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Abstract: Identifying changes in ambient air pollution levels and establishing causation is a research
area of strategic importance to assess the effectiveness of air quality interventions. A major challenge
in pursuing these objectives is represented by the confounding effects of the meteorological conditions
which easily mask or emphasize changes in pollutants concentrations. In this study, a methodolog-
ical procedure to analyze changes in pollutants concentrations levels after accounting for changes
in meteorology over time was developed. The procedure integrated several statistical tools, such as
the change points detection and trend analysis that are applied to the pollutants concentrations mete-
orologically normalized using a machine learning model. Data of air pollutants and meteorological
parameters, collected over the period 2013–2019 in a rural area affected by anthropic emissive sources,
were used to test the procedure. The joint analysis of the obtained results with the available metadata
allowed providing plausible explanations of the observed air pollutants behavior. Consequently,
the procedure appears promising in elucidating those changes in the air pollutant levels not easily
identifiable in the original data, supplying valuable information to identify an atmospheric response
after an intervention or an unplanned event.

Keywords: air pollution; machine learning; meteorological normalization; trend analysis; change
points detection

1. Introduction

Air pollution is one of the biggest environmental threats to human health, alongside
climate change [1]. To safeguard people’s health, the design of effective and well-targeted
strategies aimed at preventing or reducing health damages associated with the exposure to
the atmospheric pollution [2], as well as the assessment of the effectiveness of air quality
interventions [3], are required. Both these issues can profit by the development of tools
that allow understanding the changes and behaviors of air pollutants over time and es-
tablishing whether a change can be attributed to a known cause [4]. However, assessing
the variability of ambient air pollution or establishing causation can be highly challenging
due, for example, to the known effects of meteorological conditions that strongly affect air
pollutants levels over multiple scales in time and space [5–7]. The process of accounting
for changes in meteorology over time in an air quality time series, which is referred to
as the “meteorological normalization” process, can be carried out through several sta-
tistical techniques [8,9], ranging from models based on linear regression [10] to neural
networks [11]. A new approach based on machine learning (ML) random forest (RF) pre-
dictive algorithms, having better performances than traditional statistical methods [12],
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has recently emerged [13–15] and open-source implementation of these algorithms in the R
language is also available [16]. Once the confounding weather effects have been removed,
more robust statistical evaluations can be carried out to understand the changes and behav-
iors in the resulting normalized time series because there is more certainty that the observed
trends are due to changes in emissions rather than changes in meteorology. This is the case,
for example, of the detection of change points (i.e., unexpected structural changes in time
series data properties, such as the mean or variance [17]), and of the trend patterns analysis,
(i.e., concentration changes over a period of time [18]). The change points detection and
trend investigation in time series are of interest in many sectors ranging from genetic to
finance [19]. In the environmental field they have a widespread applicability due to their sig-
nificant implications for pollution control and for environmental decision-making [20–23].
In the context of the air pollution studies, change points can be representative of station
relocation, changes of instrumentation and/or changes concerning the sources around
the measurement station. The trend analysis instead examines if statistically significant
changes occur in pollutant concentrations over time.

The aim of the work is to develop a methodological procedure to assess and explain
the changes in pollutant concentrations levels once the confounding effects of weather have
been accounted for. To this end, we developed a three-stage methodology. First, the ef-
fects of local weather in the air quality time series were disentangled using a technique of
meteorological-normalization based on an RF-ML algorithm. Secondly, the tandem use of
both the change points detection and trend analysis was adopted to investigate the nor-
malized signal. Finally, a joint examination of the results obtained by the first two stages
and the available metadata on the air pollution sources was carried out. The developed
methodology was applied on a dataset comprising daily averaged data of air pollutants
concentrations and meteorological parameters as well as temporal variables. Data were
collected, over the 2013–2019 period, in a rural area of Southern Italy characterized by
the proximity to populated areas of hydrocarbons extraction activities and pre-treatment.
The current scientific evidence identifies the adverse impact of upstream oil extraction to air
quality, although a low level of measured pollutant concentrations is also highlighted [24].
Knowledge gaps still exist regarding the impact on human health of the exposure to contam-
inants emitted by onshore hydrocarbon exploration and exploitation activities, especially
regarding chronic exposures to low-levels of contaminants [25,26].

