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Abstract: Air quality management is increasingly focused not only on across-the-board reductions in
ambient pollution concentrations but also on identifying and remediating elevated exposures that
often occur in traditionally disadvantaged communities. Remote sensing of ambient air pollution
using data derived from satellites has the potential to better inform management decisions that
address environmental disparities by providing increased spatial coverage, at high-spatial resolu-
tions, compared to air pollution exposure estimates based on ground-based monitors alone. Daily
PM2.5 estimates for 2015–2018 were estimated at a 1 km2 resolution, derived from NASA’s Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite instrument and the Multi-Angle Implemen-
tation of Atmospheric Correction (MAIAC) algorithm in order to assess the utility of highly refined
spatiotemporal air pollution data in 92 California cities and in the 13 communities included in the
California Community Air Protection Program. The identification of pollution hot-spots within a city
is typically not possible relying solely on the regulatory monitoring networks; however, day-to-day
temporal variability was shown to be generally well represented by nearby ground-based monitoring
data even in communities with strong spatial gradients in pollutant concentrations. An assessment of
within-ZIP Code variability in pollution estimates indicates that high-resolution pollution estimates
(i.e., 1 km2) are not always needed to identify spatial differences in exposure but become increasingly
important for larger geographic areas (approximately 50 km2). Taken together, these findings can help
inform strategies for use of remote sensing data for air quality management including the screening
of locations with air pollution exposures that are not well represented by existing ground-based air
pollution monitors.

Keywords: air pollution models; air quality management; exposure assessment; monitoring networks;
satellite remote sensing

1. Introduction

Ground-based pollution monitoring networks provide regional air quality observa-
tions at coarse and nonuniform spatial resolutions. Traditionally, air quality research in
the United States (U.S.) has relied on data from the Environmental Protection Agency
(EPA)’s regulatory ground networks, which use sophisticated and well-validated tech-
niques but whose costs limit them to a handful of locations in even the most populated
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areas [1]. Across U.S. jurisdictions, the location of monitors varies substantially and may
not capture local pollution episodes or spatial variations within a city. This nonuniform
spatial distribution of air quality data has important environmental justice implications for
vulnerable communities because Black and other historically marginalized groups living in
the U.S. are more likely to live in locations with the greatest exposures [2–5]. Fortunately,
widespread efforts have been made in recent years to develop alternative technologies ca-
pable of measuring fine particulate matter (PM2.5) at increasingly fine spatial resolutions [6].
These new exposure methods have the potential to improve our understanding of pollution
exposures in high-risk communities and ultimately increase environmental justice in the
U.S. and abroad.

The spatial resolution of air quality estimates, particularly PM2.5, has improved dra-
matically since the development of remote sensing instruments capable of measuring
ground-level pollution from satellites. Remote sensing PM2.5 estimates are often derived
from Aerosol Optical Depth (AOD), a measure of light extinction by aerosols in an atmo-
spheric air column [7]. AOD measurements help increase the spatiotemporal resolution of
both long- and short-term exposure estimates of air quality when combined with ground
monitors [8]. Others have successfully leveraged current knowledge of pollutant chemistry,
topography, and meteorology to create computational models, providing more highly
resolved estimates of air pollution [9]. Much of the continued drive to improve exposure
assessment methods stems from the gap between relatively coarse air quality resolutions
and more finely resolved local health data, which if narrowed could drastically improve
the quality of health impact assessments [10].

Each air quality measurement technology has its inherent strengths and limitations,
and no one alone can provide the spatial or temporal coverage required for risk commu-
nication and community health assessment [11]. Stationary ground monitor networks,
primarily intended to assess regional compliance with federal air quality laws, provide
high-accuracy and near-continuous measurements representative of city-level air quality
concentrations. They are key in the validation of other air pollution exposure technologies
and provide the data on which compliance with the EPA’s National Ambient Air Quality
Standards (NAAQS) are based. However, they are also labor-intensive and costly, limit-
ing their coverage in much of the U.S. to urban centers in order to prioritize regional air
quality assessments. The sophistication of ground monitor instruments also has limited
temporal coverage of PM2.5, with filter-based mass concentration samples limited to daily
or every 3 or 6 day measurements. Satellite remote sensing has removed many of these
resolution barriers but at the cost of measurement precision. They are also incapable of
capturing the most highly resolved spatial and temporal coverage from a single satellite
due to the physics of their orbital patterns. Specifically, polar-orbiting satellites capture the
highest spatial resolutions due to their lower altitudes, while geostationary satellites can
provide hourly coverage for wide planetary regions [12]. Additionally, successful AOD
measurements are limited to cloud-free, daylight conditions. For models, the large compu-
tational requirements necessary to generate highly resolved datasets limits the overall area
covered, creating a tradeoff between spatial resolution and total coverage [13,14]. Low-cost
stationary and portable sensor systems can greatly increase ground-level spatiotemporal
coverage, but their accuracy and precision are currently limited [1].

