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Abstract: FAO Blaney-Criddle has been generally an accepted method for estimating reference crop
evapotranspiration. In this regard, it is inevitable to estimate the b-factor provided by the Food and
Agriculture Organization (FAO) of the United Nations Irrigation and Drainage Paper number 24. In
this study, five soft computing methods, namely random forest (RF), M5 model tree (M5), support
vector regression with the polynomial function (SVR-poly), support vector regression with radial
basis function kernel (SVR-rbf), and random tree (RT), were adapted to estimate the b-factor. And
Their performances were also compared. The suitable hyper-parameters for each soft computing
method were investigated. Five statistical indices were deployed to evaluate their performance, i.e.,
the coefficient of determination (r2), the mean absolute relative error (MARE), the maximum absolute
relative error (MXARE), the standard deviation of the absolute relative error (DEV), and the number
of samples with an error greater than 2% (NE > 2%). Findings reveal that SVR-rbf gave the highest
performance among five soft computing models, followed by the M5, RF, SVR-poly, and RT. The M5
also derived a new explicit equation for b estimation. SVR-rbf provided a bit lower efficacy than the
radial basis function network but outperformed the regression equations. Models’ Applicability for
estimating monthly reference evapotranspiration (ETo) was demonstrated.

Keywords: Blaney-Criddle b-Factor; machine learning; M5 model tree; random forest; random tree;
reference crop evapotranspiration; support vector regression

1. Introduction

Reference evapotranspiration (ETo) estimation is imperative information to serve
water resources planning, management, and operation [1]. The Blaney-Criddle method,
as proposed by the Food and Agricultural Organization (FAO) of the United Nations, is
a well-known temperature-based reference crop evapotranspiration. This method gives
more advantage when having limitations of the measured data than the Penman-Monteith
method, which requires many meteorological data [2–4]. Many attempts [5–9] have been
made to evaluate the efficiency of the FAO Blaney-Criddle method in estimating reference
crop evapotranspiration for many regions. The study results by Jhajharia, Ali, DebBarma,
Durbude, and Kumar [6] revealed that in humid locations, the Blaney-Criddle method
was superior to other temperature-based methods, such as Hargreaves and Thornth–Waite.
This is because it offered an approximate solution of the reference crop evapotranspiration
closest to the FAO Penman-Monteith. However, the calibration of FAO-Blaney-Criddle
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parameters by the use of meteorological data in the corresponding region is important as
they differ from location to location [10]. In addition, the Blaney-Criddle approach has
been updated to suit the environment [11,12].

For many years, soft computing methods have been applied to manage water re-
source problems and related hydrology issues, especially for predicting evapotranspi-
ration [13–15]. Tzimopoulos, Mpallas, and Papaevangelou [14] applied fuzzy logic to
establish a temperature-based approach for estimating possible evapotranspiration and
compared it to the Blaney-Criddle method. Ramanathan, Saravanan, Adityakrishna, Srini-
vas, and Selokar [13] found that artificial neural networks (ANN), wavelet neural networks
(WNN), and fuzzy logic (FL) yielded better results in estimating ET0 compared to tradi-
tional approaches, such as the Penman-Monteith method, the Blaney-Criddle method, and
the Hargreaves method. Ferreira et al. [16] indicated that clustering weather stations with
analogous hydrological characteristics and lagged time data improved the performance of
ANN and support vector machine (SVM) for estimating ET0. Yu et al. [17] pointed out the
importance of selecting input patterns by studying its sensitivity analysis and concluded
two crucial weather variables for modeling ET0, i.e., maximum and minimum tempera-
ture. Shabani et al. [18] indicated that Gaussian Process Regression (GPR) outperformed
K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Regression (SVR)
in predicting pan evaporation. They also emphasized the necessity of suitably choosing
weather variables depending on the unique weather station features. Mohammadi and
Mehdizadeh [19] revealed hybrid support vector regression with a whale optimization
algorithm outperformed a sole support vector regression in modeling reference evapo-
transpiration, which is a function of air temperatures, relative humidity, solar radiation,
sunshine duration, and wind speed. Granata and Di Nunno [20] applied recurrent neural
networks to forecast actual evapotranspiration in short term ahead. Their study revealed
that in subtropical climatic conditions of South Florida, long short-term memory (LSTM)
gave better efficiency than a nonlinear autoregressive network with exogenous inputs
(NARX), and there was no significant effect of sensible heat flux and relative humidity
on actual evapotranspiration forecasting. On the other hand, in the semi-arid climate of
Central Nevada, NARX outperformed LSTM, and there were slight effects due to relative
humidity, sensible heat flux, and forecast horizon. Our best literature reviews pointed out
the research gap in estimating the b factor of the FAO Blaney-Criddle formula using the
soft computing method since only one soft computing method, the Radial Base Function
(RBF) network, was researched.

