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Abstract: Understanding East Asian monsoon (EAM) has been a crucial issue due to its socio-
economic effects on one-fifth of the world’s population and its interactions with the global climate
system. However, the reliabilities of climate reanalysis data are still uncertain at varying temporal
and spatial scales. In this study, we examined the correlations and differences for climate reanalyses
with weather observations and suggested the best climate reanalysis for the EAM region. The three
reanalyses of ERA5, JRA55, and NCEP2 along with a gridded observation (CRU) were evaluated
using the correlation coefficients (Pearson, Spearman, and Kendall), difference statistics (RMSE and
bias), and Taylor diagrams, comparing their annual and seasonal temperatures and precipitations
with those from the total of 537 weather stations across China, North Korea, South Korea, and Japan.
We found that ERA5 showed the best performance in reproducing temporal variations in temperature
with the highest correlations in annual, summer, and autumn, and the smallest RMSEs and biases
for all seasons and annually. For precipitation, among the three reanalysis datasets, ERA5 had the
highest correlations, annually and in four seasons, with the smallest RMSEs, annually and in spring,
summer and autumn, and the smallest biases, annually and in summer and autumn. Regarding
spatial variations, ERA5 was also the most suitable reanalysis data in representing the annual and
seasonal climatological averages.
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1. Introduction

The monsoons in East Asia have complex spatio-temporal variations throughout the
subtropical and mid-latitude regions [1,2]. The monsoonal belt during summer, which
stretches thousands of kilometers, rains in the countries and the adjacent oceans of China,
Japan, and North and South Korea, as the regional monsoons, called Meiyu, Baiyu, Jangma
and Changma, respectively. The heavy rain during the summer monsoon period and
complex terrain in East Asian countries make water management more difficult in a
timely manner. Particularly, floods and droughts caused by the monsoon variations can
significantly affect human life and the economy for the more than 1.5 billion people in the
East Asian monsoon (EAM) region. As the EAM affects one-fifth of the world’s population
and interacts with the global climate systems, the EAM study has been one of the major
areas in climate science.

To understand the EAM and its variability, spatially and temporally reliable climate
data over a long period of time are required. Observational station data are not continuous
throughout space and time [3–6] and, thus, they are not sufficient to provide consistent
atmospheric states for a given location, which results in limitations to study the EAM as well
as other climatic phenomena. The climate reanalysis data can replace observational data
by compensating the shortcomings of weather station data, which can provide continuous
atmospheric variables through data assimilation processes and numerical models. Since
the first climate reanalysis data of National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR, hereinafter NCEP1) [7] were released in
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the mid-1990s, reanalysis data have been widely applied to three-dimensional analysis of
various weather and climate phenomena, climate variability, and model validation studies.
The performance of reanalysis data has been continuously improved in terms of spatial
resolution, atmospheric-land–ocean coupled model and numerical forecasts. Recently,
the fifth-generation climate reanalysis of European Centre for Medium-Range Weather
Forecasts (ECMWF), ERA5, was released [8].

However, due to the uncertainty of input data, errors in numerical models, and
limitations in spatial resolution, there are still differences between reanalysis data and
observed atmospheric variables. Therefore, recognizing the differences and errors in
the reanalysis data from the observations and considering their effects on the research
outputs are essential to apply the reanalysis data to climate research [9]. The studies of
comparing differences of reanalyses with observations and validating errors to evaluate the
performance of reanalysis have been conducted on global e.g., [10], continental e.g., [11,12],
and country scale e.g., [3,13]. As for studies on a global scale, plenty of research compared
station observations with global gridded observations, such as the Climate Research Unit
(CRU) and the Global Precipitation Climate Center (GPCC), the merged data of satellite
estimates and gauge data, such as CPC Merged Analysis of Precipitation (CMAP), and
climate reanalysis data, such as NCEP, ECMWF, and Japanese Reanalysis (JRA) series. For
example, Donat et al., (2014) evaluated the consistency of the reanalyses and observations
in terms of extreme temperature and precipitation and revealed that the ECMWF reanalysis
showed spatially higher correlations with the observations compared to the Japanese
25-year Reanalysis (JRA25) and NCEP reanalyses [10]. Sun et al., (2018) compared various
gridded global precipitation data, including gauge-based, satellite-related, and reanalysis
products [14]. There were deviations up to 300 mm among the products in the estimated
annual precipitation over the land and the reanalysis datasets generally had the largest
discrepancies compared to gauge-based and satellite-related datasets.

The comparison and validation studies of reanalysis have been conducted on a spatial
scale of continents, including eastern Eurasia, southern South America, and Antarctica
e.g., [11,12,15]. Several studies have verified the uncertainty of the reanalysis data in polar
regions, where it is difficult to obtain observational data due to a lack of data accessibility.
For example, Zhang et al., (2021) divided Greenland into sedimentary and erosion areas
to compare surface temperature, relative humidity, and wind speed of observations with
Japanese 55-year Reanalysis (JRA55), ERA5, Climate Forecast System Reanalysis (CFSR),
and Modern-Era Retrospective Observations (MERRA2) [16]. Based on Root Mean Square
Errors (RMSEs) and biases, MERRA2 showed the highest performances in surface temper-
ature in the sedimentary area and JRA55 had the best in the erosion area. MERRA2 was
the best reanalysis for relative humidity as it captured the seasonal cycles well. For wind
speed, JRA55 and ERA5 were the best in the erosion and the sedimentary areas, respec-
tively. Huai et al., (2019) evaluated surface temperatures in Antarctica obtained on the eight
reanalysis datasets, including ERA-Interim, CFSR, JRA55, MERRA2, ECMWF 20th century
atmospheric model ensemble (ERA-20cm), ECMWF 20th century reanalysis (ERA-20c),
NOAA-CIRES-DOE Twentieth Century Reanalysis (20CR), and Coupled Reanalysis of the
Twentieth Century (CERA-20C) [15]. All the reanalysis data generally represented well the
seasonal cycles of temperature. In particular, MERRA2 showed the best performance with
mean absolute error (MAE) of 2 ◦C or less for all twelve months. For annual variations in
the monthly average temperature, the accuracy was in the order of ERA-Interim, CFSR,
and MERRA2 and the other reanalysis data showed relatively lower performance.