The procedure illustrated in the present work reveals promising in elucidating the
changes in the air pollutant levels that are not easily identifiable in the original data and
in identifying an atmospheric response after an intervention or an unplanned event [3].
Finally, it is expected that the proposed procedure can also be worthwhile applied to assess
the atmospheric response to social and anthropic activities lockdown established in Italy
in the first part of 2020 to fight the spreading of the coronavirus disease (COVID-19) [27,28].

2. Materials and Methods
2.1. Study Area

The area investigated in the present study is the Agri Valley, located in the South-West
part of the Basilicata Region (Southern Italy), at approximately 600 m above sea level
(Figure 1). The valley extends for approximately 1400 km2 in a NW-SE direction, bordered,
on both sides, by the Apennines Mountains and is partially included in a National Park
(Parco Nazionale dell’Appennino Lucano-Val d’Agri-Lagonegrese); it hosts a population of
approximately 50,000 inhabitants distributed in several small hilltop towns surrounding
the valley. The strong peculiarity and criticality of this area is determined starting from
the 2000s, when the predominantly rural typology of the area, characterized by the presence
of woods, agricultural and breeding zones, has been altered by the start of hydrocarbons
extraction activities near inhabited centers. The valley, indeed, houses the largest on-shore
western European reservoir of crude oil and gas and an oil pre-treatment plant (identified
as Centro Olio Val d’Agri—hereafter COVA) in a populated area. More specifically, 24 oil
wells are currently operating producing approximately 63% of the entire national oil pro-
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duction [29], making the COVA plant of strategic importance for the country. The plant
produces conveyed and diffuse (included fugitive) emissions of gases and particulate,
which can affect the air quality and potentially pose health risks for the population living
in the area. Moreover, flaring and venting of petroleum-associated gas is another significant
source of greenhouse gas emissions and airborne contaminants [30]. It is also worth men-
tioning that the industrial processes taking place in the plant involve dangerous substances
for human health and the environment (toxics and flammables), exposing the plant to
the risk of a major accident [31]. A moderate volume of light and heavy vehicular traffic
along the main national road crossing the valley (SS598), together with domestic heating
and farming activities, represent other contributors to the local atmospheric pollution.
Finally, the geographical position in the center of the Mediterranean makes the area also
subject to the transport of mineral dust from the Sahara desert [32].

Figure 1. Map of the study area and wind rose based on the hourly data at the VZI station over
the study period (2013–2019).

The air quality control network operating in the area, managed by the Environmental
Protection Agency of the Basilicata Region (ARPAB), consists of 5 monitoring stations.
According to the requirements of the EU Air Quality Directive 2008/50/EC [33], ARPAB
provides continuous concentration measurements of regulated pollutants (such as, among
others, nitrogen oxides (NOX), sulfur dioxides (SO2), carbon monoxide (CO)), and of
several pollutants specifically related to oil/gas extraction activities (such as hydrogen
sulfide (H2S)). All monitoring stations are also equipped with instruments providing
standard meteorological variables, such as temperature (T), atmospheric pressure (p),
relative humidity (H), solar radiation (SR), wind direction (wd), and wind speed (ws).
More details about the methods and the instrumentation used for the measurements can
be found elsewhere [34], [35]. After the application of data quality procedures on the raw
data, based on the data quality control process described in [36], ARPAB makes available
to the public the hourly concentrations values of all measured parameters. For the purpose
of this work data were obtained from the monitoring station closest to the COVA plant,
named Viggiano (VZI, 40◦18′50′ ′ N, 15◦54′16′ ′ E, 603 m above sea level), categorized as
an industrial station in a rural area. It is located at approximately 350 m from the industrial
site and about 1 km from the national road SS598.
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2.2. Observational Dataset

