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Abstract: One of the well-known challenges of fog forecasting is the high spatio-temporal variability
of fog. An ensemble forecast aims to capture this variability by representing the uncertainty in the
initial/lateral boundary conditions (ICs/BCs) and model physics. The present study highlights
a new operational Ensemble Forecast System (EFS) developed by the Indian Institute of Tropical
Meteorology (IITM), Pune, to predict the fog over the Indo-Gangetic Plain (IGP) region using the
visibility (Vis) diagnostic algorithm. The EFS framework comprises the WRF model with a 4 km
horizontal resolution, initialized by 21 ICs/BCs. The advantages of probabilistic fog forecasting have
been demonstrated by comparing control (CNTL) and ensemble-based fog forecasts. The forecast is
verified using fog observations from the Indira Gandhi International (IGI) airport during the winter
months of 2020–2021 and 2021–2022. The results show that with a probability threshold of 50%, the
ensemble forecasts perform better than the CNTL forecasts. The skill scores of EFS are relatively
promising, with a Hit Rate of 0.95 and a Critical Success Index of 0.55; additionally, the False Alarm
Rate and Missing Rate are low, with values of 0.43 and 0.04, respectively. The EFS could correctly
predict more fog events (37 out of 39) compared with the CNTL forecast (31 out of 39) and shows
the potential skill. Furthermore, EFS has a substantially reduced error in predicting fog onset and
dissipation (mean onset and dissipation error of 1 h each) compared to the CNTL forecasts.

Keywords: ensemble fog forecast system; visibility diagnostic algorithm; WRF model; forecast skill
verification; WiFEX

1. Introduction

For the past three decades, it has been observed that the reduced visibility during dense
fog episodes severely affects the rail–road–air transport systems and leads to economic
losses and life-threatening hazards in the Indo-Gangetic Plain (IGP) region [1–4]. Moreover,
the reduction in insolation during foggy conditions has substantially fluctuated the power
output of solar power plants over the different parts of North India in recent years. Better
forecasts of fog would help to mitigate such economic losses and minimize the possible
damage to life and property.

Through state-of-the-art numerical models and statistical approaches such as a deci-
sion tree [5–7], neural network [8,9], fuzzy logic [10,11], and artificial intelligence/machine
learning [12–15], the predictability of fog could be enhanced by reproducing the fog-
relevant thermodynamical state of the atmosphere. Although the nowcasting (6–12 h)
skill of statistical approaches for site-specific fog is reasonably satisfactory, these ap-
proaches have limited spatial resolution and depend on long-term fog field observa-
tions. The progress in the numerical prediction of fog has a long history of 40–50 years.
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The improvements in the numerical weather prediction (NWP) models in terms of verti-
cal/horizontal resolutions [16–18], physical parameterization schemes [19–21], and land
surface processes [22–24] have been possible due to the support of extensive fog field ob-
servations from across the globe [4,25–29]. Several research centers have evaluated the
performance of the NWP models and attempted to operationalize them for short-range
(12–72 h) fog prediction on the local to regional scale [30–34]. Although the NWP models
have made significant progress, the spatiotemporal variability of fog poses a major prob-
lem for forecasters due to the uncertainty associated with individual model forecasts. In
addition to this, short- and medium-range forecasts of any weather phenomena constitute
an initial value problem. Even small errors in the initial state of the atmosphere due to its
chaotic nature can lead to large forecast errors [35,36]. Any single model forecast becomes
impractical beyond a certain time limit, even with perfect numerical models. Therefore, to
circumvent such problems, the Ensemble Forecast System (EFS) has been used recently for
severe weather phenomena.

An EFS comprises multiple individual numerical forecasts/members generated from
the different initial/boundary conditions (ICs/BCs) and model physics [37]. They have
the capacity to capture the variability of various weather phenomena, including extreme
weather events. Given the skills of EFS, it is widely used in short- and medium-range
weather forecasts at many operational forecasting centers [38–43]. Nevertheless, limited
number of studies has been reported the use of EFS for fog forecasting. For instance, a
local ensemble prediction system (LEPS) was designed around the one-dimensional model
and tested to assess the predictability of low-visibility fog events at the Paris Airport [44].
The results demonstrated that the LEPS has adequate skills in predicting low visibility
for specific local fog events. In [45], researchers developed a Mesoscale Ensemble Predic-
tion System (MEPS) at the National Center for Atmospheric Research (NCAR) consists of
10 members in two different three-dimensional (3D) regional models with 15 km horizontal
resolution focused over the east coast of China. From the improvement in the forecast
skill, the authors suggested that the reliability of probabilistic forecasts could be effectively
improved by using a multi-model ensemble instead of a deterministic (non-probabilistic)
model. Furthermore, Ref. [46] showed the advantages of probabilistic fog forecasts by
comparing the reference and ensemble-based forecasts in a 3D model with a multi-physics
(16-member) ensemble. The results revealed that the EFS performed better than deter-
ministic fog forecasts by considering probability thresholds of 37.5%, 50%, and 62.5% for
ensemble forecasts. In essence, these earlier studies suggest that the forecasters can ascer-
tain the probability of fog events occurring based on an explicit probabilistic forecast and
mitigate the socioeconomic losses caused by fog.