Although these technologies have been traditionally utilized as distinct data sources,
more recent approaches embrace an integrated approach in order to maximize the res-
olutions and coverage of exposure data [9,12,15]. This approach is promoted in a 2017
workshop report by the American Thoracic Society (ATS), authored by a multi-disciplinary
group of experts who promote more compositional methods for future air pollution expo-
sure efforts [11]. Ground networks, with their precision and standardization, can provide a
baseline for the validation of newer methods. Satellite remote sensing has the advantage
of filling in spatial and temporal gaps not captured on the ground. Low-cost sensors can
capture sharp street-level concentration gradients, aiding in the identification of urban hot
spots [1]. They also have the potential to increase ground-based spatial resolutions and



Atmosphere 2022, 13, 85 3 of 21

efforts to improve these estimates via calibration against regulatory-level monitors and
advanced modeling are showing increasing success [16,17]. Chemical transport models,
which use knowledge of atmospheric chemistry and meteorology to simulate pollutant
dispersion in the atmosphere, can forecast air quality several days in advance, while
advanced statistical models can merge multiple technologies to increase overall spatiotem-
poral resolution. Together, these existing methods have the potential to produce spatial
resolutions down to street levels and temporal measurements approaching real-time. This
is particularly important in urban areas, where peak concentrations are strongly tied to
commute times, and plume dispersion among buildings and other obstacles is not well
understood [18,19]. However, ATS workshop participants agreed that the most pressing
barriers to method integration are less technological and more practical: computational
time and costs and the willingness of various experts to work together towards integrating
these technologies. They advise that when moving towards integrated air quality exposure
assessments, it is critical that the needs of the data user be considered in order to use
limited resources in efficient ways. Air quality management groups, for instance, will have
different spatiotemporal data needs than epidemiologists or clinicians. Understanding the
real-world spatiotemporal patterns of air pollutants can help data users avoid producing
costly, high-resolution data that provide little additional information.

One successful method of technological integration has been the combination of satel-
lite remote sensing data products with models. A strong example of this data fusion is
the National Aeronautics and Space Administration (NASA)’s Multi-Angle Implementa-
tion of Atmospheric Correction (MAIAC) AOD, a high-resolution satellite aerosol data
project based on remote sensing observations from NASA’s Moderate Resolution Imag-
ing Spectroradiometer (MODIS) instrument aboard the Terra and Aqua polar-orbiting
satellites. Incorporating both time series analyses of MODIS data and image processing,
MAIAC is one of the best methods available for the correction of atmospheric and surface
effects on AOD estimates and has been validated extensively against ground networks via
mixed effects and ensemble modeling [14,20]. By incorporating additional atmospheric and
topographical parameters, MAIAC increases the horizontal spatial resolution of remote
sensing data from 10 × 10 km2 as in the standard MODIS AOD product to 1 × 1 km2.
Although cloud cover and bright surfaces still interfere with its AOD coverage, a number
of gap-filling models have been developed to produce MAIAC-sourced datasets capable of
meeting the needs of health studies throughout the world [10,20–23].

Despite these advancements, the computational requirements for high-resolution spa-
tial PM2.5 data remain burdensome. As decisions are made on where to allocate monitoring
resources, environmental justice should play a key role in monitoring network resource
allocation. In California, more vulnerable communities (facing higher health, social, and/or
climate change risks) have PM2.5 concentrations that are 2.54 µg/m3 higher on average
than less vulnerable communities [24]. The major source of PM2.5 in the state as well as
the top contributor to these disparities is vehicular emissions [24], although depending
on the location the majority of emissions may instead come from local biomass burning,
agricultural activities, and oil production [25]. To address these disparities, California’s
2017 Assembly Bill 617 (AB 617) allocates state funds for communities most at risk from
the health impacts of local air quality [26]. As a result of this statute, the California Air Re-
sources Board (CARB) created the Community Air Pollution Program (CAPP) to determine
qualifying areas where monitoring and emission reduction programs will be established.
Based on 2019 community selection and identification processes, there were thirteen CAPP
communities in metropolitan areas throughout the state that have benefited from the pro-
gram’s funding and expert support (https://ww2.arb.ca.gov/capp, accessed on 2 January
2022). CAPP selects candidates from “disadvantaged” communities, defined by California
Senate Bill (SB) 535 as areas that (1) experience disproportionate levels of environmental
pollution and (2) have concentrated populations characterized by low income, high un-
employment, low levels of home ownership, high rent burden, low education levels, or
sensitive groups [27,28]. Candidate communities meeting this definition are identified
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by CAPP during annual statewide assessments which compile indicators of air quality,
emission sources, sensitive groups (i.e., school, day care, and hospital locations), public
health (i.e., prevalence of asthma, low birth weight, and cardiovascular disease), and poor
socioeconomic conditions (i.e., poverty and unemployment) [27].