This research article intends to investigate the applicability of soft computing methods
in estimating the b factor of the FAO Blaney-Criddle formula, which is advantageous for
hydrology and agriculture-related issues. The novelty of this research is the first attempt
to use random forest (RF), M5 model tree (M5), support vector regression (SVR) with two
kernel functions (i.e., polynomial and radial), and random tree (RT) for estimating the b factor.
Their performance was compared with the previous studies. Each model’s weaknesses and
advantages were discussed. The rest of this article is organized as follows: the next section
explains the method and data used, including FAO Blaney-Criddle b factor, soft computing
models, Weka machine learning tool, tuning hyper-parameters, data used, and statistical
model performance indices. Section 3 provides the significant finding results of the suitable
hyper-parameters for each soft computing method and their comparative performance among
five soft computing methods as conducted in the present study and the previous studies. Our
main study’s finding is concluded and recommended in the final section.
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2. Materials and Methods
2.1. FAO Blaney-Criddle B Factor

The original Blaney-Criddle equation requires information on the average daily per-
centage of total daily hours and mean daily air temperature for predicting reference crop
evapotranspiration. Its formula is expressed as follows, by [21].

ET0 = a + b[p(0.46T + 8.13)] (1)

where ET0 is reference crop evapotranspiration (mm/d); a and b are calibrated constants; p
is the average daily percentage of total annual daytime hours; and T is the average daily
air temperature (◦C). The a factor can be derived by:

a = 0.0043RHmin − (n/N)− 1.41 (2)

where RHmin is the lowest daily relative humidity (%); and n/N is the average ratio of actual
to possible sunshine hours. The p and N values can be received from tables when specifying
latitudes and months [21,22]. They can be obtained using formulas as proposed by [23,24].

For determination of the value of b factor, Doorenbos, Pruitt, and Agl [21] proposed it
in tabular form. It depends on the lowest daily relative humidity (RHmin), daytime wind
speed (Ud), and the average ratio of actual to possible sunshine hours (n/N) (see detailed
information in Table 1). The authors can simply utilize the technique of table interpolation
to obtain the b value. However, it needs seven interpolation times for getting that value,
leading to lead to considerable error [25]. To defeat such drawback, Frevert et al. [26] first
proposed a regression equation (see Equation (3)) and, later, it was improved by Allen and
Pruitt [27] (see Equation (4)). Nevertheless, it was still an error in estimating the b value
of approximately 10% compared to the tabular values. Ambas and Evanggelos [28] used
weighted least squares to estimate b factor of the FAO24 Blaney-Criddle method as shown
in Equation (5). It gave close results as compared to the previous studies. Equations (3)–(5)
still have an error in estimating the b value as compared to the tabular values. Hence, it
requires other techniques to decrease the error.

b = 0.81917 − 0.0040922(RHmin) + 1.0705
( n

N
)
+ 0.065649(Ud)− 0.0059684(RHmin)(n/N)

−0.0005967(RHmin)(Ud)
(3)

b = 0.908 − 0.00483(RHmin) + 0.7949
( n

N
)
+ 0.0768[ln(Ud + 1)]2 − 0.0038(RHmin)

( n
N
)

−0.000433(RHmin)Ud + 0.281ln(Ud + 1)In
( n

N + 1
)
− 0.00975 ln(Ud + 1)

[ln(RHmin + 1)2 In (n/N + 1)]
(4)

b = 0.88165 + 0.857596
( n

N
)
− 0.00454(RHmin) + 0.093803(Ud)− 0.00405(RHmin)

( n
N
)

−0.00087(RHmin)(Ud)
(5)

2.2. Soft Computing Models

Soft computing models refer to a data analysis of a complex system in order to discover
the relationship between system state variables, i.e., independent and dependent variables,
without explicit knowledge of the physical nature of the system [29]. In this section, four
data-driven models, e.g., random forest (RF), M5 model tree (M5), support vector regression
(SVR), and random tree (RT) are briefly explained, as follows.

2.2.1. Random Forest (RF)

The Random Forest (RF) was first introduced by Breiman [30] and has been a com-
mon modification of decision trees, which is one of the collections of techniques for data
classification and regression [31]. There are two major phases of model construction. In
the first step, RF generates a number of individual trees based on the decision tree process.
Each tree is created by randomly selecting different sampled training data sets from the
entire training data set (also known as the bagging method or bootstrap aggregation) and
sub-attributes (or features) from all attributes in the training data set. Second, the voting
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method is applied, that is, the model prediction is finally achieved by voting for the classifi-
cation problem or by using the mean value for the regression problem from the predictive
performance of each tree generated. In comparison to the M5, full-grown RF trees are not
pruned back. This is one of the key benefits of the regression of RF over the M5. As the
number of trees increases, the error of speculation still converges even without pruning
the tree, and over-fitting is not a matter of concern in light of the Strong Law of Large
Numbers [32]. The RF model was adapted based on regression models in this study.