Four gaseous pollutants, which can be considered as proxies of the anthropic sources
existing in the area, namely NOx, SO2, CO and H2S, were selected for the analysis.
NOX, SO2 and CO represent the main component of the conveyed emission produced
by the COVA plant [37]. For these pollutants, a strong evidence of respiratory and car-
diovascular health effects is documented [38]. H2S is a toxic gas specifically related to
oil/gas extraction activities carried out in the examined area and associated to diffuse
(included fugitive) emissions [39]. Human exposure to the toxic effects of H2S is characteris-
tically dose related and most notably involves the nervous, cardiovascular, and respiratory
systems [40].

Hourly data of NOX, SO2, CO and H2S, together with several meteorological variables
(respectively: T, p, H, wd and ws), were downloaded from the official website of ARPAB [36]
and combined to form the whole dataset used for the RF models development consisting
of more than 59,000 h of observations covering the 2013–2019 period. The daily average of
data was used as an input to the model; this time resolution balances the need to preserve
the pattern of data at a temporal scale consistent with the examined phenomena and
the need to reduce the noisy data and the computational resource demand. Subsequently,
a set of other time-based variables was added to create the final dataset. In particular,
the day of the week (‘weekday’), the Julian day (number of days since 1 January, ‘jday’)
and the date Unix of the observations (number of seconds since 1 January 1970, ‘trend’)
were included in the model development. They represent the effects upon concentrations
of air pollutants of the weekday/weekend day, seasonal cycles, and long-term variability,
respectively. The day of the week, for example, explains emissions with a weekly cycle such
as traffic sources, while jday will account for seasonal effects not accounted for by the other
meteorological variables and any seasonal variation in emissions source strength such as
domestic heating. Trend instead is important to know long-term changes in the source
strength of emissions.

Overall, a dataset consisting of 13 variables (date, NOx, SO2, CO, H2S, T, p, H, wd,
ws, weekday, jday and trend) was set up. This timeframe was defined selecting the most
complete time series and the most updated available data. The time series of all predictors
considered respected the required 75% proportion of valid data, as illustrated in Figure 2,
summarizing main statistical aspects of analyzed data, among which the percentage of
the data captured for every year. An analogous figure related to the meteorological param-
eters is presented in the Supplementary Materials as Figure S1.
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Figure 2. Left panel: the time series data of hourly NOx, SO2, CO, H2S values (yellow lines,) and
the availability and non-availability of the data (respectively the blue and red colors on the rectangular
bar at the bottom of the plots). The minimum, maximum, number, and percent of missing data, mean,
median and the 95th percentile for each variable plotted (in black). The percentage of the data captured
for every year (in green) on the upper part of each year data plot. Right panel: the distribution of
each species using a histogram plot over the selected periods.

2.3. Methodological Approach

The methodological approach to assess changes in pollutant concentrations levels,
adopted in the present study, consists of 3 main steps. First, for each pollutant an RF
model was built, validated, and then used to estimate the meteorologically normalized
concentrations. Second, the estimation of the main change points time location in the mete-
orologically normalized signal and the trend analysis were performed. Third, combining
the results of the previous stages with the available metadata, some hypothesis on the po-
tential link between the step-changes in the meteorologically normalized time series and
specific events were formulated.