In this study, we assessed whether regulatory ground monitoring networks are cap-
turing critical spatial variability within high-risk California communities, and the relative
contribution of high-resolution air pollution data towards exposure assessment and envi-
ronmental justice efforts in California. Using MAIAC-derived 1 km2 daily PM2.5 data from
2015–2018, high-resolution estimates for the thirteen CAPP communities were examined
and compared with their nearest ground monitor. While doing so, we considered the
magnitude of these differences from both spatial and temporal perspectives, allowing
us to test the efficacy of ground monitoring networks at both scales. A second analysis
considered the relative information obtained from our high-resolution dataset by com-
paring PM2.5 variations within and between ZIP Codes in the state’s largest metropolitan
centers. This work provides new detail on the spatiotemporal air quality patterns occurring
in California’s highest risk communities and offers new insight into the diminishing re-
turns of increasingly refined PM2.5 spatial resolution relative to other avenues of exposure
assessment among a large sample of urban areas.

2. Materials and Methods

The high-resolution, daily PM2.5 predictions for California (2015–2018) used in this
study came from NASA’s MODIS MAIAC AOD product, provided at a 1 km2 horizontal
spatial resolution [29]. Two Random Forest (RF) models were applied to process these
observations and generate the PM2.5 predictions. The first RF model was for missing AOD
gap filling (mostly due to cloud cover), with cloud fractions and AOD-related meteoro-
logical variables as model parameters. The second RF model provided PM2.5 predictions,
with gap-filled MAIAC AOD, meteorological, and land-use variables as model parameters.
This produced a uniform dataset at a 1 km2 resolution for the entire state of California,
designed to meet the spatial needs of health studies. Complete details on model creation
and evaluation can be found in Bi et al. (2020) [30,31].

Figure 1 depicts a map with locations of the thirteen communities included in CAPP
at the time of this study. Shapefiles for each community were obtained from CARB in
2020 and linked spatially to the high-resolution PM2.5 dataset based on overlapping 1 km2

grid centroids. Additionally, the nearest active PM2.5 monitor was identified for each
community, and their 4-year daily averages obtained from the U.S. EPA Air Data for
comparison (https://www.epa.gov/outdoor-air-quality-data, accessed on 2 January 2022).
Of the thirteen communities, seven had a monitor inside the community, five had monitors
within 5.1 km from community boundaries, and one community (Shafter) had a monitor
21.1 km away. The 24 h Federal Reference Method (FRM) primary monitor data were used
from each site, except in cases where only Federal Equivalent Method (FEM) monitoring
data were available within a relevant distance to the community. FRM monitors use manual
gravimetric methods measuring PM2.5 mass over 24 h periods, while FEM monitors may
be manually operated or automatic as long as they meet strict operating specifications [32].
FEM sites in this analysis included the Richmond/San Pablo, West Oakland, and Stockton
communities, whose monitoring data came from continuous samplers reported as hourly
data and aggregated to produce 24 h averages. FRM/FEM methods are well-validated and
controlled and are required for air quality data used to inform compliance with national
standards. They were selected for use in this study because their data are commonly used
in exposure and health impact research, including use as a validation tool for air quality
models and low-cost sensors [11,16,17].

https://www.epa.gov/outdoor-air-quality-data
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Figure 1. Map of California showing 13 CAPP communities (2020) and 92 cities included in the study
analyses.

Local daily bias of the exposure model was calculated for each community by compar-
ing each community’s ground monitor observations with its nearest model estimates (all
estimates within a distance of 1 km from the monitor). For days with a monitor measure-
ment, the daily bias value was calculated and used to adjust all community model values.
The four-year (2015–2018) averages of these biases were then calculated for each community,
and this daily bias average was used to correct model estimates on days without a monitor
measurement. Average differences between ground measurements and MAIAC-derived
predictions ranged from −2.24 to 0.66 µg/m3 among the thirteen communities, which is
well within the range of ±3 µg/m3 estimated from a ten-year analysis of MAIAC estimates
in the southeastern U.S. by Hu et al. (2014) [10].

Using these corrected values, separate temporal and spatial analyses were performed
for each community. To assess how well ground monitors capture day-to-day changes
in community exposures, we created histograms showing the distribution of daily pollu-
tion estimates from modeled estimates compared with those from nearest monitor daily
measurements. For spatial analyses, we created maps depicting four-year averages for all
model estimates and their nearest monitor and examined their concentration gradients for
exposure variations.

Additionally, presented in Figure 1 are the locations of all cities in California with three
or more Zone Improvement Plan Codes (ZIP Codes) (N = 92). For this sample, ZIP Codes
were linked spatially to their primary city following the December 2019 United States Postal
Service-defined boundaries [33]. ZIP Codes were then merged with our high-resolution
PM2.5 data based on overlapping 1 km2 grid centroids (ranging from 1 to 1141 centroids per
ZIP Code) and averaged to produce ZIP Code-level daily concentrations. Figure 2 presents
a simple visual example of these two spatial resolutions in the city of Fresno.
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Figure 2. Example of PM2.5 concentration (µg/m3) gradients at (a) 1 km2 and (b) ZIP Code-based
spatial resolutions (Fresno, CA).