2.2.2. M5 Model Tree (M5)

The M5 Model Tree (M5) model tree was first implemented by Quinlan [33]. It applies
a divide-and-conquer method to the creation of a relationship between independent and
dependent variables and can be applied to both qualitative (categorical) and quantitative
variables. Building M5 involves three stages. The first stage involves the development of
a decision tree by dividing the data set into subsets (or leaves). Second, the overgrown
tree is reduced, and linear regression functions substitute the plucked sub-trees to avoid
overfitting the structure or a weak generalizer. The merging of certain lower sub-trees into
one node is processed as part of the pruning approach. The smoothing procedure is finally
employed to reduce the serious discontinuities between the linear models in the leaves of
the trimmed trees, especially for models created from a small number of training samples.

2.2.3. Support Vector Regression (SVR)

Support Vector Regression (SVR) was developed by Vapnik [34] and his colleagues.
This is the adaptation of the support vector machine (SVM) for regression. The basic
idea of SVR learning is to solve the separation hyperplane that can correctly divide the
training data set and has the largest geometric interval [35,36]. Using the automated
conversion of nominal values to numerical values, SVM may be both numerical and
nominal. Normalization or standardization shall be processed for all input data prior to
the corresponding step. Unlike Support Vector Machine (SVM) for a classifier, which finds
a line that best divides training data into classes, SVR processes the best line that separates
the training data set by having a minimal error in the cost function. For this reason, an
optimization algorithm is used to consider those data instances in the training dataset that
are nearest to the minimum cost line. These instances are then referred to as support vectors,
which is the name of this technique. In the event that a line that matches the data cannot be
identified, a margin is inserted along the line to loosen the constraint. This margin helps
the overall outcome to be better, but it does offer some poor predictions to be tolerated.
Adequate determination of the complexity parameter C is important. Giving a low C value
gives a broad minimum margin, otherwise, it gives a smaller minimum margin. In several
real-world problems, it has been found that the use of a straight line is not sufficient for
separating data sets. It is also more fitting to use curves or even polygonal regions. By
converting data into higher dimensional areas, the kernel functions have been meant to
draw lines and predict.

2.2.4. Random Tree (RT)

RT is a fundamental decision tree algorithm collaborating with Quinlan C4.5 or Clas-
sification and Regression Trees (CART). It chooses a random subset of attributes for each
split from the available attributes before it is implemented with a subset size determined
by the part ratio parameter. This method constructs a decision tree and chooses the feature
to maximize the information gained using a portion of the data as training data. It is
strong and straightforward to use, producing extremely accurate forecasts [29,30]. For a
regression tree, a dataset is divided into sub-spaces, and fitting a constant is proceeded for
each sub-space [32]. Consequently, A single-tree model exhibits a low level of prediction
accuracy and a propensity to be very unstable. However, it can produce extremely accurate
results via bagging RT as a decision tree method. It is highly flexible and has quick learning.
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2.3. Weka Machine Learning Tool

WEKA (Waikato Environment for Knowledge Analysis) is a Java-based open-source
machine learning platform released under the GPL (GNU). It was subsequently established
by the University of Waikato in New Zealand. WEKA can impose pre-processing, clas-
sification, clustering, association rules, and selection of attributes for data. It also has a
graphical representation visualization tool. WEKA has four main applications: Explorer,
Experimenter, Knowledgeflow, and SimpleCLI. We can use the Explorer environment to
explore the data. If we want to conduct experiments and conduct statistical tests between
learning methods, the authors can use an experimenter. Knowledgeflow essentially sup-
ports the same features as an explorer, but it is a drag-and-drop interface that supports
progressive learning. The authors can work on the WEKA command-line interface in a
simpleCLI environment.

2.4. Tuning Hyper-Parameters

Developing a soft computing model or machine learning model considers two param-
eters, i.e., model parameters and hyper-parameters. Unlike model parameters obtained
during the training process, hyper-parameters are the pre-setting parameters by the user to
determine model structure before training the models. The control of a machine learning
model’s behavior requires hyperparameter adjustment. Therefore, our predicted model
parameters will yield less performance if our hyper-parameters aren’t properly tuned to
minimize the loss function. In general, the process for tuning hyper-parameters includes
defining a model, defining the range of possible values for all hyper-parameters, defining
a method for sampling hyper-parameter values, defining evaluative criteria to judge the
model, and defining a cross-validation method. In this experiment, a WEKA experimenter
was utilized to do a systematic trial and error, that is, varying one interesting parameter
and fixing the remained parameters, and repeating this step until covering all parameters.
The Root Relative Squared Error (RRSE) with ten-fold cross-validation, given in WEKA,
was used as a criterion for selecting the best parameter value for all 216 data sets.