In the mid-latitude regions, it can be challenging to simulate true atmospheric condi-
tions using a climate forecast model because of the various factors associated with complex
interactions of high- and low-latitude climate systems [17] and also due to the effects of
human-induced land cover and land use changes on the atmosphere [18]. Therefore, re-
search on comparison and validation of reanalysis data have been actively conducted in the
mid-latitudes. Mooney et al., (2011) compared reanalysis data (ERA40, ERA-Interim, and
NCEP1) with station observations for surface temperature over Ireland during 1989–2001
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and found that ERA-Interim showed higher linear correlation coefficients than the other
two datasets [13]. Balmaceda-Huarte et al., (2021) divided southern South America into
five sub-regions and compared the reanalysis data of ERA-Interim, ERA5, NCEP1, NCEP-
Department of Energy (DOE) reanalysis (hereinafter NCEP2), and JRA55 for temperature
and precipitation [12]. NCEP1 and NCEP2 showed poor illustrations for overall trend,
but good for interannual variations. ERA5 was better in capturing the spatio-temporal
variations in temperature and precipitation, compared to ERA-Interim, because of the
advanced numerical models and higher spatial resolution. de Lima and Alcântara (2019)
validated the reanalysis data of ERA-Interim, CFSR, and NCEP1 with station observations
based on five extreme climate indices by the Expert Team on Climate Change Detection
and Indices (ETCCDI) for the eastern region of northeast Brazil [19]. ERA-Interim showed
lower RMSEs, compared to CFSR, for precipitation, monthly maximum of daily minimum
temperature (TXn), and monthly minimum of daily minimum temperature (TNn). RMSEs
of monthly maximum of daily maximum temperature (TXx) and monthly maximum of
daily minimum temperature (TNx) were relatively lower in CFSR. Pearson correlations of
precipitation, TXn, and TNn were higher in the order of ERA-Interim, CFSR, and NCEP1.
For TXx and TNx, the correlations of NCEP1 were higher than those of CFSR. Tang et al.,
(2017) evaluated the reanalyses of NCEP1, NCEP2, and CRU-NCEP with NOAA long-
term weather data on monthly and annual scales in 90 metropolitan areas in the United
States [20]. On the annual, CRUNCEP showed the best performance for average and
minimum temperatures and NCEP1 and NCEP2 for maximum temperature and precipita-
tion. The least bias with observational data was in NCEP1 for maximum temperature and
CRUNCEP for the precipitation, average temperature, and minimum temperature.

East Asia is one of the world’s most densely populated areas in the mid-latitude,
where the East Asian summer and winter monsoons have a dominant influence on the
climate of the region. For an example of a comparison study in East Asia, Inoue and
Matsumoto (2004) compared sea-level pressure of NCEP1 and ERA40 with observations
during the summer of 1960–1999 in eastern Eurasia to evaluate their reliabilities [11]. The
annual and seasonal averages of reanalysis data showed an increase in sea-level pressure in
Mongolia between 1960–1979 and 1980–1999 in NCEP1. These changes in sea-level pressure
observed in NCEP1 were not found in ERA40 and also observations, indicating poor
performance of NCEP1 compared to the ERA40. Many studies that compare reanalysis data
with observational station data in East Asia have been conducted in China, with its large
area and various climates. Zhao and Fu (2006) evaluated the reliability of reanalysis data by
comparing the spatio-temporal distribution of summer precipitation obtained from ERA40,
NCEP2, and CRU and their differences from observational data during 1979 to 2001 in
mainland China [21]. According to the results of spatial distribution, interannual variations,
and empirical orthogonal function (EOF) analysis, CRU showed high consistency with
observation data. Gao et al., (2008) compared surface temperatures of NCEP1 and ERA40
with station observations in mainland China from 1979 to 2001 and estimated the effect
of elevation on temperature biases in the reanalyses [22]. Although the reanalysis data
represented clear cold biases, ERA40 was relatively similar to the observations compared to
NCEP1. Ma et al., (2008) compared the performance of reanalysis data of ERA40, NCEP1,
and NCEP2 in China from 1979 to 2001 in terms of spatio-temporal aspects [23]. The
results showed that ERA40 was better at reproducing surface temperature than NCEP
series and NCEP2 was more consistent with the observations than NCEP1. NCEP2 had
a smaller MAE, a higher standard deviation, and a slightly higher correlation coefficient
than NCEP1. You et al., (2012) compared precipitation of NCEP1 and ERA40 with adjusted
observations from 1961 to 2007 over the Tibetan Plateau [24]. The temporal variations in
the two reanalyses were different from the observations. Further, dry biases were observed
in both reanalyses and NCEP1 showed a greater dry bias compared to ERA40, which
supported the better performance of ERA40 than NCEP1 in reproducing the interannual
variations in precipitation in the Tibetan Plateau. He and Zhao (2017) compared NCEP2
and CFSR with observations by daily temperature indices in China from 1979 to 2010 [3].
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For the observation data of the Beijing stations, both reanalysis data reproduced well the
long-range, also called long-term memory or long-range persistence, correlation. However,
there are some overestimations in daily temperature along the Tibetan Plateau. NCEP2
performed better than CFSR in relatively colder regions, including Inner Mongolia and
the central, eastern, and northwestern regions of China, while CFSR was superior in the
warmer southern China.

There are relatively fewer studies of reanalysis comparison and validation for other
countries in East Asia, although South Korea and Japan have been included in the global
validation study of reanalysis (e.g., [4]). For South Korea, Han and Kim (2019) compared the
reanalysis data of ERA-20cm, ERA-20c, ERA40, and 20CR with the gridded observational
data of CRU and GPCC [25]. Precipitations of CRU and GPCC showed higher correlations
in interannual variations compared to reanalysis data and ERA40 was the highest for
temperature. As a local-scale study, Xin et al., (2021) evaluated the reproducing perfor-
mance of precipitation in ERA5-Land and ERA5 reanalysis in urban areas of Guangdong,
Hong Kong, and Macau at different time scales of hourly, daily, and monthly [5]. The
reanalysis data reproduced well the spatial distribution and monthly trends of precipitation.
However, for the shorter time scales, at hourly and daily, the frequency of precipitation
was overestimated. Despite the higher resolution in the ERA5-Land, ERA5 reanalysis was
more accurate in representing precipitation due to the absence of an atmospheric model in
generating the ERA5-Land reanalysis.