Daily Coefficients of Variation (CV) were calculated for all ZIP Codes (N = 590) to
compare within-ZIP Code variations. The CV was selected as a measure of ZIP Code-level
variation due to its ability to produce relative variances that can be compared among differ-
ent groups. In this case, the CV represents the relative difference in PM2.5 concentrations
among 1 km2 resolution estimates within a ZIP Code. Daily CVs were calculated for each
ZIP Code using Equation (1), based on methods presented by Dai et al. [34]:

CV =
1
x

√
1
n ∑n

i=1(xi − x)2, (1)

where xi is the PM2.5 concentration of the ith 1 km2 resolution estimate, x is the mean
PM2.5 concentration of the ZIP Code, and n is the number of 1 km2 resolution estimates in
the ZIP Code. In order to examine variation at the 1 km2 resolution scale, a daily relative
percent difference (RPD) was calculated for each 1 km2 resolution estimate as shown in
Equation (2):

RPDi = abs
[
(x − xi)

xi

]
× 100% (2)

Daily PM2.5 concentrations and variance statistics (CV and RPD) were aggregated
by region, season, and ZIP Code area. Northern and Southern California were defined
as cities north and south of the 36th parallel north, respectively. In order to account
for the effects of seasonal ozone changes, our warm season was defined according to
which half of the year had the highest ozone levels on average during the four study
years in our study areas based on daily 8 h max data provided by EPA Air Data (https:
//www.epa.gov/outdoor-air-quality-data, accessed on 2 January 2022); this resulted in a
warm season from April–September and a cold season from October–March.

Finally, subsequent models were created in order to compare potential exposure bias
and misclassification in the study sample. The first model was designed to assess exposure
biases due to differences in spatial resolution. For the study’s largest-population city (Los
Angeles), 100 random coordinates were sampled to represent “home” locations, and their
1 km2 and ZIP Code resolution estimates were plotted against one another for each of
twenty dates randomly sampled from the study period. A second model was then created
to examine exposure misclassification due to the assumption of daily exposures based
solely on home address locations. Here, 100 additional city coordinates were randomly

https://www.epa.gov/outdoor-air-quality-data
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sampled as “work” locations and paired with the initial home locations. Because the intent
of this analysis is to create a simple example comparing the impacts of diurnal movement
vs. spatial resolution on exposure misclassification, the labels “work” and “home” are
only intended to differentiate the two locations and do not represent true commercial and
residential areas. Assuming each pair represented an individual who spends 50% of their
time at home and 50% of their time at work (again, this is an illustrative value not intended
to reflect true temporal patterns), the daily 1 km2 resolution estimates for each location was
calculated. These were then plotted against the 1 km2 resolution estimates of the home-only
model using the same randomly sampled dates from the first model. R-squared values
were calculated for all correlation plots, then averaged across both models and compared.

All analyses were run using R version 4.1.0 [35] and ArcMap version 10.8.1 [36].

3. Results

A summary of the CAPP communities is presented in Table 1, with areas ranging from
17 to 747 km2. Most communities had a monitor less than 1 km away, with a maximum
distance of 21 km to the nearest site (Shafter). After correcting community estimates for
model bias, the four-year PM2.5 daily averages were well represented by nearest monitor
measurements, with most community averages falling within 1 µg/m3 of their nearest
monitor. No obvious relationship between monitor distance or community size is apparent
from these summary statistics.

Table 1. PM2.5 daily averages (2015–2018) and summary information for CAPP communities. Com-
munity area concentrations were derived from satellite-based estimates at a 1 km2 horizontal spatial
resolution and were corrected for model error using nearest monitor data. Nearest monitor concen-
trations are based on regulatory ground monitoring stations. Community areas and distance to the
nearest monitor, based on the nearest community boundary, were calculated in ArcMAP; monitors
located within community boundaries have a distance of zero.

CAPP Community Name CommunityArea (km2) High-Resolution PM2.5
Daily Average (µg/m3)

Nearest Monitor PM2.5
Daily Average (µg/m3)

Distance to Nearest
Monitor (km)

East Los Angeles, Boyle
Heights, West Commerce 49 12.1 12.3 0.5

Eastern Coachella Valley 747 6.3 7.9 0.0
El Centro, Heber, Calexico 137 9.4 10.4 0.0