2.5. Data Used

In this study, 216 data sets taken from the b factor tabular of FAO Blaney-Criddle [21]
were utilized, coincident with the study purpose. For evaluating the models’ performance
with the previous studies, the training and testing process data sets were the same as those
used in Trajkovic, Stankovic, and Todorovic [25]. They randomly selected 186 of 216 data
sets for training models and used all 216 data sets for testing models. Table 1 summarizes
the statistical analysis of relevant parameters of FAO Blaney-Criddle b for the training and
testing processes. In overall statistic values, they were very similar for both training and
testing data sets. However, when considering the Kurtosis value, it indicated all parameters
(Ud, n/N, RHmin, and b) for both training and testing datasets had platykurtic distributions.
Also, the skewness value showed that Ud, n/N, and RHmin for both training and testing
datasets were approximately symmetric (“-” sign means skewed left and “+” sign means
skewed right), while b for both training and testing datasets were moderately skewed
right. The correlation analysis was conducted to individually evaluate the strength of the
relationship between each input parameter (Ud, n/N, and RHmin) and an output parameter
(b). A low degree correlation was found for Ud (r = 0.27, and 0.26 for training and testing
stages, respectively), and a high degree correlation was obtained for the rest parameters.
The n/N gave the correlation coefficient (r) of 0.57 and 0.58 for the training and testing
stages, respectively. Additionally, RHmin provided a strong negative relationship by giving
the correlation coefficient (r) of −0.74 for both the training and testing stages, respectively.
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Table 1. Statistical evaluation of FAO Blaney-Criddle b parameters for training and testing data sets.

Statistical Values Training Testing

Ud n/N RHmin b Ud n/N RHmin b

Maximum 10.00 1.00 100.00 2.63 10.00 1.00 100.00 2.63
Minimum 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.38
Average 5.01 0.51 49.68 1.19 5.01 0.50 49.72 1.18

Standard Deviation 3.42 0.34 34.06 0.47 3.42 0.34 34.07 0.46
Kurtosis −1.27 −1.28 −1.26 −0.09 −1.27 −1.27 −1.26 0.10

Skewness −0.01 −0.05 0.01 0.62 −0.01 0.01 0.01 0.67
Correlation Coefficient (r) 0.27 0.57 −0.74 1.00 0.26 0.58 −0.74 1.00

Number of data 186 216

2.6. Statistical Model Performance Indices

Five statistical indices were deployed to evaluate model performance, i.e., the co-
efficient of determination (r2) (Equation (6)), the mean absolute relative error (MARE)
(Equation (7)), the maximum absolute relative error (MXARE) (Equation (8)), the standard
deviation of the absolute relative error (DEV) (Equation (9)), and the number of samples
with an error greater than 2% (NE > 2%). All of these statistical indices were used by
Trajkovic, Stankovic, and Todorovic [25] on this particular issue. The r2 calculates the level
of linearity of two variables and its maximum is 1.00. MARE and MXARE determine the
difference between the real and the expected b factor and should be as small as possible.
The perfect model should have an NE of zero. Finally, a Taylor diagram was proposed to
comparatively elaborate and evaluate the efficacy of the developed models. This diagram
can simultaneously show three statistic parameters, i.e., correlation, root mean square error,
and standard deviation. The equations of statistical indices are given below, where bai is
the actual b-factor, is the estimated b-factor, and n is the number of samples in a data set.

r2 =

 ∑n
i=1

(
bai − bai

)(
bei − bei

)
√

∑n
i=1 (bai − bai)

2·
√

∑n
i=1 (bei − bei)

2

2

(6)

MARE =
1
n

n

∑
i=1

∣∣∣∣ bai − bei
bai

∣∣∣∣ (7)

MXARE = max
(∣∣∣∣ bai − bei

bai

∣∣∣∣) for i = 1, . . . , n (8)

DEV =

√√√√∑n
i=1

[∣∣∣ bai − bei
bai

∣∣∣− MARE
]2

(n − 1)
(9)

3. Results and Discussion
3.1. Results of Tuning Hyper-Parameters

Table 2 shows the results of tuning hyper-parameters. Their explanation for each soft
computing model is as follows.
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Table 2. Summary of the optimal hyper-parameters for soft computing models.