By considering the societal need and surge demands for real-time fog forecasts from
the air, rail-road transportation and renewable energy stakeholders, especially the solar
energy sector in the IGP region, we operationalized EFS at the Indian Institute of Tropical
Meteorology (IITM) under the “Winter Fog EXperiment (WiFEX)” program of the Ministry
of Earth Sciences (MoES) of India for the winter seasons of 2020–2021 and 2021–2022. To
gain confidence in the newly developed EFS, we emphasized the skill validation of EFS
and the identification of forecasting barriers for the 2 years of the winter season. The
structure of the paper is as follows. Section 2 describes the data and methodology, which
include the configurations of EFS, visibility diagnostic algorithm, verification methodology
for deterministic and probabilistic forecasts, and model and observational dataset details.
Results and discussions are given in Section 3, and the conclusions are summarized in
Section 4.

2. Data and Methodology
2.1. Observational Dataset

The WiFEX observation site is located inside the Indira Gandhi International (IGI)
airport (28.56◦ N, 77.09◦ E), with a homogeneous (land use) region of around 5100 acres of
open land. During the 2020–2021 and 2021–2022 winter seasons, the fog field campaign
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at the IGI airport could not be conducted due to the COVID-19 pandemic and ongoing
construction work at the airport. Therefore, the Meteorological Terminal Aviation Routine
(METAR) weather reports for horizontal visibility (m), wind speed at 10 m (WS, m s−1), air
temperature at 2 m (T2, ◦C), and corresponding dew point temperature (DpT, ◦C) at the
airport were used for the detailed analysis of fog events and forecasting skill verification.
These datasets are available at 1-hour intervals. The EFS was used to simulate the fog
events that occurred over North India, including at the IGI airport, during the 2020–2021
and 2021–2022 winter months (December–January). To collect the information regarding
the widespread fog activity over the IGP region and to verify the spatial forecasts, we
utilized the satellite-processed fog product from the Indian National Satellite 3D Repeat
(INSAT-3DR). The INSAT-3DR uses thermal infrared channel-1 (TIR-1) and middle infrared
channel brightness temperature to determine nighttime fog. The daytime lifted fog/low-
level clouds are derived from visible channel reflectance and TIR-1 channel brightness
temperature. The fog products of INSAT-3DR are available at https://mosdac.gov.in/
(access on 7 August 2022).

The World Meteorological Organization (WMO) defines fog as the reduction in vis-
ibility below 1000 m due to the suspension of tiny water droplets near the surface. The
visibility in Delhi often drops below 1000 m during the winter without suspended water
droplets in the air. The smaller suspended droplets formation was recorded at WiFEX
observation site when the visibility fell below 500 m, which has been investigated using fog
droplet measurements during the WiFEX campaigns. Therefore, the days when visibility
(Vis) fell in the 500–1000 m range are generally referred to as hazy days, while those with
Vis < 500 m are foggy days. As per the International Civil Aviation Organization (ICAO)
guidelines, takeoff and landing of aircraft under visual flight rules (VFR) are not allowed
when Vis < 500 m. Hence, we evaluated the forecasting skills for fog events when the
visibility is below 500 m during the winter seasons of two years. Table 1 summarizes all
fog events with the details about fog onset–lifting and total sustainment time in different
visibility ranges. The category (CAT) of fog types based on different visibility ranges was
established by the ICAO. Table 1 also represents the availability of ensemble-based forecasts
at the IGI airport during the fog events of the study period. Figure 1 illustrates that the fog
persists in the moderate fog category (includes both CAT I and CAT II; 550 m < Vis < 300 m)
for almost 111 h (~49%), while for 115 h (~51%), fog was recorded in the dense fog category
(CAT III). Typically, this optically thick and deep dense fog category [47] is the most chal-
lenging period for pilots and air traffic control (ATC) is to decide on take-off and landing of
flights at runways.

Table 1. Summary of observed fog events during WiFEX campaigns in 2020–2021 and 2021–2022 at
the IGI airport, New Delhi, India.

Sr. No. Date

Observed Vis < 500 m
Time (UTC)

CAT IIIC
(0 m <
Vis <
49 m)

CAT IIIB
(50 m <
Vis <

174 m)

CAT IIIA
(175 m <

Vis <
299 m)

CAT I and
CAT II
(300 <
Vis <

549 m)

Model
Forecast

Available
(Y/N)

Onset–
Lifting Fog

Hour

Total Fog
Hours

1 06–07 Dec 2020 20:00–05:00 09:00 4 2 - 3 Y
2 07–08 Dec 2020 00:00–05:00 05:00 - - - 5 N
3 12–13 Dec 2020 19:00–22:00 03:00 - - 1 2 Y
4 15–16 Dec 2020 00:00–05:00 05:00 - 2 2 1 Y
5 21–22 Dec 2020 00:00–03:00 03:00 - - - 3 Y
6 22–23 Dec 2020 02:00–04:00 02:00 - - - 2 Y
7 23–24 Dec 2020 20:00–04:00 08:00 - 3 1 4 Y
8 24–25 Dec 2020 21:00–03:00 06:00 - - - 6 Y
9 29–30 Dec 2020 00:00–03:00 03:00 - 2 - 1 Y

10 30–31 Dec 2020 19:00–04:00 09:00 - 6 - 3 Y
11 03–04 Jan 2021 21:00–04:00 07:00 - 4 2 1 Y

https://mosdac.gov.in/
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Table 1. Cont.