Portside Environmental
Justice Neighborhoods 21 9.3 9.4 0.0

Richmond—San Pablo 72 9.5 10.2 0.0
San Bernardino, Muscoy 45 10.7 11.1 0.2

Shafter 39 14.0 16.2 21.1
South Central Fresno 90 14.6 14.8 0.3

Southeast Los Angeles 36 12.2 12.4 3.9
South Sacramento—Florin 56 8.6 8.3 5.1

Stockton 42 13.1 13.5 0.0
West Oakland 17 11.3 11.5 0.0

Wilmington, Carson, West
Long Beach 186 12.1 12.3 0.0

Temporal differences between ground observations and modeled estimates are pre-
sented in Figure 3. Here, histograms comparing the frequency of daily PM2.5 concentrations
for modeled community averages versus ground monitors reveal a strong temporal cor-
relation between the two exposure assessment methods for all thirteen communities. A
slight underestimation of daily community values occurs in Southeast Los Angeles and
South Sacramento—Florin, whose distributions for monitored data have modes about
2 µg/m3 lower than the modes of modeled values. These two communities have moder-
ately distanced monitors (3.9 and 5.1 km away, respectively); however, no underestimation
is observed in Shafter, whose monitor is over 20 km away.
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Figure 3. Comparing the frequency of daily PM2.5 concentrations (µg/m3) from satellite-derived
community averages (shown in blue) and nearest ground monitors (shown in red) in each California
CAPP Community (2015–2018).

In contrast, maps of 4-year average daily PM2.5 reveal spatial gradients of varying
scales across all thirteen communities (Figure 4). Among communities with both strong
(the three Los Angeles communities, South Sacramento—Florin) and weak gradients (East
Coachella Valley, San Bernardino—Muscoy, South Central Fresno, West Oakland), we
found spatial differences in exposure within the community that their nearest ground
monitors cannot capture. Even though many of these ground measurements provide a fair
representation of their community’s average exposure, they mask variations, resulting in
an incomplete exposure profile. Other communities in our sample have monitors located
at the highest pollution sites, including Portside, Richmond, and Stockton. While these
measurements provide more complete exposure profiles, there remain additional polluted
areas within each of these communities whose location details are unavailable without
more highly resolved data. Additionally, these central site monitors provide little to no
information regarding the extent and boundaries of concentration gradients.

Table 2 summarizes the PM2.5 concentrations and variances for all ZIP Codes across the
study sample, with subsets by ZIP Code area. Here, geographic area is approximated using
the number of 1 km2 centroids within its boundaries, i.e., a ZIP Code with 10 estimates will
have an area of 10 km2. CV values represent relative within-ZIP Code variances that can be
compared and aggregated across the state. The CV is presented as a percentage ranging
from 0 to 100; a higher CV indicates greater variance among the 1 km2 resolution estimates
within a ZIP Code, while a lower CV indicates less variance within a ZIP Code. In this
sample, the year-round CV was 7%, indicating relatively little variance within ZIP-codes.
This trend was consistent across regions and seasons, with slightly higher CV values during
the cold season (CV = 9%) and the lowest in the warm season (CV = 6%). Looking at these
results by ZIP Code area, within-ZIP Code variation increases with increasing ZIP Code
size, reaching 14% year-round and statewide for ZIP Codes with areas larger than 50 km2.
Additionally, within-ZIP Code variations increase during the cold season, the highest being
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observed in the largest ZIP Codes in Southern California (CV = 21%). Generally, these
increases in CV are negligible in smaller ZIP Codes (less than 50 km2).
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Table 2. PM2.5 concentrations and coefficient of variation (CV) by region, season, and ZIP Code size
for 590 California ZIP Codes from 92 cities. The coefficient of variation (CV) represents the relative
difference in PM2.5 concentrations among grids within a ZIP Code, reported as a percent between
0–100. A larger CV indicates greater variance within a ZIP Code; a smaller CV indicates smaller
variance within a ZIP Code. Variances within ZIP Codes were relatively small across all regions and
seasons, increasing with larger ZIP Codes.

Region Approximate
Area (km2) # ZIP Codes

4-Year Annual ZIP Code Averages

Year-Round Cold Season Warm Season

Daily PM2.5
(µg/m3) CV (%) Daily PM2.5

(µg/m3) CV (%) Daily PM2.5
(µg/m3) CV (%)

Northern

1–10 69 9.9 5 11.4 5 8.4 5
11–20 69 10.3 5 11.9 6 8.7 5
21–50 57 10.2 7 11.6 9 8.8 6
51+ 56 9.5 11 10.2 15 8.9 8
All 247 10.0 7 11.3 8 8.7 6

Southern

1–10 95 12.6 4 12.9 4 12.2 3
11–20 107 11.9 6 12.5 7 11.4 5
21–50 78 11.1 8 11.2 10 11.0 6
51+ 63 9.0 16 8.3 21 9.6 11
All 343 11.4 8 11.5 10 11.2 6

Statewide

1–10 164 11.4 4 12.3 4 10.6 4
11–20 164 11.4 6 12.3 6 10.5 5
21–50 143 10.7 8 11.4 10 10.0 6
51+ 119 9.2 14 9.2 18 9.3 10
All 590 10.8 7 11.4 9 10.1 6



Atmosphere 2022, 13, 85 15 of 21

Figure 5 presents four-year monthly averages of RPDs between 1 km2 resolution estimates
and their corresponding ZIP Code average, grouped by ZIP Code area. This plot reveals little
difference between RPDs among the smallest ZIP Code groups (with areas up to 50 km2)
during the warm season, while RPD increases incrementally with ZIP Code area during the
cold season among all groups. For ZIP Codes larger than 50 km2, RPDs are greater than
smaller ZIP Codes year-round and average over 20% during the coldest months.
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resolution estimates of the home-only to the home-work model had an average R2 of 0.92 

Figure 5. Plot of relative percent differences (RPDs) between 1 km2 resolution PM2.5 estimates and
their corresponding ZIP Codes averages by ZIP Code size (590 California ZIP Codes from 92 cities,
2015–2018).