2.3.1. RF Model Development and Meteorological Normalization Procedure

Random forest is an ML algorithm that consists of a large number of individual
decision trees operating as an ensemble. Each decision tree is built on a randomly sampled
subset of data and predictors and the final output of the ensemble is computed by averaging
the outputs of each single tree. Deeper theoretical insight can be found in [41]. The choice
of the RF algorithm in performing the meteorological normalization is due to its high
accuracy in predictions, low over-fitting, reduced tuning requirements, ability to capture
complex interactions and to handle highly nonlinear data [42]. In the development of
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the RF model, the pollutant included in the dataset represented the dependent variable
(target) while meteorological and time-dependent features represented the explanatory
variables (predictors). The 80% of the whole observed dataset randomly sampled (training
dataset) was used to build up the prediction model. The remaining 20% (testing dataset)
was used to test the prediction accuracy of the model. The performances of the RF model
were assessed by comparing the observed pollutants concentrations values with those
predicted by the selected model by means of a set of statistical indicators [43] evaluated
on the testing dataset (cf. S1 e Table S1 in Supplementary Materials for further details).
The tuning parameters of the RF model were the number of predictors randomly sampled
to determine each split (mtry) and the minimum number of observations in a terminal
node (min node size). The number of trees (n trees) was set at 1000. The best values of
the parameters were selected minimizing the mean square error (MSE) of the difference
between the predicted values and the observed ones. Moreover, the interpretability of
the model was analyzed to ensure its reliability through the variable importance tool.
The RF models have an inherent procedure producing the relative importance of predictors
that is, the measure of the impact of each feature on the accuracy of the model. This allows
identifying the most important predictors, showing their impacts on the observations, and
justifying their inclusion in the model.

The meteorological normalization was carried out according to the work described
in [16], as subsequently implemented in [44,45]. The basic idea mainly consists in develop-
ing an RF model to predict pollutant concentrations as a function of meteorological and
other time variables. If the model explains an adequate amount of variance in the pre-
dicted air quality variable, it can be used to predict pollutant concentrations as a function
of randomly sampled meteorological variables. The RF predictive algorithm is repeated
several times (300) and the meteorologically normalized concentrations are obtained by
averaging these predictions. The advantage of this procedure is that the normalization
process involves only the weather conditions but not the seasonal or weekly variations, so
that the resulting meteorologically normalized series is more closely related to emissions
changes rather than changes due to meteorological effects.

2.3.2. Structural Change and Trend Analysis

After the meteorological normalization, a joint examination of both the change points
and trend in the normalized signal was adopted. Indeed, it is worth noting that analyzing
only the change points and overlooking the trend or vice versa could lead to misleading
results: for example, the overall trend could mask an abrupt change in a time series of
pollutant concentrations, while the trend computed between different change points could
mask the overall trend [46].

In the context of the present study, the Wild Binary Segmentation (wbs) change
points detection method [47] was adopted. This choice is motivated by the wbs’s ability
to determine the number and potential locations of change points in the normalized
concentrations time series without prior assumptions and without leading to a significant
increase in computational complexity [48]. The wbs method basically uses the idea of
computing cumulative sum (CUSUM) from randomly drawn intervals; the largest CUSUM
is considered to be the first change points candidate to test against the stopping criteria,
then this process is repeated for all the samples. More details of the theoretical aspects
concerning these methods can be found in [47].

The goal of determining if there is a trend over time in the normalized concentrations
was achieved using the Theil-Sen regression technique, which calculates the slopes of all
possible pairs of pollutant concentrations and selects the median value [49]. The Theil-Sen
method was chosen because it can be computed efficiently, it is insensitive to outliers, can
be significantly more accurate than the simple linear regression method for non-normal
distributed data and heteroscedasticity. In our calculations, the trends were based on
monthly averages, and they were adjusted for seasonal variations, as these can have
a significant effect on monthly data.
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2.3.3. Metadata Analysis

Finally, in order to formulate some hypothesis on the potential link between the step-
changes in the normalized time series and specific events, the available and appropriate
metadata concerning plant operation, the timing of significant events related to the plant
activities and the traffic flows in the Agri Valley were acquired. The former 2 were
downloaded from the official website of the Italian company that manages the plant,
i.e., Ente Nazionale Idrocarburi (ENI) [50], where a list of the news concerning their activity
in the Basilicata Region can be consulted starting from 2016. From this list, it is possible
to become aware of determinate events, such as the closing/restarting of the COVA plant,
maintenance activities and gas flaring occurrences. Instead, the information on the traffic
flows of the national road SS598, that is the average hourly trend and the average number
of heavy and light vehicles per day, related to the years 2018–2021, were directly provided
by ANAS SpA, the national company managing the Italian road and motorways network.
The ANAS SpA also makes available on its official website the traffic data concerning
the average daily traffic per year for heavy and light vehicles, respectively [51].