While the climate reanalysis has evolved by improving the quality of input observa-
tional data, by enhancing spatial resolution, and by reducing the systematic model biases
over the generations, it is still essential to verify the reanalysis data at a regional scale. ERA5,
as the most recently produced reanalysis with the highest spatial resolution, was improved
from ERA-Interim in the integration of model processes, tangential approximation, and
data assimilation in an Integrated Forecast System (IFS) [8]. However, several previous
studies that investigated the applicability of ERA5 in China showed the performance of
ERA5 was relatively degraded at high altitude. Zhang et al., (2021) compared reanalysis
data of ERA5, JRA55, NCEP1, NCEP2, MERRA, 20CR, and the 40-year global reanalysis
dataset released by China Meteorological Administration (CRA40) with the observations
after removing urbanization bias in mainland China during 1979–2015 [16]. The results
showed that the surface temperature from JRA55 was better than that from ERA5 and other
reanalysis data. Jiao et al., (2021) evaluated precipitations from ERA5 with observations
in mainland China by analyzing the annual and seasonal trends and spatial patterns [26].
ERA5 had good agreements with observations at elevations below 1000 m, but significant
differences at elevations above 4000 m. These previous results suggest that the reliability of
climate reanalyses needs to be validated in the regional domain at various time scales (e.g.,
annual and seasonal averages).

Most previous studies comparing the existing reanalysis data with observation data
were conducted for specific countries. In particular, most of the studies in East Asia have
focused on China, so, to our knowledge, there are no studies comparing and validating
reanalysis data only for the entire EAM region. As mentioned earlier, the EAM is a major
source of water for humans, animals, and plants living in the region and, at the same time,
the extreme nature of monsoons can cause damage by heavy rain and drought as well as
winter storms. As nearly one-fifth of the world’s population lives in the EAM region, the
importance of understanding the EAM is paramount. Therefore, for a better understanding
of the EAM variability and, thus, improving the monsoon predictability, the use of climate
reanalysis evaluated in the EAM region is needed. This study compared and validated
representative reanalysis data across the world, which are ERA5 from Europe, NCEP2
from America, and JRA55 from Asia, with station observation data provided by each
country, China, North Korea, South Korea, and Japan in the EAM region. By evaluating
the performance of the reanalysis data in terms of temporal and spatial associations and
differences using the statistical metrics of the parametric and non-parametric correlation
coefficients, RMSE, and bias, we suggested the most appropriate reanalysis data for the
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EAM region. In addition, the potential geographical factors for the systematic biases found
in the reanalysis data were discussed, which could be considered in utilizing the reanalysis
data for East Asian studies.

2. Materials and Methods
2.1. Study Area

The EAM region was identified as longitude of 110–146◦ E and latitude of 20–55◦ N,
including Eastern China, North Korea, South Korea, Japan, and some parts of Russia and
Mongolia [27–30]. A total of 537 meteorological stations was used in the study and their
locations along with altitudes are demonstrated in Figure 1. Most stations are located below
1000 m, while the altitudes of stations notably increase along the mountainous region of
inner Mongolia.
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Figure 1. Location and elevation (in unit of meter) of weather stations used in the study over the East
Asian monsoon (EAM) region.

Figure 2 shows the annually and seasonally averaged temperature and precipitation
from the meteorological stations in the EAM region over the forty years of 1981–2020 for
North Korea, South Korea, and Japan, and the thirty years of 1981–2010 for China. The
spatial patterns of temperature and precipitation associated with the EAM are dominant
and their seasonal variations are clearly observed. Temperature gradient between winter
and summer is clearly shown in the northern part of the EAM region (Figure 2a). Abundant
precipitation occurs during summer monsoon season but scarce precipitation in winter and
autumn seasons (Figure 2b). The distinct seasonality in temperature and precipitation is
attributed to the monsoonal flow nature of warm and humid in summer but cold and dry
in winter. The spatio-temporal dynamics of temperature and precipitation distributions
along with complex atmospheric interactions such as monsoons can cause uncertainties in
numerical modelling and thereby climate reanalysis data in the EAM region [17,31].
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Figure 2. Climatology of (a) temperature and (b) precipitation from observation data at each station
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China. The scale bar of temperature is in a range of −25 to 30 ◦C and the midpoint of scale is at 2.5 ◦C.

2.2. Data
2.2.1. Observational Station Data

Observational station data are obtained from meteorological stations, maintained by
national meteorological organizations. The observational data were provided by China
Meteorological Administration (CMA) [32], Japan Meteorological Agency (JMA), and
Korean Meteorological Administration (KMA). Due to the inaccessibility of observations
directly from North Korea, Global Telecommunication System (GTS) data from World
Meteorological Organization (WMO) were obtained through open meteorological data
portal run by KMA.

As the study period covers 1981 to 2020, stations built before 1981 that continued to
2020 were selected. For China, due to the limitation in obtaining publicly available recent
observational records, the thirty years of 1981 to 2010 were used in the comparison analysis.
The stations within the study area of the EAM region were considered and the stations
located in the coastal regions, where the CRU data were not available, were excluded in
the analysis. As a result, 537 stations among 991 total stations in the East Asian countries,
which include the 312 out of 606 stations in China, the 27 out of 27 stations in North Korea,
the 61 out of 102 stations in South Korea, and the 137 out of 256 stations in Japan, were
used in this study.

Observational data for South Korea and Japan were available monthly. However, the
data in China and North Korea were daily and, thus, those were converted into monthly
scale. Further, the daily average temperature in China was calculated by averaging daily
maximum and minimum temperatures due to the unreliability of calculated daily average
temperature from the CMA data. Since deciding missing and zero precipitation is vague,
they were taken as zero precipitation if temperature observations existed at that time;
otherwise, they were taken as a missing value [33,34].
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2.2.2. Reanalysis Data

Reanalysis data were compared with observational data at annual and seasonal scales
and, thus, monthly means of 2 m temperature and precipitation were used. Reanalysis data,
used in the analysis, include NCEP2 by NCEP-DOE [35], JRA55 by JMA [36], and ERA5 by
ECMWF [8] and, as gridded observational data, CRU TS v4.04 by Climate Research Unit
(CRU) [37] were used.