Sr. No. Date

Observed Vis < 500 m
Time (UTC)

CAT IIIC
(0 m <
Vis <
49 m)

CAT IIIB
(50 m <
Vis <

174 m)

CAT IIIA
(175 m <

Vis <
299 m)

CAT I and
CAT II
(300 <
Vis <

549 m)

Model
Forecast

Available
(Y/N)

Onset–
Lifting Fog

Hour

Total Fog
Hours

12 05–06 Jan 2021 03:00–04:00 01:00 - - - 1 Y
13 06–07 Jan 2021 15:00–02:00 11:00 - - - 11 Y
14 07–08 Jan 2021 19:00–23:00 04:00 1 2 - 1 Y
15 10–11 Jan 2021 22:00–02:00 04:00 2 1 1 - N
16 12–13 Jan 2021 18:00–04:00 10:00 - 5 1 4 Y
17 13–14 Jan 2021 22:00–05:00 07:00 - 2 - 5 Y
18 14–15 Jan 2021 22:00–04:00 06:00 - - - 6 Y
19 15–16 Jan 2021 17:00–06:00 13:00 9 3 - 1 Y
20 16–17 Jan 2021 19:00–03:00 08:00 - 4 - 4 Y
21 17–18 Jan 2021 02:00–03:00 01:00 - - - 1 Y
22 18–19 Jan 2021 21:00–06:00 09:00 1 4 2 2 Y
23 19–20 Jan 2021 20:00–00:00 04:00 - - 1 3 Y
24 21–22 Jan 2021 03:00–05:00 02:00 - - - 2 Y
25 22–23 Jan 2021 18:00–02:00 08:00 - - 2 6 Y
26 23–24 Jan 2021 00:00–04:00 04:00 - 1 2 1 Y
27 25–26 Jan 2021 22:00–02:00 04:00 - - 2 2 Y
28 27–28 Jan 2021 22:00–02:00 04:00 - - 4 Y
29 28–29 Dec 2021 23:00–04:00 05:00 - 1 2 2 Y
30 01–02 Jan 2022 22:00–03:00 05:00 - - - 5 Y
31 05–06 Jan 2022 02:00–05:00 03:00 - - - 3 Y
32 06–07 Jan 2022 01:00–03:00 02:00 - - - 2 Y
33 10–11 Jan 2022 21:00–04:00 07:00 - 4 2 1 Y
34 11–12 Jan 2022 22:00–02:00 04:00 - - - 4 Y
35 12–13 Jan 2022 23:00–05:00 06:00 - 5 - 1 Y
36 13–14 Jan 2022 21:00–05:00 08:00 - 4 3 1 Y
37 14–15 Jan 2022 18:00–00:00 06:00 - 3 - 3 Y
38 19–20 Jan 2022 22:00–05:00 07:00 - 4 2 1 Y
39 20–21 Jan 2022 19:00–01:00 06:00 - - 5 1 Y
40 24–25 Jan 2022 22:00–02:00 04:00 - 3 - 1 Y
41 26–27 Jan 2022 19:00–22:00 03:00 - 2 - 1 Y

Total Fog Hours 226 17 67 31 111
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Figure 1. Fog classification is based on the four visibility ranges (CAT I and II, CAT IIIA, CAT IIIB,
CAT IIIC) during the 2020–2021 and 2021–2022 winter months at IGI airport, New Delhi, India.