Finally, the Los Angeles correlation plots resulted in slightly better fits when comparing
differing spatial resolutions versus differences in home-only and home-work modeled
concentration estimates. For the twenty dates randomly selected between 2015–2018,
correlation plots comparing 1 km2 and ZIP Code-level resolutions for the home-only model
had an average R2 of 0.95 (ranging from 0.89–0.98), while those comparing 1 km2 resolution
estimates of the home-only to the home-work model had an average R2 of 0.92 (ranging
from 0.85–0.96). Figure 6 presents an example for one of these paired comparisons.
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Figure 6. Example run from the correlation analysis in Los Angeles, California for one randomly
selected date between 2015–2018 (N = 20 dates for the full analysis). This analysis compares exposure
bias due to spatial differences in spatial resolution (1 km2 vs. ZIP Code) and exposure misclassification
due to assumptions of daily exposures based solely on home address location. In the plot on the
left, PM2.5 (µg/m3) from 1 × 1 km2 resolutions vs. ZIP Code-level resolutions are compared for
100 “home” locations. The plot on the right compares PM2.5 for 100 “home” vs. 100 “work” locations
at a 1 × 1 km2 resolution. A 1:1 line is shown in red for each plot.
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4. Discussion

In this study, we compared ground monitors to an integrated dataset of high-resolution,
uniform PM2.5 estimates in their respective ability to capture critical spatiotemporal pat-
terns of air pollution in high-risk communities. We found that among California com-
munities most impacted by environmental injustice (namely, those with disproportionate
pollution exposures), regulatory ground monitors are generally successful in capturing
the day-to-day changes in PM2.5 but are less effective at capturing spatial variations in
neighborhood exposures. While the exposure profiles of these disadvantaged neighbor-
hoods become much clearer using satellite-derived pollution estimates, we found that
ultra-high-resolution data at resolutions of 1 km2 offer little additional information to the
average California community as compared to estimates made at the ZIP-code level. This
information is vital when designing effective strategies to reduce the emissions of PM2.5
and its precursor gases and the health impacts of air pollution among communities at the
highest risk of air pollution health impacts.

Gaps in ambient air quality monitoring data are not homogenous. Sullivan and
Krupnick (2018) found that 24.4 million people in the U.S. live in counties exceeding
PM2.5 NAAQS based on satellite assessments yet federally classified as in attainment [37].
For reference, U.S. national PM2.5 standards are set at 12 µg/m2 for long-term exposures
(based on the 3-year average of the annual mean concentration) and 35 µg/m2 for short-
term exposures (based on the 3-year average of the 24 h 98th percentile concentration)
(https://www.epa.gov/criteria-air-pollutants/naaqs-table, accessed on 2 January 2022).
Additionally, recent evidence suggests that the siting of new ground monitors may be
impacted by income- and race-based discrimination. Grainger and Schreiber (2019) found
that in the U.S., new ground monitors are less likely to be sited in low-income communities
and that counties in attainment of EPA standards (with little federal oversight) are less
likely to monitor high-pollution neighborhoods unless those areas are largely high-income
and white [38]. Fortunately, this is not the case in California state, as demonstrated by
Lee [39], who found that ground monitors are significantly more likely to be located
in communities with larger proportions of people of color, living in poverty, and with
lower education levels. Even so, we still observed variations of exposure among CAPP
communities that cannot be captured by ground networks alone. Thus, the uniform air
quality predictions derived from satellite instruments and modeling methods are vital not
only for the unbiased identification of the most high-risk communities for environmental
injustice but for improving the spatial resolution of those already identified.

High-resolution pollution estimates are key to characterizing exposures in dispropor-
tionately impacted communities, but it is important to understand the resolution needed to
detect meaningful differences in pollution exposures. This is an important consideration for
local jurisdictions who have limited resources for air quality monitoring and management.
In most cases, the variation between ZIP Codes far outweighed the variation within, with
the exception of ZIP Codes larger than 50 km2 in area. The latter had relative percent differ-
ences among their high-resolution predictions that were consistently higher year-round
(and over 10% higher during the winter) than those observed in all the smaller ZIP Code
groups. This suggests that regions with any demographic profile where a single ground
monitor represents areas larger than 50 km2 would also benefit from high-resolution air
quality data and/or expanded ground-level monitoring. Otherwise, for the average com-
munity there is little additional information to be gained at resolutions below 50 km2. This
is supported by observations of the six CAPP communities with areas larger than 50 km2,
with missing information presenting in at least two ways. The large areas of Wilmington,
Carson, West Long Beach; South Central Fresno; and South Sacramento–Florin resulted
in numerous community concentration variations not being captured by ground monitor
measurements. Other large CAPP communities (Eastern Coachella Valley; El Centro, Heber,
Calexico; and Richmond) had monitors whose measures successfully captured spatial dif-
ferences in exposure but could not provide information on their highly variable gradation
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patterns. In contrast, smaller CAPP communities had fewer changes in pollution at a spatial
level and thus had profiles better represented by the nearest monitor.