As the latest-generation reanalysis of ECMWF, ERA5 provides high spatial resolution
data at 0.25◦. ERA5 achieved some improvements in temperature, wind and humidity of the
troposphere, global balance of precipitation and evaporation, and consistency in global sea
surface temperature and sea ice area from ERA-Interim. ERA5 is produced at 1 h frequency
and utilizes improved four-dimensional variational (4D-Var) data assimilation schemes.
JRA55 is the second Japanese global atmospheric reanalysis, conducted by the JMA and
announced in 2013, which is succeeding reanalysis of JRA25. The 4D-Var data assimilation
scheme with various bias corrections on the satellite radiation data was also applied to
JRA55. It has horizontal resolution of TL319L60 (approximately 60 km or 0.56◦), which is
higher than JRA25 (~1.125◦). It also has other improvements from JRA25, regarding large
temperature biases in the lower stratosphere and dry land surface anomalies in the Amazon
basin. NCEP2 is the second version of the NCEP reanalysis series that was released in
2000, covering the T62 Gaussian grids with a spatial resolution of ~1.875◦. NCEP2 is an
improved version of the first version (NCEP1) with better land surface parameters and
land–ocean fluxes. CRU is the global gridded observational data, which were based on
in situ observations and collected through station networks only over the land, covering
the entire continental area except Antarctica. CRU was used as intermediate data between
the station observation and reanalysis data. As the units from reanalysis datasets were
inconsistent, they were converted into ◦C for temperature and mm/day for precipitation.

2.3. Methods

In order to compare point data of stations with gridded data of reanalysis, it is available
by either interpolating station data into gridded data or extracting values from grids at
the coordinates of stations. Numerous studies have applied various statistical methods to
compare point data with gridded data. As an example, Mooney et al., (2011) compared the
four different approaches of extracting values from grids, including the four methods with
reanalysis value for the grid at the coordinates of stations, with inverse distance-weighted
average of the reanalysis of the four grids whose edges are closest to the station, with the
inverse distance-weighted average of the reanalysis in area of 30 km × 30 km centered on
the station and with reanalysis values from the land grid points only in the four nearest
grids [13]. Evaluating by RMSE and Pearson correlation coefficients, the differences among
the four methods were insignificant in general, though they depend on stations. Therefore,
we extracted values from the grids at the coordinates of stations, which is a commonly used
method to handle multiple climate datasets with different spatial resolutions.

We analyzed the correlation coefficients of ERA5, JRA55, NCEP2, and CRU with station
observations using the forty-year (or thirty-year) time series at each station for temporal
correlation and those using the forty-year (or thirty-year) averages of all the stations for
spatial correlation in the EAM region during the annual (ANN) and seasonal (December to
February: DJF, March to May: MAM, June to August: JJA, and September to November:
SON) periods. Pearson correlation coefficients (Equation (1)) were calculated to evaluate
the temporal and spatial linearity in variables as a parametric method [38]. Spearman
(Equation (2)) and Kendall (Equation (3)) correlation coefficients were also adopted as a
non-parametric method [39,40] to evaluate monotonic relationships of variables. As the
statistical metrics to evaluate the difference between reanalysis and observational data,
biases were calculated at each station to determine the average direction of errors (Equation
(4)) and RMSEs to determine the average magnitude of errors (Equation (5)). The temporal
analyses were performed at each station using equations, where Xi and Yi refer to annual
or seasonal means of reanalysis and observational values, respectively, at ith year, and n
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refers to the number of years (i.e., 40 or 30). For the spatial analyses, Xi and Yi refer to
annual or seasonal climatology of reanalysis and observational values, respectively, at ith
station, and n refers to number of data points (i.e., 537). These statistics were applied to
evaluate and validate performances of reanalysis datasets (e.g., [20,23,26]). The results of
correlations, biases, and RMSEs were demonstrated on maps or scatter plots. To suggest the
best reanalysis in the EAM region, the integrated methods using Pearson correlation, bias,
and RMSE and also Taylor diagrams [41] using Pearson correlation, standard deviation,
and RMSEs were utilized. Overall processes of validation and comparison analyses are
shown as in a schematic diagram (Figure 3).

R =
∑n

i
(
Xi − X

)(
Yi − Y

)√
∑n

i
(
Xi − X

)2
√

∑n
i
(
Yi − Y

)2
(1)

ρ = 1 − 6 ∑n
i (Xi − Yi)

n(n2 − 1)
(2)

τ =
(number o f pairs o f concordant)− (number o f pairs o f discordant)

1
2 n(n − 1)

(3)

Bias =
1
n ∑n

i=1(Xi − Yi) (4)

RMSE =

√
1
n ∑n

i=1(Xi − Yi)
2 (5)

Preprocessing data and calculating statistics were performed using R and Python.
Correlation analyses were performed by using cor.test(), basic function of R. Bias and RMSE
were calculated using bias() and rmse() functions, provided by package “Metrics”. Taylor
diagrams were illustrated using taylor.diagram() function provided by package “plotrix”.
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Figure 3. A schematic diagram of validation and comparison processes.

3. Results
3.1. Temporal Validation and Comparisons of Reanalysis Data
3.1.1. Correlations

Figure 4a shows Pearson correlation coefficients of temperature from the three reanal-
yses (ERA5, JRA55, and NCEP2) and CRU with observational data. Stations with p-values
greater than 0.01 (i.e., insignificant at the 1% level) are indicated by gray edges. The number
of stations belonging to each range of correlation coefficients is indicated as in histograms
in each map. Both on the annual and seasonal means, most of the stations (ratio of stations
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with 95.5%, 94.4%, and 94.2% on the annual for ERA5, JRA55, and CRU, respectively)
represent high correlation coefficients with observational data (R > 0.8, p < 0.01). In this
regard, ERA5, JRA55, and CRU well reproduced the temporal variability in temperature.
However, NCEP2 appears to have relatively weaker correlations in all the annual and
seasonal means of temperature. For example, only 68.7% of the stations shows an R-value
greater than 0.8 for the annual temperature from NCEP2. The lower correlation coefficients
of NCEP2 appear over Japan in spring. In summer, the differences in NCEP2 from the other
datasets were shown as the lower correlations in the central and southern regions of China.
ERA5 and JRA55 show similar spatial patterns of correlation coefficients, although JRA55
shows slightly lower values on the southern coast of the Korean peninsula in the summer
and, thus, annually. As in ERA5 and JRA55, CRU represents strong correlations across the
overall EAM region, while the stations with lower coefficients were identified along the
southern coast of China in summer and autumn.