2.2. A Framework of EFS and Model Configurations

As part of the WiFEX 2020–2021 and 2021–2022 program, an earlier fog forecasting
setup dedicated to the IGP region was reconfigured with the new EFS to provide daily 48-h
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forecasts during the winter months (December–January–February). This forecast is updated
on WiFEX’s official site with bulletins (https://ews.tropmet.res.in/wifex/index.php). The
EFS framework is a high-resolution 3D model-based ensemble fog prediction system. In
the present study, 21 ICs/BCs at 0000 UTC from the Global Ensemble Forecast System
(GEFS) were directly used to initialize the EFS. The EFS output is further post-processed by
a visibility algorithm. The detailed working flowchart of the EFS is depicted in Figure 2.
There was a need for an ensemble-based forecast system for region-specific probabilistic
prediction of weather over India particularly for disastrous weather events, e.g., tropical
cyclones, heavy rainfall events, etc. Considering the societal need into account, under the
“Monsoon Mission” program, India’s MoES successfully implemented the Global Ensemble
Forecast System (GEFS; semi-Lagrangian T574 L64 resolution) at IITM for seven days
of weather prediction [42,48]. Furthermore, as per the need of forecasts at a block level
(~12 km), the high-resolution ensemble prediction system (GEFS T1534) was implemented
at IITM in June 2018 and subsequently handed over to the India Meteorological Department
(IMD) for operational implementation. The GEFS suite comprises 21 ensemble members
(1 control + 20 perturbed). n = 00 is the reference or control member (hereafter referred to
as CNTL) and the other perturbed members (n = 01 to 20) are generated by the Ensemble
Kalman Filter method with the forecast perturbation of the previous cycles four times a
day at all 64 model vertical levels. To initialize the same number of 3D regional models, we
directly utilized these 21 ICs/BCs. Advanced Research Weather Research and Forecasting
(ARW) models, version 4.0, of 4 km horizontal resolution are used in the EFS [49]. Parallel
arrangements of the 21 WRF models are specially designed to simulate the fog forecast.
Technical specifications is common among all 21 WRF model setups, including domain con-
figuration and model physics, except the ICs/BCs for their initialization. The specifications
of the WRF model are discussed below.
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Figure 2. The schematic flowchart of the operational Ensemble Forecast System (EFS) for fog predic-
tion by utilizing the perturbed initial conditions from the Global Ensemble Forecast System (GEFS)
data at the Indian Institute of Tropical Meteorology (IITM), Pune, India.

The single forecast domain, centered over Delhi (at 28.49◦ N, 77.10◦ E) and cover-
ing 1760 km in the east–west direction (440 grid points) and 800 km in the north–south
direction (200 grid points), covers most of the fog-prone areas of North India, as shown
in Figure 3. For a complete representation of the thermodynamic and surface processes
within the planetary boundary layer (PBL), the vertical resolution of the WRF model is set

https://ews.tropmet.res.in/wifex/index.php
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at 60 sigma levels with dense vertical levels (19 levels) below 1000 m. In earlier studies,
we evaluated multiple parameterization schemes (including PBL, microphysics, and land
surface schemes) and model configurations (including domain size and horizontal/vertical
resolutions) to determine the optimal model configuration for predicting dense fog events
over North India [17,24,34]. Based on these sensitivity experiments, the model physical
parameterization schemes in the present study include the local turbulent kinetic energy
(TKE) closure Mellor–Yamada–Nakanishi–Niño Level 2.5 (MYNN2.5) PBL scheme, WSM6
microphysics, the CAM shortwave and longwave radiation scheme, and the Pleim–Xiu
land surface model. The optimal configuration of EFS is briefly given in Table 2. From
EFS, site-specific (area averaged of 8 km × 8 km horizontal resolution is selected for the
site; l = latitude, m = longitude) visibility for each member is derived. These individual
diagnosed visibility values (Vis < 500 m) are used to calculate the ensemble mean and
the probability (P) of fog occurrence every hour over the IGI airport. In addition, each
grid point of the domain is considered to calculate the spatial probability of dense fog
(Vis = 200 m) over the IGP.
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Figure 3. A single domain (d01) of the ensemble forecasting system with horizontal resolution of
4 km cover the northern parts of India. The IGI airport in New Delhi, India, is represented with a
star symbol.

Table 2. Configuration of the WRF model used for the EFS in the study.

WRF Model Setup Details

Initial/boundary conditions GEFS T1534; 1 control and 20 perturbed members
Domain size and resolution 440 × 200 grids; 4 km

Vertical level 60 (total 19 levels below 1 km)
Radiation scheme CAM (for both shortwave and longwave)

Microphysics WSM6
Land surface model Pleim–Xiu

PBL MYNN 2.5
Initialization time 0000 UTC

Spin up time 6 h
Forecast leading time 48 h

2.3. A Visibility-Based Diagnostic Method for Fog Prediction

The selection of an effective visibility algorithm is necessary to predict fog and eval-
uate the performance of the WRF model. The WRF model does not directly forecast
horizontal visibility. Typically, the prognostic variables from WRF outputs, such as LWC,
relative humidity, and temperature, are used for the visibility diagnostics [27]. Several
studies showed that the LWC at the lowest model level was commonly used to represent
fog [16,27,34]. Following the earlier Vis diagnostic approach suggested by [50–53], we
developed a site-specific Vis parameterization as a function of fog index (FI is a product of
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LWC and fog droplet number concentration (Nd)) using microphysical measurements at
the WiFEX observation site. In a highly polluted environment, Nd changes from a few hun-
dred droplets to a few thousand droplets for nearly the same values of LWC [50,53,54]. By
using the dataset of WiFEX 2017–2018, the fitting function is obtained. The fitting function
correlates Vis and FI in a nearly linear manner [53] and the model predicted hourly LWC to
calculate the FI. The fitting function indicates that the Vis is inversely related to LWC and
Nd. Following the approach of [50], we also used maximum and minimum limiting values
of Nd and LWC. The maximum limiting values for Nd and LWC used in the analysis are
approximately 1000 cm−3 and 0.5 g m−3, respectively, while the minimum limiting Nd
and LWC values are tens of cm−3 and 0.002 gm−3, respectively. The microphysical data
beyond the abovementioned limit were excluded from the analysis. More details about
the fitting function are documented elsewhere [53]. In the present study, since we used a
single momentum microphysics scheme, we used a fixed value of Nd = 650 cm−3, based
on the mean value from the microphysical observations. The fitting function obtained from
observational datasets and simulated microphysical parameters (Nd and LWC) to estimate
the Vis at the IGI airport is given in Equation (1). This equation is used for the two years of
the operational forecast. The given visibility diagnostic approach recognizes the variability
in droplet sizes and its role in reducing the visibility caused by fog. The hourly visibility
values for each ensemble member were calculated at the IGI airport. Furthermore, the
probability of fog occurrence based on visibility threshold values (Vis < 500 m) from 21
ensemble members was compared with the corresponding observed visibility values.