This idea of diminishing returns from very high-resolution spatial air quality data
is supported in the existing literature. In a comparable analysis, Lee [39] examined vari-
ations in exposure among 55 urban areas in California using 1 × 1 km2 resolution PM2.5
estimates derived from MODIS MAIAC AOD. Within-urban PM2.5 variability was between
31.4–35.6% of the between-urban variability throughout the state (although this percentage
was notably larger in more highly populated areas). A study by Dai et al. [36] in China,
whose methods served as a model for our work, supports the dominance of temporal
over spatial variance in PM2.5 urban exposure assessment. Their study compared between-
and within-urban variation of PM2.5 from monitoring stations in five Chinese megacities,
finding greater concentration differences between cities than within. This was very similar
to our observations from 92 California cities, wherein between-ZIP Code variance was
predominant. Furthermore, in all five cities in the Dai et al. study greater variations were
observed by season than by distance from city center (see Figure 10 of the study). Similarly,
our analysis found much more profound changes in PM2.5 concentrations throughout the
year than between 1 km2 and ZIP Code-level estimates on any given day. Specifically, in
Figure 5 we see how the differences in RPD between different ZIP Code areas become more
pronounced during the colder months; during the warmer months, the RPDs among the
three ZIP Code groups with areas below 50 km2 are barely distinguishable. Though at
different geospatial scales, both studies confirm that improvements in intra-urban spatial
resolutions for PM2.5 result in smaller gains in exposure information relative to greater
temporal-level data. This concept is further supported in a study by Huang et al. [40], which
used satellite-derived estimates coupled with road-level monitors to produce spatiotempo-
ral prediction models for PM2.5 concentrations in New York City at 100 m resolutions for
2015. Rankings of variable importance in their random forest models clearly indicate that
temporal predictors dominate over spatial ones (see Figure 3 of the study). While it is true
that the spatial variation of PM2.5 within the city is apparent (see Figure 5 of the study), the
lowest concentration category on these maps is approximately 7.0 µg/m3, implying that the
spatial model has a large intercept and further supporting the greater impact of temporal
variables in these models. Likewise, our analysis of 92 cities produced relatively narrow
concentration ranges day-to-day compared to monthly and seasonal variation. Thus, when
both spatial and temporal data are available for daily PM2.5, its temporal variation is likely
to overwhelm spatial variation.

The similarities of PM2.5 estimates at either 1 km2 and ZIP Code-level spatial resolu-
tions are fully consistent with this pollutant’s dispersion patterns. Commonly formed as a
secondary pollutant, PM2.5 emerges after its precursor gases have undergone a significant
number of chemical reactions throughout an urban area [41]. In contrast, primary pollu-
tants arising from traffic pollution, including nitrogen dioxide (NO2) and carbon monoxide
(CO), show highly heterogeneous distribution patterns within cities that typically align
with major roadways. These differences have implications for environmental justice, as
supported in a study by Rosofsky et al. (2018), where inequalities in exposure levels were
larger for NO2 than PM2.5 between different sociodemographic groups [42]. Additionally,
different PM fractions may themselves vary in dispersion patterns. Coarse PM mass tends
to deposit closer to its source due to gravitational settling, while ultrafine particles show
strong gradients near heavy traffic sources due to their short half-lives before coagulating
into larger particles [43,44]. Thus, had the present analysis been performed using a pollu-
tant with known heterogeneous intra-urban dispersion patterns, the variance within ZIP
Codes would likely have been greater than what was observed with PM2.5.

This assumption is supported by previous studies comparing the variations of intra-
urban resolutions between PM2.5 to other traffic-related air pollutants. Using a spatial
decomposition approach to breakdown major air pollutants by major source, a nationwide
analysis by Wang et al. [45] found that local PM2.5 is composed mainly from regional
sources, with little variability within cities and no clear spatial gradients at resolutions
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smaller than 1 km. In contrast, NO2 showed significant differences in mean concentrations
at intra-urban spatial levels, as it is derived primarily from neighborhood-level traffic
sources. This work suggests that the geographical level at which a pollutant is derived is
also the level where the greatest variability in its concentration is observed. Because of
the strong contribution from regional industrial emissions to PM2.5 concentrations, highly
refined intra-city spatial resolutions are unlikely to provide more information than larger
resolutions, a conclusion supported by our results in California urban areas. Additionally,
Wang et al. observed slight increases in the variability of PM2.5 for larger urban areas;
similarly, we found increases in within-ZIP Code variability for ZIP Codes with areas larger
than 50 km2.