The annual and seasonal correlation coefficients of precipitation are demonstrated
in Figure 4b. The majority of the stations showed correlation coefficients of 0.6 < R < 0.8
(p < 0.01), which are relatively lower than those of temperature. On the annual scale, CRU
represents the strongest correlations with coefficients (ratio of stations) of R > 0.8 (48.6%)
and 0.6 < R < 0.8 (43.8%), followed by ERA5 of R > 0.8 (24.8%) and 0.6 < R < 0.8 (64.2%),
JRA55 of R > 0.8 (18.2%) and 0.6 < R < 0.8 (58.1%), and NCEP2 of R > 0.8 (0.6%) and
0.6 < R < 0.8 (23.3%). Although the strength of correlations depends on seasons, CRU
consistently has the largest number of stations that represent high correlation coefficients of
R > 0.8, except for winter (see the histograms in the maps of Figure 4b). All the datasets show
lower correlation coefficients in the western coastal areas of Japan during winter. Among
the reanalysis data, ERA5 has more stations with high correlation coefficients of R > 0.8
than JRA55 for all the annual and seasonal means, indicating ERA5 performs better than
JRA55 in reproducing temporal variability in precipitation. In spring, all the reanalysis data
commonly show weaker correlations in southern China with the order of performance by
ERA5, JRA55, and NCEP2. The regions of weaker correlations in NCEP2 during spring tend
to extend to central China, Japan, and the Korean peninsula during summer, implying the
potential effect of monsoon rainfall on the reanalysis process. To support robustness of the
results from Pearson correlation, the non-parametric correlation coefficients of Spearman
and Kendall were also investigated. For both temperature and precipitation, the spatial
patterns of Spearman and Kendall correlation coefficients were consistent with those of
Pearson correlation (Figures S1 and S2 in the Supplementary Materials).
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Figure 4. Pearson (R) correlation coefficients of (a) temperature and (b) precipitation from ERA5,
JRA55, NCEP2, and CRU with observations in the EAM region for annual and seasonal means
during the forty years of 1981–2020 for North Korea, South Korea, and Japan and the thirty years of
1981–2010 for China. Gray edges around points represent insignificant correlation (p-value > 0.01).
Histograms at the upper-right corner of map show that the numbers of stations belonging to each
range of correlation coefficients.
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3.1.2. Differences: RMSE and Bias

Although the significant parametric and non-parametric correlation coefficients indi-
cate strong linear and non-linear associations between reanalysis and observational data,
it could be insufficient to prove the agreement between two datasets if the datasets have
inherent systematic errors. It has been reported that unnatural temperature changes due
to urbanization and global warming resulted in over- and under-estimations in physical
processes of reanalysis, which can cause systematic errors at the global or local scale [6,19].
Therefore, reanalysis data should be validated using statistical indices that can show sys-
tematic errors, such as RMSE and bias.

Figure 5a represents RMSEs of temperature for the three reanalyses and CRU data from
observations. The highest RMSEs clearly appear along the mountainous regions in central-
western China, where the elevation is relatively higher with complex terrains. Further,
some stations located in the coastal regions of Japan also have high RMSEs. The differences
among the datasets are noticeable in southern China and Japan. In southern China, RMSEs
of JRA55 and NCEP2 are higher than those of ERA5 and CRU. In Japan, ERA5 and JRA55
are found to have a relatively smaller number of stations with an RMSE above 4. Biases
were calculated in order to figure out whether the RMSEs are from random uncertainties or
immanent systematic errors of the reanalysis data. Global warming and urbanization
may influence the reanalysis data to underestimate the degree of rising temperature,
which induced the cold bias in the temperature of reanalysis data [6,19]. To control those
systematic errors, various bias-correction schemes were applied in reanalysis data [8,35],
which could affect the different spatial patterns of biases among the reanalysis data. In
Figure 6a, cold biases of the three reanalyses and CRU data compared to observations
consistently exist in the mountainous regions of central-western China. The cold biases
are similar in ERA5 and CRU, but the ERA5 shows warm biases in the southern Korean
peninsula and southern Japan where cold biases are dominant in CRU. The spatial patterns
of annual and seasonal biases among the reanalysis data are generally similar, but the
magnitude of biases is clearly noticeable by the largest biases in NCEP2 and the least
in ERA5.

RMSEs of precipitation tend to follow the seasonality of precipitation. They are largely
influenced by the seasonal changes in EAM and, thus, are the highest in summer, followed
by spring and autumn, and the lowest in winter. As shown in Figure 5b, the stations, located
in the regional monsoon areas of Meiyu in China, Baiyu in Japan, and Changma in South
Korea, have relatively high RMSEs. CRU has the lowest RMSEs among all the datasets for
all seasons and annually, implying that there are some disparities in performances between
reanalysis and observational data. There are the highest RMSEs in NCEP2, followed by
ERA5 and then JRA55, but the differences between ERA5 and JRA55 are not visually
noticeable. However, there is an opposite pattern of biases between ERA5 and JRA55 in
southern China (Figure 6b). JRA55 represents dry biases along the 20◦–30◦N, where ERA5
shows wet biases. Consistent with the results in Figure 5b, CRU has the lowest biases and
the three reanalyses have much higher biases. In summer, NCEP2 shows very high wet
biases in southern China and relatively high in northeastern China and very high dry biases
in South Korea and relatively high in Japan. Further, all the datasets show relatively high
RMSEs and biases along the western coastal regions of Japan in winter. The significantly
high errors of winter precipitation in the western-central coastal region of Japan, called
Hokuriku region, might be associated with heavy snowfalls driven by the combining effects
of the East Asian winter monsoon, ocean, and elevation on precipitation. The magnitude of
precipitation biases between ERA5 and JRA55 is generally similar, but with the different
biases in southern China by wet biases in ERA5 and dry biases in JRA55 for MAM, JJA,
SON, and, thus, annually.
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Figure 5. Same as in Figure 4, but with root-mean-square error (RMSE) of (a) temperature and
(b) precipitation. The scale of precipitation in JJA (b) is different from that of other seasons.
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Figure 6. Same as in Figure 5, but with bias of (a) temperature and (b) precipitation. The scale of
precipitation in JJA (b) is different from that of other seasons.
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3.2. Spatial Validation and Comparisons of Reanalysis Data