Vis = 1/[0.08 × (FI) + 0.37] (1)

2.4. Forecast Skill Verification Methods

Dichotomous (binary) verification methods were used to verify a deterministic forecast
against its corresponding observation for 39 fog events for 217 h at the IGI airport. Besides
the CNTL forecasts, the probabilistic forecasts in EFS are also treated as deterministic
forecasts with the given percentage threshold. Real ensemble NWP systems are naturally
imperfect and they require statistical post-processing in order to generate calibrated proba-
bility forecasts for users. Generally, the ensemble mean or median (the 50% probability)
forecast should have the most skill on average [37]. Since the prevailing number of ensem-
ble members in this study is 21, the 50% probability threshold is applicable. Therefore,
we used a 50% forecast to approximate the ensemble median forecast. Here, verification
was only focused on the 24-hour forecasts. To verify both CNTL and EFS, a contingency
table is used, which shows the frequency of “yes” and “no” forecasts and occurrences of
fog events. The four combinations of forecasts (yes or no) and observations (yes or no),
called the joint distribution, are listed below, where a, b, c, and d refer to event forecast
to occur and did occur (hit), event forecast to occur but did not occur (false alarm), event
forecast not to occur but did occur (miss), and event forecast not to occur and did not occur
(correct negative), respectively. The following Equations (2)–(5) helped to represent the
deterministic skill scores of forecasting systems.

Hit Rate (HR) = a/(a + c) (2)

False Alarm Ratio (FAR) = b/(a + b) (3)

Missing Rate (MR) = c/(a + c) (4)

Critical Success Index (CSI) = a/(a + b+c) (5)

However, we further evaluated the skill of EFS by a probabilistic method. For verifying
ensemble probabilistic forecasts, Brier Score (BS), Brier Skill Score (BSS), Reliability diagram,
Ensemble spread vs. ENS mean error, and a Relative Operating Characteristic (ROC)
diagram were used. The BSS is derived from BS and BSr shown in Equations (6)–(8),
respectively. The BS is the mean squared difference between the forecast probability and
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binary observation [55]. Here, i denotes the forecast number (out of the total number of
forecasts), N is the total number of forecast–observation pairs for all forecasts, and Pi and
Oi are the forecast probability and binary observation at the ith sample, respectively. The Pi
ranges in value from 0 to 1, but the Oi is either 1 (yes event) or 0 (no event). As the BS is
an error score, the lesser the BS, the better the forecast. Hence, a BS value of 0 indicates a
perfect forecast. Similarly, the Brier Score for the reference forecast (BSr) is calculated (a
single deterministic forecast), where FI ranges in value from 1 (yes) to 0 (no). The reliability
diagram measures agreement between predicted probabilities and observed frequencies.
The success of EFS is measured using ROC as it plots the hit rate against the false alarm
rate with increasing probability thresholds. The area under the curve (ROC area) is helps to
summarize the potential of forecast skills. An ROC curve along the diagonal indicates that
the hit rate and false alarm rate are equal; hence, the forecast has no skill. A curve below
the diagonal represents negative skill.

Brier Skill Score (BSS) = 1 − (BS/BSr) (6)

where BS = (1/N) ∑N
i (Pi − Oi)

2 (7)

BSr = (1/N)∑N
i ( fi − Oi)

2 (8)

3. Result and Discussions
3.1. The 19–20 January 2022 Fog Case

Figure 4 shows the resemblance between the observed INSAT-3DR satellite fog/low-
cloud product with the ensemble probability forecast for a visibility threshold Vis < 200 m
over the different parts of North India in the late evening and at midnight during the 19–20
January 2022 fog event. In the afternoon on 19 January, the northwest part of the IGP region
was dominated by a high-pressure system that slowly progressed to the central part of
India. As a result, nocturnal radiative cooling occurred over various parts of North India
under stable atmosphere. From the satellite fog/cloud products shown in Figure 4a, it can
be demonstrated that fog formed rapidly over the northwest part of Rajasthan, eastern parts
of Uttar Pradesh, and southern parts of Delhi in the late evening on 19 January. However,
sparse fog patches were seen over these locations and densely packed fog was seen over the
northeast part of Punjab at midnight on 20 January. Within six hours before midnight fog
occurrence, such a transformation of fog could be possible due to the windy conditions and
the shifting high-pressure system (from synoptic charts and IMD report). Interestingly, the
short-lived spatial state of this fog event and its unique characteristics are comprehensively
captured in the ensemble probability forecast. At both late evening and midnight time
stamps of EFS, more than 60% probability of fog occurrence shows over the foggy areas.
This could suggests that the model played a significant role in simulating the fog event.
EFS has shown its skill to simulate an optimal synoptic environment for fog formation on
an operational level.