Hyper-Parameter
RF M5 SVR-poly SVR-rbf RT

Value Sensitive Value Sensitive Value Sensitive Value Sensitive Value Sensitive

numIteration 300 yes - - - - - - - -

batchSize 100 no 100 no - - - - 100 no

numExecutionSlots 1 no - - - - - - - -

minNumInstances - - 4 yes - - - - - -

numDecimalPLaces - - 4 no - - - - 2 no

buildRegressionTree - - FALSE yes - - - - - -

complexity - - - - 0.8 yes 1.0 yes - -

exponent - - - - 1.0 yes - -

gamma - - - - - - 1.0 yes - -

minNum - - - - - - - - 1.0 yes

numFolds - - - - - - - - 0 yes

minVarianceProp - - - - - - - - 0.001 yes

RRSE 12.14 11.46 24.21 2.37 24.23

3.1.1. Random Forest (RF)

In the process of tuning hyper-parameters for RF, some default parameters were se-
lected as default in WEKA software, i.e., (1) infinite maximum tree depth, and (2) int(log
2(#predictors) + 1) function used to set the number of randomly selected attributes. How-
ever, three parameters, namely: (1) numIteration, which is the number of trees in the
random forest; (2) batchSize, which is the optimum number of instances to be processed
when predicting batch; and (3) numExecutionSlots, which is the number of threads avail-
able for execution to be used to create the collection, were investigated in our experiment.
Findings revealed that numIteration of 300, batchSize of 100 (default value), and numExe-
cutionSlots of 1 (default value) were the suitable hyper-parameters for RF with the testing
data set. All cases gave an RRSE value of 12.14. The numIteration was a sensitive parameter,
while batchSize and numExecutionSlots were not sensitive.

3.1.2. M5 Model Tree (M5)

The authors experimented tuning hyper-parameters of the M5 model tree using the
default parameters in WEKA software of unpruned to be false, and use Unsmoothed to
be false. The four parameters, i.e., batchSize, minNumInstances, numDecimalPLaces, and
buildRegressionTree were investigated. If the batch prediction is utilized, the bathcSize
option specifies the recommended number of instances to process. More or fewer instances
are conceivable, but this allows implementations to select the batch size they want. The
minimal number of instances to allow at a leaf node is specified by minNumInstances. The
number of decimal places to utilize for the model’s output is numDecimalPLaces. It can be
decided whether to construct a regression tree/rule instead of a model tree/rule using the
buildRegressionTree method.

Findings revealed that batchSize of 100 (default value), minNumInstances of 4 (default
value), and numDecimalPLaces of 4 (default value), were the suitable hyper-parameters
for M5 with the testing data set. All best cases gave an RRSE value of 11.46. By using
batchSize of 100, minNumInstances of 4, and numDecimalPLaces of 4, the authors investi-
gated the effect of selecting or not selecting a regression tree/rule. There was no need to
generate a regression tree/rule due to giving an RRSE value of 11.46 compared to creating
a regression tree/rule, which gave an RRSE value of 56.26. The minNumInstances and
buildRegressionTree were sensitive parameters, while batchSize and numDecimalPLaces
were not sensitive.
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3.1.3. Support Vector Regression (SVR)

For SVR, two kernel functions, namely the polynomial kernel with variable exponent
value and the radial basis function kernel with varying gamma value, were investigated.
Also, the complexity parameter (C) was varied between 0.0 and 1.0 to determine the
optimum value. The gamma parameter represents the influence of a single training reach,
with low values indicating ‘far’ and large values indicating ‘close.’ The inverse of the impact
radius of the samples chosen by the model as support vectors are gamma parameters. The
modified sequential minimal optimization (SMO) as an iterative algorithm was used to
solve the regression problem for SVR [34]. The authors found the optimal hyper-parameters
for SVR with polynomial kernel function were the complexity parameter (C) of 0.8 and the
exponent (n) of 1.0. By fixing the complexity parameter (C) value of 0.8 and varying the
exponent (n) value from 1.0 to 4.0, it was sensitive to the exponent value for SVR with a
polynomial kernel function. The best case gave an RRSE value of 24.21.

Furthermore, the optimal hyper-parameters for the radial basis function kernel were
the complexity parameter (C) of 1.0 and the gamma parameter (γ) of 1.0. By fixing the
complexity parameter (C) value of 1.0 and varying the gamma parameter (γ) value from 1.0
to 4.0, it was sensitive to the gamma parameter (γ) value for the radial basis function kernel.
Additionally, the gamma parameter (γ) value of 1.0 gave the least RRSE. For both cases,
the suitable C parameters were equal to or more than 0.8. It indicated that these data sets
required a smaller minimum margin to separate the data. From those suitable exponents of
the polynomial kernel function and gamma parameter of the radial basis function kernel
were equal to 1.0, it also manifested that these data sets are not conglomerate data sets and
do not require projecting the data into a higher-dimensional space for data separation. The
best case gave an RRSE value of 2.37.