All data loading, processing, analysis, statistical modelling, and visualization were
performed in the R version 4.1.0 (R Foundation for Statistical Computing, Vienna, Austria).
It mainly used the Openair package for air quality and trend analysis [52], the rmweather
package [53] for the meteorological normalisation, with the underlying ranger package [54]
and tuneRanger package [55] for the development and tuning of the RF model, and the wbs
package [56] for the change points analysis.

3. Results and Discussion
3.1. Preliminary Statistical Analysis

The descriptive statistics per year and pollutants are reported in Table 1.

Table 1. Statistical summary of hourly concentrations of NOX, SO2, CO, H2S registered at the VZI
monitoring station from January 2013 to December 2019. Mean concentration and, in rounded
brackets, the min. and maximum values.

Year NOX µg/m3 SO2 µg/m3 CO mg/m3 H2S µg/m3

2013 14.98
(0.00–118.29)

5.63
(0.50–350.90)

0.338
(0.00–1.10)

2.18
(0.28–241.61)

2014 20.34
(0.75–143.07)

3.28
(0.00–195.20)

0.370
(0.00–1.90)

3.58
(0.69–43.85)

2015 20.15
(0.00–186.07)

7.00
(0.00–247.10)

0.332
(0.00–1.30)

2.86
(0.28–219.27)

2016 16.84
(0.00–133.44)

6.11
(0.03–175.80)

0.424
(0.05–1.64)

2.96
(0.30–272.35)

2017 16.35
(2.02–117.05)

6.08
(0.38–378.92)

0.393
(0.00–2.11)

3.08
(0.54–75.61)

2018 13.03
(0.19–122.50)

6.10
(0.09–281.03)

0.381
(0.00–1.44)

3.72
(0.08–62.56)

2019 14.66
(0.26–105.57)

3.60
(0.11–277.95)

0.377
(0.00–2.23)

3.01
(0.29–76.19)

All years 16.63
(0.00–186.06)

5.41
(0.00–378.92)

0.374
(0.00–2.23)

3.06
(0.08–272.35)

For regulated pollutants there is a general compliance with the limits set by the existing
national [57] and European legislation [33]. It is worth noting that, for the sole Agri Valley,
a regional law [58] identifies limit values more stringent than those in force at the national
level for SO2 and H2S, since they are considered markers of the hydrocarbon emissive
processes occurring in the area. This law sets at 280 µg/m3 and 100 µg/m3 the hourly
and daily limit values for the protection of human health for SO2, and 32 µg/m3 the daily
limit for H2S. The hourly limit value for SO2 rarely exceeded these limits and each time
in different years. Overall, except for sporadic exceptions mainly related to ozone and
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particulate matter, the regulated pollutants showed a general compliance with the current
legal limit values [59].

As far as the climate is concerned, the cold and rainy winters as well as cool summers
with frequent rainfall [31], typically registered in the area, define an area at sub-continental
climate. Based on the analysis of the wind data, the mean value of the ws was 1.8 ms−1,
with the higher values generally measured during daytime. The wind rose on the map
in Figure 1 showed a prevailing wind direction from the SW to NW sector, over the period
ranging between January 2013 and December 2019. During the study period, the mean
temperature was 13.78 ◦C, the mean relative humidity was 71.1%, while the pressure was
rather static.

3.2. RF Models Development and Performances

The RF model, trained with the selection of the tuning parameters listed in Table 2,
took the form shown by Equation (1) for each examined pollutant:

pollutant ∼ r f (T, H, ws, wd, p, jday, weekday, trend) (1)

where rf is the function implementing the RF algorithm in the R software environment.