Figure 5a shows the temporal variation in the observed visibility versus simulated
visibility and simulated LWC for the different ensemble members for the fog events that
occurred over the IGI airport on 19–20 January 2022. Figure 5 illustrates that the diagnosed
visibility is highly sensitive to the simulated values of LWC in each member. The fog
(Vis < 500 m) initially developed at 2200 UTC on 19 January until the late morning of
0500 UTC on 20 January. In the CNTL forecast, the onset of fog based on diagnosed visibility
is recorded at 2000 UTC on 19 January, which was noticed 2 h earlier (advancement) than
the actual fog evolution. The ensemble mean (ENS) forecast represents accurate fog onset
timing. To demonstrate meteorologically why ensemble-based fog forecasts work better
than the CNTL forecast, the fog episode was examined with the observations shown in
Figure 5b–d. Over the IGI airport, variations in predicted LWC among ensemble members
were high, causing uncertainty in fog predictions (based on visibility) from member to
member. Based on this, it is unlikely that a single member could capture the spread of the
fog events, including its exact onset, sustainment, and burn-off period. In fact, a single
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fog case might be predicted by a few members of the ensemble system and missed by
other members. For instance, in the present study, ensemble members no. 06 and 08
(gray color lines which were not highlighted) captured all meteorological fields better than
other ensemble members; however, this will not always happen during other fog events.
Similar success or failure in accurate meteorology prediction during fog events could also
be conjectured in the CNTL forecast. In contrast, the ensemble mean generally provides
a better forecast than any of the individual ensemble members, regardless of the width
or shape of the distribution of members around the mean. In the present case study, ENS
captured the characteristics of the ideal meteorological variables to accurately represent
the LWC and fog lifecycle rather than the CNTL forecast. The bias in the 2 m temperature
of ENS is less than 3 K (slight cold bias), especially during the fog period. The simulated
under-predicted wind speed in CNTL and ENS roughly captured the trend of airflow after
onset of the fog. The bias in DpD of ENS is zero and exactly matched at the time of fog
onset. Thus, the onset of fog is accurately represented in the ENS compared to the CNTL.
However, ENS and CNTL recorded fog-lifted time at around 0300 UTC, which is 2 h earlier
than the actual lifting of the fog. All perturbed members including CNTL simulations
burned off the fog before 0400 UTC on 20 January 2022 by sudden increases in T2 and DpD
values. This could indicate the lacuna of radiation parameterization and the absence of
chemistry composition in the present model, which can burn off the fog at surface and
lifted it quickly after the sunrise irrespective of how accurate ICs/BCs are. Furthermore,
we extended our study by investigating the probability forecast skill of EFS. Probability
forecasts are most effective when users choose a probability threshold that provides the
right balance between alerts and false alarms.
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Figure 5. Temporal variation in observed versus simulated (a) visibility (m) and LWC (g m−3),
(b) temperature at 2 m (T2, ◦C), (c) dew point depression at 2 m (DpD, ◦C), and (d) wind speed at
10 m (WS, m s−1) at IGI airport, New Delhi, India, on 19–20 January 2022.

3.2. Skill Verification of Single Deterministic Forecast Versus Ensemble-Based Forecasts

During the 2020–2021 and 2021–2022 winter periods, 41 fog events (Vis < 500 m) were
recorded at the IGI airport. Due to some technical issues, forecasts are not generated on 7–8
December 2020 or 10–11 January 2021; therefore, these events were not considered during
the skill evaluation. Figure 6 shows the deterministic skill scores measured (HR, FAR,
MR, CSI) for control members (n = 00; CNTL) and 21 ensemble members (50% probability
threshold) for Vis < 500 m at the IGI airport, New Delhi, India. We found that the skill of the
EFS is better than the CNTL setup. The HR for EFS is much higher (0.95) than for the CNTL
forecasts (0.79). The HR indicates the percentage of correctly predicted fog and non-fog
events, the most direct measure of accuracy for the binary forecasts. In addition, the MR in
EFS is lower (0.04) than the CNTL (0.21). Although the value of FAR is high in both EFS and
CNTL, the ensemble method has less FAR (0.43) than the CNTL (0.53). By combining HR,
FAR, and MR, we can estimate the CSI, which measures the fraction of observed and/or
forecast events, which are correctly predicted. The CSI for EFS is approximately 0.55, while
for CNTL, the CSI is 0.42. The HR and CSI for EFS are relatively promising, with values of
0.94 and 0.55, respectively. These values are higher than the median value of 0.5, which
indicates that the EFS has reasonable accuracy in predicting fog events.
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Index) of control (n = 00; CNTL) and 21-member ensemble forecast system during the winter season
of 2020–2021 and 2021–2022 at IGI airport, New Delhi, India.