Compared to limited spatial resolutions, greater information gaps may be due to
exposure misclassification from the lack of individual movement-based data for those
commuting to different areas within their city throughout the day. This was true in our
sub-analysis of Los Angeles, which found a higher correlation between 1 km2 and ZIP
Code-level resolutions than between models that did and did not assume a home-only
location. In other words, missing location data on individual movement patterns may
be a larger source of exposure misclassification than the bias created from lower spatial
resolutions. This relatively simplistic model is supported by a more complex analysis of
Los Angeles residents performed by Lu (2021), in which personal PM2.5 exposures (using
500 m2 gridded model estimates) were underestimated by 22% for all workers and up
to 61% for those with the longest commutes when mobility data were excluded from the
model [46]. By incorporating more highly resolved location-based data, a wealth of new
information can be obtained pertaining to environmental justice. In the case of Lu (2021),
mobility data narrowed exposure gaps between White vs. ethnic minority and low- vs.
high-income groups by including the higher-level exposures from work and other activities
outside the home [46]. Similarly, Park and Kwan (2020) found that daytime exposures were
more equal among racial groups given similar daytime urban pollution exposures, and that
home-only models may underestimate total daily exposures for White populations [47].
Clearly, we still have much to learn regarding environmental disparities in the context
of urban air quality. Without near-real time location information on a population, higher
spatial resolution data (i.e., less than or equal to 1 km2) cannot be used to assess local
exposures in any meaningful way. As part of their call for integrated exposure science
methods, authors of the 2017 ATS Workshop Report [11] suggest incorporating information
already available from other sources, such as social metadata on time-activity patterns,
which can significantly increase the spatiotemporal resolution of health studies. Shifting
the research focus of PM2.5 exposure assessment from spatial resolution improvements to
better activity-level estimates may ultimately provide richer information for calculating
urban air quality impacts on health.

Ultimately, our comparisons of intra-urban spatial resolutions in cities across Califor-
nia suggest that for the average community, little health-relevant information is lost by
aggregating 1 km2 resolution estimates to ZIP Code levels, except for ZIP Codes larger than
50 km2. However, we acknowledge that these diminishing returns may be largely due to the
current limitations in the modeling of remote sensing data. When looking solely at PM2.5
estimates from MAIAC MODIS AOD and similar products, there are decreasing marginal
improvements in their ability to define the spatial variation observed within an airshed
due to a limited number of surface reference monitors [12]. Future work could better assess
the full magnitude of this limitation by combining remote sensing products with additional
inputs, such as local traffic, weather, and emissions source data. Additionally, similar work
could compare or incorporate results from different exposure assessment methods, such as
low-cost sensors. Much like satellite-based data, low-cost sensors can help circumvent the
limited spatiotemporal resolution of federal ground monitors. This was demonstrated in
a study by Danek and Zareba (2021) in Krakow, Poland, where public data from a dense
low-cost sensor network successfully differentiated particulate matter (PM) produced by
solid fuel heating from transportation and other background sources, as well as identifying



Atmosphere 2022, 13, 85 19 of 21

the neighboring municipalities contributing most to increased PM diffusion [48]. In this
case, the increased spatiotemporal resolution offered by this low-cost network provided
highly useful information, which government networks could not capture.

New environmental justice communities will be added to CAPP as this program
expands in future years. With this comes the opportunity to improve the existing selection
process and its associated screening tools so that those areas which would benefit most
from higher resolution community monitoring can be correctly identified. At present, the
CalEnviroScreen mapping tool drives the CAPP community selection process, providing
scores for communities based on pollution burdens, health indices, and socioeconomic
data (see https://ww2.arb.ca.gov/capp-selection, accessed on 2 January 2022 and https:
//oehha.ca.gov/calenviroscreen, accessed on 2 January 2022). As future versions of this tool
incorporate more highly resolved pollution data and additional health and socioeconomic
variables, it may also be beneficial to consider new discoveries of the spatiotemporal
patterns of criteria pollutants. Using the findings of our study, this might include a priority
for 1) communities with sharp spatial gradients of air pollution levels and 2) areas larger
than 50 km2 with only one monitoring site.

5. Conclusions

Understanding how exposures change over time and space in high-risk communities
is a powerful tool in efforts to increase environmental justice. In California’s most vulner-
able neighborhoods, we found that ground monitoring networks can effectively capture
temporal trends in air quality but cannot readily identify variations in exposure within
a community that only has a single ground monitor. Evidence from our spatiotemporal
variation analysis in the state’s metropolitan centers suggests that increasingly refined
spatial resolution of air quality data may not offer additional health-relevant information
to the average community unless ground monitoring sites cover areas larger than 50 km2.
Finally, exposure misclassification due to diurnal movement patterns may be responsible
for a greater portion of information gaps than low resolutions. As we come to recognize
these diminishing returns, future exposure science can focus on areas in greater need of
development (i.e., activity patterns and other time-based factors) while increasing spatial
resolution in the communities who will benefit from it the most.
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