3.1.4. Random Tree (RT)

RT was conducted to determine the suitable hyper-parameters and some default pa-
rameters were selected as suggested by WEKA software, i.e., (1) unlimited maximum depth
of the tree and (2) int(log 2(#predictors) + 1) function used to set the number of randomly
selected attributes. However, five parameters, namely batchSize, numDecimalPlaces, min-
Num, numFolds, and minVarianceProp, were investigated. The batchSize refers to the
preferred number of instances to be processed when batch predictions are made. The
numberDecimalPlaces is the number of decimal places to be utilized in model output. The
minNum means the minimum total weight of the instances in a leaf. The numFolds is
configured to determine the quantity of data used. For backfitting, one fold is utilized, and
the other is applied for building the tree. The minVarianceProp represents the smallest
variance of all data present at a node in regression trees to be divided.

Findings revealed that batchSize of 100 (default value), numDecimalPlaces of 2 (default
value), minNum of 1 (default value), numFolds of 0 (default value), and minVarianceProp
of 0.001 (default value), were the suitable hyper-parameters for RT with testing data set.
All best cases gave an RRSE value of 24.23. The minNum, numFolds, and minVarianceProp
were sensitive parameters, while batchSize and numDecimalPLaces were not sensitive.

3.2. Model’s Performance Comparison

After getting the most suitable hyper-parameters for each soft computing model, the
authors proceeded to assess their performance in estimating the FAO Blaney-Criddle b
factor. As explained earlier, to compare the model’s performance, five statistical indices
were used, i.e., the coefficient of determination (r2), the mean absolute relative error (MARE),
the maximum absolute relative error (MXARE), the standard deviation of the absolute
relative error (DEV), and the number of samples with an error greater than 2% (NE > 2%).
This evaluation was only conducted for the testing stage following the study by Trajkovic,
Stankovic, and Todorovic [25].

Table 3 shows the comparative results of statistical indices getting from the present
and previous studies’ testing stages. By ranking the model with each statistical index
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and counting the frequency for five soft computing models, it was found that SVR-rbf
outperformed the other methods, followed by RF, RT, M5, and SVR-poly. This is because
SVR-rbf has the lowest values of MARE (%), MXARE (%), NE > 2%, and DEV (%) and
the highest value of r2. By doing the same thing, SVR-rbf, RF, and RT gave better results
than the regression-based approach proposed by Frevert, Hill, and Braaten [26], Allen
and Pruitt [27], and Ambas and Evanggelos [28], while M5 and SVR-poly gave the lower
performance. However, SVR-rbf’s performance as compared to the RBF network was
comparable due to providing a bit lower performance.

Table 3. Statistical indices comparison in a testing stage for the present and previous studies.

Statistical
Indices Present Study Previous Studies

RF M5 SVR-poly SVR-rbf RT Frevert et al.
(1983)

Allen & Pruitt
(1991)

Ambas &
Evanggelos

(2010)

RBF
Network

MARE (%) 1.81 2.96 7.52 0.49 1.19 3.07 1.69 5.99 0.34
MXARE (%) 8.1 19.2 58.7 5.0 17.6 14.4 11.8 41.1 1.8

NE > 2% 80 116 171 7 25 126 64 141 0
DEV (%) 1.62 2.97 8.00 0.55 3.16 2.72 1.68 7.22 0.31

r2 0.997 0.991 0.944 1.000 0.993 0.989 0.998 0.962 1.000

Figure 1 shows the performance of eight models in the testing stage. The left-hand side
shows plotting the actual b-factor and estimated b-factor (y-axis) with the data set order (x-
axis), and a scatter plot is displayed on the right-hand side. The data set order was received
from the b factor tabular of FAO Blaney-Criddle [21] with 216 data sets. The authors could
not plot the graph herein for the RBF network due to having no raw predicted data shown
in the literature. Figure 2 presents a Taylor diagram to compare the performance of eight
models, except for the RBF network, due to the same reason mentioned. Estimating b factor
by Frevert, Hill, and Braaten [26], Allen and Pruitt [27], and Ambas and Evanggelos [28]
were calculated by Equations (3)–(5), respectively. A Taylor diagram pointed out that
SVR-rbf provided the results closest to FAO Blaney-Criddle b parameters obtained from
the table as proposed by Doorenbos, Pruitt, and Agl [21], followed by Frevert, Hill, and
Braaten [26], RF, RT, M5, Allen and Pruitt [27], Ambas and Evanggelos [28], and SVR-
poly. Using the equation proposed by Ambas and Evanggelos [28] and SVR-poly, it gave
overestimation and underestimation for the b-factor, respectively, since they have more
and less standard deviation (see Figure 2). Consequently, it indicates that these two models
gave more uncertainty in estimating the b-factor than other models. Figure 3 shows a set of
linear equations obtained from M5. It includes six rule sets.
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3.3. Models’ Applicability for Estimating Monthly Reference evapotranspiration (ETo)