The ensemble-based forecasts show a BS of 0.13, which implies less error between the
forecast probabilities and observed occurrence or non-occurrence of fog events. Moreover,
the BS is typically converted into a BSS by normalizing it against a reference forecast.
Here, a BSS of 1.0 indicates a perfect forecast, while a BSS of 0.0 indicates the skill of the
reference forecast. Interestingly, the higher value of BSS (0.67) in the present study shows
better accuracy of the probabilistic forecast relative to the reference forecast, and EFS with
a 50% probability threshold could correctly predict 37 (out of 39) fog events, while the
reference deterministic forecasts could predict 31 (out of 39) fog events. The components of
the Brier Score decomposition can be used to assess the reliability (Brel) and resolution (Bres)
of the forecast attributes, as well as the inherent uncertainty of the underlying processes
that are relevant for the interpretation of the sources of errors in the forecasts [56], which is
useful for exploring the dependence of probability forecasts on ensemble characteristics.
The Brel value measures the difference between the forecast and the mean observation
associated with that forecast value over all the forecasts. Regarding the Bres measure, if
the forecasts sort the observations into sub-samples having substantially different relative
frequencies than the overall sample climatology, the resolution term will be large. This is a
desirable situation, since the resolution term is subtracted. The resolution term is large if
there is enough resolution to produce very high and very low probability forecasts. In the
present study, estimated values of Brel and Bres are 0.10 and 0.06, respectively.

In addition, the reliability diagram measures the accuracy with which a discrete event
is forecast by a probabilistic forecasting system. Figure 7 depicts that the reliability diagram
curve for mid-range probability values is below the no skill line, while for the higher forecast
probability values (P > 70%), it is above the no resolution line. In case of medium-range
probability values (20% < P < 60%), it is indicating that the probability is under-sampled.
Despite the position of the curve, it is not flat and rises with increasing forecast probability
categories. This indicates the ability of the forecast to be more skillful than the climatology.
As the curve is below the diagonal, we can deduce that the forecast is overconfident, which
implies that with increasing forecast probability categories, it produces more forecasts than
the observed occurrences. However, from the sharpness diagram, the ensemble spread too
large where most observations fall near the higher forecast probability values. Figure 8
shows the ensemble mean error (ENS error) and the spread variation with forecast lead
hours (24 h forecast) for EFS. It is observed that ENS error and spread behave in opposite
ways before and after fog hours, which is attributed to limitation of the visibility algorithm.
Here, a spread smaller than the ENS error indicates that the forecast is overconfident and
thus, the ensemble system is under-dispersive.
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Figure 8. Ensemble spread and ENS mean error.

Figure 9 shows the ROC curve from the comparison of 2 years of ensemble-based
model forecast and observation pairs. Since ROC is independent of forecast bias, it shows
the potential skill of the forecast. The ROC curve is constructed by setting the probability
threshold in 10% increments to calculate the hit rates and false alarm rates. Over the 2 years
of winter period verification, the EFS performs well and has an ROC score (fractional area
under the curve) of 0.88, thus quantifying the skillful forecast. The near-perfect curve
shows high resolution in the forecast, indicating the ability of the forecast to discriminate
among the different forecast probabilities. At each 10% probability increment, the EFS hit
rate is relatively higher than the false alarm rate, with a maximum difference between the
HR and FAR of 0.7 at a probability of 90%. Thus, the EFS accurately predicts the fog events
over the IGI airport. This shows that a probability between 0–20% and 80–100% is the
threshold at which the EFS performs the best at discriminating between regions of no fog
and fog compared to the observed fog events.
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Figure 9. Relative Operating Characteristic (ROC) diagram of probabilistic forecasts based on the
21-member ensemble forecast system for IGI airport, New Delhi, India.