The spatial associations of the three reanalysis and CRU data (X-axis) with obser-
vational data (Y-axis) are illustrated in scatter plots using the climatological averages at
each station (Figure 7). The results indicate that reanalysis data tend to underestimate
temperature to observations and the correlations are significant with R-values larger than
0.9, except for NCEP2 in summer (R = 0.839) (Figure 7a). Spearman’s correlations are
generally similar to Pearson’s, but Kendall’s are lower than the other two correlations. All
the p-values of the parametric and non-parametric correlations are less than 0.001, annually
and seasonally. Although the highest correlation coefficients appear in winter, the highest
RMSEs also appear at the same season, which might be due to the largest range of winter
temperature among the EAM region with about −25 ◦C to 20 ◦C (see Figure 7a). In terms
of the correlation coefficients, both ERA5 and JRA55 reproduce well the climatological
averages of temperature, showing high correlation coefficients of R > 0.9. The lowest
RMSEs and biases of temperature are in ERA5 among the four datasets. Therefore, ERA5
is better than JRA55 and NCEP2 as well as CRU in representing the observed averages of
temperature in the EAM region.

The spatial correlations of precipitation are lower than those of temperature. The
strength of correlations is in the order of CRU, ERA5, JRA55, and NCEP2, annually and
seasonally, except for winter (Figure 7b). In winter, Pearson correlation coefficients appear
in the order of JRA55, ERA5, CRU, and NCEP2, which might be associated with the larger
variations in winter precipitation in Japan than other East Asian countries, as shown in
the dispersed pattern of stations (see rectangle symbols in Figure 7b). As shown in the
scatter plots of winter, the uppermost point of ERA5 is highly biased compared to the
uppermost point of JRA55 and it could make the correlation coefficients of ERA5 lower
than those of JRA55 in winter, unlike seasonally and annually. Further, it is shown that
the reanalyses are more dispersed than CRU. The performance in terms of RMSEs for the
annual, summer, and autumn, and Pearson correlation coefficients for the annual, spring,
summer, and autumn are in the order of CRU, ERA5, JRA55, and NCEP2. Based on the
results, CRU and ERA5 reproduce the climatological averages of precipitation better than
the other datasets.
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Figure 7. Scatter plots based on the values of (a) temperature and (b) precipitation from ERA5, JRA55,
NCEP2, and CRU with observations for each station in the EAM region for annual and seasonal
means during the forty years of 1981–2020 for North Korea, South Korea, and Japan and the thirty
years of 1981–2010 for China. Correlation coefficients of Pearson (R), Spearman (ρ), and Kendall (τ)
in the upper left and RMSE, bias, and the regression equation in the lower-right corners are shown.
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3.3. The Best Reanalysis Data in the EAM Region
3.3.1. By Stations

Based on the results of temporal analyses in Section 3.1, the best reanalysis data are
indicated by each station, considering the three statistics of Pearson correlation coefficients,
RMSEs, and biases (Figure 8). For temperature, ERA5 was selected as the best by the largest
number of stations with the highest value of Pearson correlation annually, in summer and
autumn, and as the second in winter and spring after JRA55, which are shown as green dots
on the maps (see the first column of Figure 8a). JRA55 is selected in winter and spring as
the best and the second best annually and for the other seasons. The JRA55 best stations are
more distributed inland across the EAM region, compared to ERA5. This indicates that the
best reanalysis in terms of Pearson correlation coefficients by stations depends on temporal
(seasonal) as well as spatial (coastal and inland) variations. Nonetheless, the RMSEs and
biases show consistent results in all the annual and seasonal means as the numbers of
ERA5 best stations are two-times larger than those of JRA55 (see the histograms of RMSE
and bias in Figure 8a). The percentages of ERA5 best stations by RMSEs and biases are
larger in winter and autumn (>59%), when the RMSE differences of the three reanalyses
with observations are relatively larger than in spring and summer (see Figure 5a). This
implies that the seasonal bias correction of temperature in ERA5 [8] outperforms those of
JRA55 and NCEP2. While JRA55 has better stations than ERA5 in the results of correlations
during winter and spring, ERA5 outperformed for the annual and other seasonal means.
In the results of RMSEs and biases, for all the annual and other seasonal means, it appears
that ERA5 performs better than JRA55 and NCEP2. The results are consistent with those of
correlations (Section 3.1.1) and differences (Section 3.1.2).

In contrast to the results of temperature, ERA5 precipitation is selected as the best
annually and in all seasons based on Pearson correlations and in summer and autumn
as the best based on RMSEs and biases (Figure 8b). In the spatial patterns of the best
stations by Pearson correlation coefficients, the ERA5 best stations mainly appear in both
of the coastal and inland regions, while those of JRA55 are generally distributed inland. In
the results of biases, the numbers of NCEP2 best stations are notably larger than those of
Pearson correlations. Particularly, in winter (49.2%) and spring (41%), NCEP2 is selected as
the best reanalysis, mostly in northern China. The percentages of best stations of NCEP2
for RMSEs are larger in winter (39.3%) and similar in spring (30.9%) compared to ERA5
and JRA55, but significantly lower in summer (7.1%) and autumn (13.6%). These results
imply that the higher RMSEs of precipitation from NCEP2 during the summer monsoon
season might come from not capturing well the seasonal variabilities in precipitation.
Although the ERA5 best stations were not dominant during winter and spring in the
results of RMSEs and biases, the ERA5 performs as the best in all the annual and seasonal
means in the results of Pearson correlations. Additionally, during the summer monsoon
season, ERA5 represents the highest percentages of best stations in all the three statistics
of Pearson correlation (62.4%), RMSE (53.3%), and bias (41.3%). Thus, the results suggest
ERA5 is the best reanalysis for representing temporal aspects of EAM rainfall. In addition,
ERA5 was dominantly selected as the best dataset for temperature among all the four
datasets, including CRU and, for precipitation, the second best after CRU (Figure S3 in the
Supplementary Materials).
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Figure 8. The selected best reanalysis data among ERA5, JRA55, and NCEP2 by stations of (a) tem-
perature and (b) precipitation based on Pearson correlation coefficients, bias, and RMSE in the EAM
region for annual and seasonal means during the forty years of 1981–2020 for North Korea, South
Korea, and Japan and the thirty years of 1981–2010 for China. Histograms at the upper-right corner
of map indicate the number of stations selected as the best reanalysis.
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3.3.2. By Climatological Averages