The monthly climatological variables at Nis, Yugoslavia, given by Trajkovic, Stankovic,
and Todorovic [25], were used to demonstrate the model’s applicability, as shown in
Table 4. Reference evapotranspiration (ETo) in January and December is equal to zero.
That is why any climatological variables of January and December do not appear in
Table 4. Table 5 shows the results of applying the developed soft computing models
and compares their performance to a table interpolation method [25] and the regression-
based models for estimating the b-factor. Table 6 shows the difference between the b-factor
obtained from various methods and a table interpolation method. The positive value means
overestimation, and the negative value represents underestimation. The b-factor based on
the regression-based models was mainly underestimated by 1.12–6.00% compared to those
values obtained by the table interpolation method [25], except for estimating the b-factor
in June using the equation developed by Frevert et al. [26]. It gave an overestimation of
1.11%. However, most of the soft computing models overestimated by 0.57–3.92% in the
estimation of the b-factor. Some of them, for example, M5 provided underestimated by
0.3% in March, 1.57% in April, 3.02% in October, and 2.21% in November.

Table 4. The monthly climatological variables.

Months
Climatological Variables

T (◦C) RHmin (%) U2 (m/s) n/N P A

Feb. 1.8 65 1.40 0.276 0.240 −1.407
Mar. 8.3 50 1.89 0.366 0.270 −1.561
Apr. 10.5 50 1.65 0.390 0.300 −1.585
May 12.7 61 1.60 0.311 0.330 −1.459
Jun. 20.6 45 0.77 0.636 0.347 −1.853
Jul. 21.4 55 1.17 0.535 0.337 −1.709

Aug. 19.6 56 1.00 0.510 0.310 −1.679
Sep. 17.9 43 1.25 0.626 0.280 −1.851
Oct. 11.6 55 1.44 0.323 0.250 −1.497
Nov. 7.8 63 1.34 0.238 0.220 −1.377
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Table 5. The results of the soft computing models, a table interpolation method, and the regression-
based models applied for the b-factor estimation.

Months

b

Frevert et al.
(1983)

Allen &
Pruitt
(1991)

Ambas &
Evanggelos

(2010)

Table
Interpolation

[25]
RBF [25] RF M5 SVR-poly SVR-rbf RT

Feb. 0.779 0.788 0.803 0.821 0.823 0.846 0.844 0.823 0.823 0.823
Mar. 0.965 0.977 0.989 1.011 1.012 1.002 1.008 1.012 1.012 1.012
Apr. 0.975 0.981 0.993 1.016 1.017 1.000 1.000 1.017 1.022 1.020
May 0.836 0.846 0.860 0.886 0.884 0.888 0.909 0.883 0.884 0.884
Jun. 1.175 1.136 1.149 1.162 1.165 1.174 1.141 1.174 1.165 1.165
Jul. 1.030 1.015 1.025 1.047 1.053 1.047 1.088 1.052 1.054 1.053

Aug. 0.998 0.982 0.994 1.017 1.022 1.035 1.038 1.021 1.022 1.020
Sep. 1.203 1.179 1.185 1.199 1.202 1.202 1.197 1.202 1.202 1.202
Oct. 0.881 0.889 0.903 0.928 0.930 0.940 0.900 0.929 0.930 0.930
Nov. 0.764 0.775 0.791 0.813 0.811 0.831 0.795 0.812 0.818 0.811

Table 6. The difference between the b-factor obtained from various methods and a table interpolation method.

Months

Difference of b-Factor

Frevert et al.
(1983)

Allen &
Pruitt
(1991)

Ambas &
Evanggelos

(2010)

Table
Interpolation

[25]
RBF [25] RF M5 SVR-poly SVR-rbf RT

Feb. −0.042 −0.033 −0.018 0.000 0.002 0.025 0.023 0.002 0.002 0.002
Mar. −0.046 −0.034 −0.022 0.000 0.001 −0.009 −0.003 0.001 0.001 0.001
Apr. −0.041 −0.035 −0.023 0.000 0.001 −0.016 −0.016 0.001 0.006 0.004
May −0.050 −0.040 −0.026 0.000 −0.002 0.002 0.023 −0.003 −0.002 −0.002
Jun. 0.013 −0.026 −0.013 0.000 0.003 0.012 −0.021 0.012 0.003 0.003
Jul. −0.017 −0.032 −0.022 0.000 0.006 0.000 0.041 0.005 0.007 0.006