Figure 10 shows the box-and-whisker plot of fog onset and fog lifting error (between
predicted and observed) for the fog events observed at the IGI airport. We found that the
EFS predicted the onset and lifting of fog relatively well compared to CNTL. For onset, the
mean error was close to 1 h (2 h) in EFS (CNTL), while for fog lifting, it was close to 1 h
in both forecasting setups. In addition, the box and whisker plot is utilized to visualize
dataset skewness (this conveys whether deviations from the median are more likely to
be positive or negative). In CNTL forecasts, the onset and lifting error median is shifted
toward the upper portion of the box, with a wider range of datasets in the lower quartile
than the upper quartile, indicating negative skewness. Similar negative skewness can be
noticed in the EFS onset error but with a large interquartile range compared to the whiskers
(showing the clustering of the dataset near the 25th and 75th percentile). In contrast, the
skewness is zero in the EFS lifting error case. The onset and lifting of fog strongly depend
on the balance among the land surface processes, radiative cooling, moisture subsidence,
and turbulence during the fog lifecycle. From the box-and-whisker plot, it is clear that these
kinds of balancing could be better captured in the EFS. Therefore, the EFS has reduced the
errors in the fog onset and dissipation relative to the CNTL. Overall, the above results show
that the ensemble-based forecasts (50% probability threshold) with a visibility threshold
Vis < 500 m have better efficiency than deterministic forecasts.
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The high-resolution GEFS is a weather model that generates 21 ensemble members
to address underlying uncertainties in the input data such as limited coverage, biases in
instruments or observing systems, and the limitations of the model itself. We directly used
these ICs/BCs in a model of the EFS. GEFS quantifies these uncertainties by generating
multiple ensemble members, which in turn produce a range of potential outcomes based
on differences or perturbations applied to the data after they have been incorporated into
the model. Since each member compensates for a different set of uncertainties, the EFS
could be advantageous by providing the approach for incorporating both initial conditions
and model uncertainty into the fog forecast process while automatically accounting for
flow dependence. However, the present EFS has several limitations. For instance, (a) the
present system is associated with a high computational cost and often involve statistical
post-processing steps to inexpensively improve its raw prediction qualities. (b) Even after
incorporating the multiple ICs/BCs with optimized physics options, there is still an error in
mean fog onset and lifting time. This could be attributed to the lacuna in the physics options
of the model. (c) FAR in the present EFS is relatively high. One of the reasons could be the
high moisture bias in more than 50% of ensemble members’ simulations. This high moisture
bias directly caused an overestimation of the LWC value in simulations, leading to reduced
visibility values compared to the observations. Through land surface data assimilation, it
could be possible to reduce such micro-meteorological biases directly [24]. (d) The present
visibility algorithm does not include the chemistry information. This could be one of the
reasons for increasing the FAR. The chemical composition and hygroscopicity of aerosols
determine the activation properties of aerosols in a polluted environment. Hygroscopically
grown aerosol particles in sub-saturated conditions (hydrated aerosols) and fog droplets
play significant roles in visibility fluctuation by scattering and absorbing visible radiation
in heavily polluted conditions [27]. We did not extend our explanation to different fog
categories due to the absence of such chemistry information in visibility parameterization.
In the future, we will introduce the chemistry factors in visibility parameterization and
report the visibility forecast for different fog categories at the IGI airport. This may further
improve the forecast skill and decision quality of EFS for fog forecasting.

4. Summary and Conclusions

The present study proposed a new operational Ensemble Forecast System (EFS) to
predict fog over the Indo-Gangetic Plain (IGP) region based on the visibility diagnostic
algorithm. The EFS framework is based on the Weather Research and Forecasting (WRF)
model with a single high-resolution (4 km horizontal resolution) fog forecasting domain,
initialized parallelly by 21 initial/boundary conditions (ICs/BCs), available from the Global
Ensemble Forecast System (GEFS) dataset (1 control + 20 perturbed). The EFS product
facilitated the probability of fog occurrence (relative frequency) over different parts of
North India and at one of the world’s busiest airports, the Indira Gandhi International (IGI)
airport, New Delhi, India. The probability of fog occurrence has been calculated based on
all individual members. In order to gain confidence in ensemble-based forecasts compared
to the single deterministic forecasts (CNTL), we verified the skill of these fog forecasting
systems for a visibility threshold Vis < 500 m during the 2020–2021 and 2021–2022 winter
seasons (December–January) at the IGI airport. In this, EFS skill of can be evaluated proba-
bilistically and deterministically. The probability threshold of 50% was used to consider a
probabilistic fog forecast as a deterministic forecast. Verification was only focused on the
24-h forecasts. Before forecast skill verification, a successfully forecasted dense fog event
was investigated in detail. The results showed that the EFS spatial product for a visibility
threshold Vis < 200 m reasonably predicts the probability of the fog occurring over the
different parts of North India in the late evening and at midnight during the 19–20 January
2022 fog event. In addition, the 21-member ensemble mean (ENS) product accurately
captured the fog onset time with minimum bias in ideal fog meteorology compared to the
CNTL forecast. Furthermore, the probabilistic skill also shows the better performance of
EFS. The skill of EFS is reliable, with approximately 95% successful prediction of the fog
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events [Hit Rate (HR) = 0.95; False Alarm Ratio (FAR) = 0.43; Missing Rate (MR) = 0.04;
Critical Success Index (CSI) = 0.55] at the IGI airport. The ensemble-based forecasts show a
Brier Sore (BS) is 0.13, indicating less error between the forecast probabilities and observed
occurrence or non-occurrence of fog events. From the reliability diagram, we noticed that
the forecast is overconfident. Moreover, the higher value of the Brier Skill Score (BSS = 0.67)
and the area under the Relative Operating Characteristic (ROC = 0.88) curve show better
accuracy and the potential skill of the probabilistic forecast. This demonstrates the advan-
tage of the EFS over the single deterministic forecast. Fog onset and lifting error analysis
revealed that the EFS reduced the errors in the fog onset and dissipation relative to the
CNTL. Overall, this could suggest that the EFS used in the present study for the real-time
fog forecast achieved physically realistic conditions compared to a single deterministic
forecast and that after modifying the visibility algorithm and improvement in the initial
soil fields, it could serve as a decision support system for fog forecasting at various airports
to mitigate fog-related losses.
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