A Taylor diagram of climatologically averaged temperature (Figure 9a) shows that
correlations reached values at 0.9 for all the datasets and also all the annual and seasonal
means, except for NCEP2 in summer. Although the differences between the datasets are
not prominent, the points of ERA5 are closer to the reference point, indicated by a circle
on the X-axis, than those of the other reanalysis data as well as CRU. It represented the
lower RMSE values in ERA5 compared to other datasets. Meanwhile, Figure 9b reveals
that differences in precipitation correlations between the datasets are much more notable.
Among all the datasets, the points of CRU are closest to the reference point, followed by
ERA5, JRA55, and NCEP2. It is shown that ERA5 has better representation of climatological
averages for summer precipitation than JRA55, though the annual and the other seasonal
means are not as significant as in summer. Hence, ERA5 is suggested as the best reanalysis
data for reproducing climatological averages of temperatures and precipitations in the
EAM region.
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Figure 9. Taylor diagrams of (a) temperature and (b) precipitation from ERA5, JRA55, NCEP2, and
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over the forty years of 1981–2020 for North Korea, South Korea, and Japan and the thirty years of
1981–2010 for China.

4. Discussion

Among ERA5, NCEP2, and JRA55, ERA5 was selected as the most consistent reanalysis
data with observational station data of temperature and precipitation in the EAM region
for the forty years of 1981 to 2020 (the thirty years of 1981 to 2010 in China). It may
be expected that the most recent reanalysis data would be the best due to their high
spatio-temporal resolutions, improved assimilations, and an advanced numerical model.
However, prior studies comparing and validating reanalyses with observations suggested
that ERA5 may have some discrepancies with observations, especially in the high altitudes.
For instance, Zhang et al., (2021) compared the various reanalysis data, including ERA5,
JRA55, NCEP1, NCEP2, MERRA, 20CR, and CRA40, with urbanization bias-corrected
observations in mainland China for the period of 1979–2015 [6]. The results revealed that
Pearson correlation coefficients and standard deviation ratio values of temperature from
ERA5 at high altitudes above 1500 m were lower than those from JRA55 and CRA40. The
uncertainties in ERA5 were also found in a study comparing ERA5 precipitation data with
gridded station observations in mainland China for the period of 1979–2018 [26]. The
results showed good agreement between ERA5 and observations in the elevations below
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1000 m, but significant differences in the regions of elevations above 4000 m. These results
could be confirmed in our study as well. In Figure 8a,b, ERA5 best stations dominated in
the coastal regions of China, supported by [8], and the relatively lower elevations in other
countries. As our study region does not include the high elevated regions of western China,
ERA5 could outperform JRA55 and NCEP2 in the EAM region, in contrast to the previous
studies on the entirety of China.

In this study, we also aimed to figure out inherent systematic biases of reanalyses and
their potential causes to enhance the performances. The spatial distributions of positive
(negative) biases vary by seasons and locations as shown in Figure 6a,b. There are several
reasons for the local, regional, and global uncertainties and biases in the reanalysis datasets.
Previous studies found that the bias of temperature in between reanalyses and observations
in mainland China was associated with elevations [6,21,23]. Surface warming mainly
caused by global warming is amplified in high-altitude regions due to their sensitivity
to the warming effect and, thus, its underestimation in the numerical model would be
possible [6,20,42]. In our study, cold biases were clearly identified in the mountainous
regions of Inner Mongolia, for which the reanalyses need to be improved to estimate the
elevation effect on temperature under a warming climate. In the mountainous regions of
Inner Mongolia and of the borders between China and North Korea, the cold biases in
ERA5 are much less than those in NCEP2 and JRA55. One possible reason could be the
better representations of terrain models and higher spatial resolutions used in ERA5, which
can be better in estimating the elevation effect on temperature. In addition to the elevation
effect, the warming effect of vegetation in the high-altitude regions [43] might enhance
the cold biases in the climate reanalysis. In the mountainous regions of Inner Mongolia,
the forests have significantly increased over 1982–2015 since the large-scale afforestation
policy was implemented by the Chinese Government [44]. According to Wang and Zeng
(2013), the land surface scheme adopted by the reanalysis and atmospheric boundary layer
turbulence can strongly affect the qualities of reanalysis temperature data [45]. Considering
ERA5 with the improved land surface schemes, including soil texture map, seasonally
varying monthly vegetation maps specified from a MODIS-based dataset and more satellite
imageries, these applications in the model may be attributed to diminish cold biases in the
mountainous regions of Inner Mongolia [8]. As the human-induced land cover and land
use (LCLU) changes have been significantly extended and intensified in the EAM region,
the LCLU changes can affect not only air temperature (e.g., [43]) but also the summer
monsoon precipitation (e.g., [18]). Therefore, the advancements in assimilation processes
with the higher spatio-temporal resolutions of LCLU maps and numerical modeling for
the LCLU effects on climates are important in accurately estimating the climate variables
of reanalyses.

