drought (e.g., [38,46]), it
is important for studies to accurately reflect the influence of specific types of precipitation
on tree radial growth. Given the increasing frequency of IREs in the southeastern USA [47],
these findings of precipitation-event type specificity can be applied to dendroclimatic
reconstruction studies to place the current trend in a historical context.
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