Aug. −0.019 −0.035 −0.023 0.000 0.005 0.018 0.021 0.004 0.005 0.003
Sep. 0.004 −0.020 −0.014 0.000 0.003 0.003 −0.002 0.003 0.003 0.003
Oct. −0.047 −0.039 −0.025 0.000 0.002 0.012 −0.028 0.001 0.002 0.002
Nov. −0.049 −0.038 −0.022 0.000 −0.002 0.018 −0.018 −0.001 0.005 −0.002

Table 7 presents the estimated monthly reference evapotranspiration (ETo). Using a table
interpolation method as a baseline, it is also pointed out that the soft computing models
outperformed the regression-based models in ETo estimation due to giving a lower percentage
of yearly difference. All three regression-based models gave underestimation by 3.2–5.1% in
estimating ETo, while all six soft computing models provided some overestimation by 0.4–
0.9%. Based on the data used in this study, the RBF network and RT models gave the highest
performance in estimating ETo due to having the lowest percentage of yearly difference.

Table 7. Estimated Monthly Reference evapotranspiration (ETo).

Months

ETo (mm/month)

Frevert et al.
(1983)

Allen &
Pruitt
(1991)

Ambas &
Evanggelos

(2010)

Table
Interpolation

[25]

RBF
[25] RF M5 SVR-poly SVR-rbf RT

Feb. 7.5 8.1 8.9 10.0 10.2 11.5 11.4 10.2 10.2 10.2
Mar. 48.1 49.3 50.6 52.7 52.8 51.8 52.4 52.8 52.8 52.8
Apr. 66.1 66.9 68.3 71.0 71.1 69.1 69.1 71.1 71.7 71.4
May 74.3 75.7 77.7 81.4 81.1 81.7 84.7 81.0 81.1 81.1
Jun. 159.8 152.7 155.0 157.4 157.9 159.6 153.5 159.6 157.9 157.9
Jul. 140.4 137.6 139.6 143.6 144.8 143.6 151.3 144.6 145.0 144.8

Aug. 112.3 109.7 111.8 115.5 116.3 118.5 119.0 116.2 116.3 116.0
Sep. 109.8 106.5 107.3 109.3 109.7 109.7 109.0 109.7 109.7 109.7
Oct. 45.6 46.4 47.9 50.5 50.7 51.7 47.5 50.6 50.7 50.7
Nov. 17.8 18.6 19.9 21.6 21.4 23.0 20.2 21.5 22.0 21.4

Yearly 781.7 771.5 786.9 813.0 816.0 820.2 818.2 817.1 817.3 816.0
Yearly

Difference
(%)

−3.9 −5.1 −3.2 0.0 0.4 0.9 0.6 0.5 0.5 0.4
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4. Conclusions

Accuracy of reference evapotranspiration (ETo) estimation is of importance for agri-
cultural water management. In this study, five soft computing models, namely RF, M5,
SVR-poly, SVR-rbf, and RT, were evaluated and compared their performance for estimating
FAO Blaney-Criddle b-factor among themselves and the previous studies conducted by
the RBF network and three regression equations (Richard G Allen et al., 1991; Frevert
et al., 1983; Ambas & Evanggelos (2010). In addition, tuning hyper-parameters for each
soft computing model were experimented with to receive its suitable architecture before
applying them. The main findings results revealed the following.

(1) Among five soft computing models, it was found that SVR-rbf gave the highest
performance in reference evapotranspiration (ETo) estimation, followed by M5, RF,
SVR-poly, and RT, respectively.

(2) The new explicit equations for FAO Blaney-Criddle b-factor estimation were proposed
herein using the M5 model. It is a rule set, including six linear equations.

(3) Compared to the RBF network [25], SVR-rbf provided a bit lower performance but
outperformed three previous regression equations.

(4) The soft computing models outperformed the regression-based models in the b-factor
estimation since they gave the lower values of MARE (%), MXARE (%), NE > 2%, and
DEV (%) and the higher value of r2.

(5) Models’ Applicability for estimating monthly reference evapotranspiration (ETo)
revealed that the soft computing models outperformed the regression-based models
in ETo estimation owing to the lower percentage of yearly difference. All three
regression-based models underestimated ETo, while all six soft computing models
slightly overestimated it.

(6) This work’s usefulness is to support a more accurate and convenient evaluation of
reference crop evapotranspiration with a temperature-based approach. It leads to
agricultural water demand estimation accuracy as necessary data for water resources
planning and management.
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