As for the systematic biases of precipitation, in ERA5, the significant wet biases
appeared in the humid regions of southern China during spring and summer, which
were different from JRA55 and CRU with dry biases and wet–dry random biases (see
Figure 6b). The contrasting result is consistent with those of previous studies as Am-
jad et al., (2020) identified that ERA-Interim overestimated the frequency of precipitation
by over-compensating dry biases in humid areas [46]. Some studies suggested that ERA5
could detect rainfall events and reproduce their spatio-temporal distributions, but generally
overestimated hourly and daily precipitation in terms of the frequency (e.g., [5,47]). In
previous studies, it was also described that ERA5 as well as other reanalyses were useful in
representing frontal precipitation in dry seasons, compared to local convective precipitation
in the wet season [5]. The biases of precipitation could be associated with several reasons,
such as complex topography, unreliable input data, and the flaws of numerical models in
simulating precipitations of various formation types [48–50]. Particularly, the monsoons as
the regional climate phenomena can induce the precipitation biases in reanalysis data [31].

The reanalysis biases could also have originated from the uncertainties in observational
station data. The spatial inconsistency of stations, the difference in station environments
with surrounding areas, mismanaging measurement, and the changes in the number of the
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observational stations could affect the reliability of observational data [3–6]. For instance,
the high temperatures due to the urban-island effect can increase uncertainties and biases in
the observational data as well as input data for data assimilation and, thus, reanalyses [6,20].
In addition, the errors involved in gauge measurement, such as the effect of wind, splashing,
evaporations, and condensations, are counted as the global factors in underestimations of
precipitation observations [5]. It is obvious that these observation-related errors need to be
considered in evaluating the reanalysis data.

5. Conclusions

This study evaluated the performance of temperature and precipitation from climate
reanalysis data, both in spatial and temporal domains. The sets of the reanalysis data
(ERA5, JRA55, and NCEP2) and CRU were evaluated in terms of correlation coefficients
(Pearson, Spearman, and Kendall) and difference statistics (RMSE and bias), comparing
the annual and seasonal temperature and precipitation from the three reanalyses and CRU
with those from the total of 537 weather stations in the EAM region over the forty years
of 1981–2020 in North Korea, South Korea, and Japan and the thirty years of 1981–2010 in
China. Based on the spatio-temporal patterns of correlation coefficients, RMSEs, and biases
and also Taylor diagrams, the potential uncertainties in the reanalysis data were identified.

The result of temporal comparisons using Pearson correlation coefficients showed that
all the datasets, except for NCEP2, fairly reproduced the temporal variations in temperature
from the observations at most of the stations (ratio of stations with 95.5%, 94.4%, and 94.2%
on the annual for ERA5, JRA55, and CRU, respectively) with high correlation coefficients
(R > 0.8, p < 0.01). However, the higher RMSEs, related with cold biases, in the three
reanalyses and CRU appeared along the mountainous regions in central-western China.
The spatial patterns of annual and seasonal biases among the reanalysis data were generally
similar, but the magnitude of biases was clearly noticeable by the largest biases in NCEP2
and the least in ERA5. For temporal variations in precipitation, CRU had the largest
number of stations that represented high correlation coefficients of R > 0.8 for the annual
and seasonal means, except for winter. Among the reanalyses, ERA5 was better than the
other reanalyses, showing more stations with high correlation coefficients of R > 0.8 for
all the annual and seasonal means. The highest RMSEs of precipitation were in NCEP2,
followed by ERA5 and then JRA55. While the difference between ERA5 and JRA55 was not
identifiable, there was an opposite pattern of biases between ERA5 and JRA55 in southern
China, shown as dry biases in JRA55 and wet biases in ERA5. The spatial associations of
the reanalysis and observational data at each station also supported that CRU and ERA5
were better in representing the climatologically observed temperature and precipitation.
Based on the Pearson correlation coefficients and RMSEs of temperature at each station,
annually and in all four seasons, the performance was in the order of ERA5, CRU, JRA55,
and NCEP2. The precipitation datasets were better in the order of CRU, ERA5, JRA55, and
NCEP2 and CRU was better as it showed the highest Pearson correlations, annually and in
all seasons, and the lowest RMSEs, annually and in MAM, JJA, and SON.

We suggested the best reanalysis data among ERA5, JRA55, and NCEP2 in the EAM
region, according to the Pearson correlations, biases, and RMSEs by stations and the Taylor
diagrams by climatological averages. ERA5 represented the best temporal variations in
temperature, having the most stations with the highest Pearson correlations, annually and
in JJA and SON, and the smallest RMSEs as well as the smallest biases for all seasons and
annually. For precipitation, ERA5 was also the best reanalysis data as they showed the
highest Pearson correlations at the most stations in the annual and all seasonal means, the
smallest RMSEs, annually and in, MAM, JJA, and SON, and the smallest biases, annually
and in, JJA, and SON. Additionally, Taylor diagrams revealed good spatial associations of
ERA5 as ERA5 was the closest to the reference point of observed temperature among ERA5,
JRA55, NCEP2, and CRU and, for precipitation, it was the second best, after CRU.

The three reanalysis datasets considered in this study generally well reproduced the
temperature data by presenting significant correlations and low differences. However, it
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was detected that the regions with abrupt changes in elevations could have high uncer-
tainties in the temperature from climate reanalysis due to the elevation effect as well as
warming effect of vegetation on temperature, as the large biases and RMSEs appeared
along the mountainous regions in central-western China. According to the correlation and
difference statistics, ERA5 was suggested to be the most consistent reanalysis data with
temperature observations. The statistical results for precipitation suggested that CRU has
the strongest correlations with observations. Among the reanalyses, ERA5 better repro-
duced precipitation than the other two for all the annual and seasonal means. Nevertheless,
the spatial patterns of the correlations and differences were heterogenous as their seasons
and datasets vary, implying that additional validations with more temporally and spatially
detailed scales are necessary before selecting the best precipitation reanalysis data in the
EAM region.

As mentioned above, it is important to evaluate the performance of reanalysis data
before adapting the data for the study. However, the previous studies in East Asia to
evaluate reanalysis data focused on the country or the sub-country scales, mostly in China.
In this paper, we focused on the entire EAM region to provide the varying performance of
the reanalysis data across the monsoon region. Additionally, we offered insight into the
regional-specific biases in reanalysis datasets, associated with the geographical factors of
elevation and vegetation, which could be considered in improving the reanalysis data. Thus,
the results of this study could be useful for EAM studies in selecting reliable reanalysis
data for the entire, as well as regional, monsoon systems in East Asia.
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