Table 2. RF model tuning parameters for each of the selected pollutants.

Pollutant Mtry Min Nod Size N Trees

NOx 4 2 1000
SO2 4 6 1000
CO 7 2 1000
H2s 5 4 1000

The predictive performances and behavior of the RF models were evaluated through
the statistical indicators listed in Supplementary Materials Table S1, whose resulting values
were summarized in Table 3.

Table 3. Statistical indicators of RF model performances for the testing dataset. Legend: R2 =
coefficient of determination, MBE = mean bias error, MAE = mean absolute error, RMSE = root mean
square error and IoA = index of agreement.

Pollutant R2 MBE
[µg/m3]

MAE
[µg/m3]

RMSE
[µg/m3] IoA

NOX 0.723 0.380 3.700 5.406 0.723
SO2 0.458 0.177 1.519 3.201 0.726
CO 0.704 0.004 0.057 0.077 0.757
H2S 0.683 0.069 0.366 0.700 0.806

The error metrics imply that the predictions of the RF model were acceptable for
all pollutants; in particular, the low MBE values indicated that there are no significant
over/under estimations in the predictions. The R2 values showed that the RF models
explain about 70% of the total NOx, CO and H2S variability. The low performance for
SO2 (R2 values of 0.46) instead, indicated that meteorology and time variables may not be
sufficient in explaining the most part of the variability in the observed SO2 data, and that
there might be other variables significantly affecting SO2 concentrations.

The relative importance of the selected predictors for each of the pollutants examined
is presented in Figure 3. The overall contribution of the top four predictors explained over
85% of the variance for NOX and SO2, and over 90% of the variance for CO and H2S. For
SO2, CO and H2S, the temporal variables, i.e., trend and jday, were the most important
predictors, indicating in the trend and seasonality the strongest driving features [60]. Since
the trend captures long-term changes in the source of emissions while jday represents
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emissions that varies seasonally, their importance suggested that the SO2, CO and H2S
variability is dominated by both the COVA plant emissions and local emissions varying
over the course of the year.

Figure 3. Relative importance of predictors for (a) NOx, (b) SO2, (c) CO and (d) H2S.

The most important contribution to the NOX varbiability, instead, was due to the wind
direction, closely followed by trend, and to a lesser extent by ws and jday. Therefore, it
is worth looking more closely to the dependence of NOX from wd. The bivariate polar
plot (Figure 4a), showing how measured NOX hourly concentrations vary by wind speed
and wind direction, depicted a strong directionality of NOX concentrations associated to
winds from WSW, that is in the direction of both several of the COVA plant conveyed
emissive sources and the SS598 national road. The hypothesis of a traffic contribution to
NOX was supported by the analysis of the daily and weekly NOX pattern (Figure 4b,c).
The former tends to be significantly bimodal (higher concentrations in the early morning
and late afternoon coinciding with the commuting hour). The latter shows a clear decrease
of NOX concentrations on Saturday and Sunday when traffic is usually lower. Both these
patterns were also confirmed by the analysis of the metadata concerning the traffic flows of
cars and heavy vehicles for the national road SS598 provided by ANAS (Figure 4d).
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Figure 4. Polar plot (a), daily (b) and weekly (c) profiles of hourly NOX concentrations over the 2013–
2019 period. Also shown on the plots (b,c) is the 95% confidence interval in the mean. (d) Average
hourly trend of traffic flows of the national road SS598 in 2019.

Moreover, although for SO2 and H2S, wd is of much less relative importance, the polar
plots in Figure S2a,b of the Supplementary Materials showed approximately the same
directionality from the W, S–W sector, confirming the common sources origin of these
pollutants. More ambiguous, instead, is the contribution of wd to the CO levels (Figure
S2c in the Supplementary Materials). This can be due to the presence of several different
sources of CO in the area other than the COVA plant and traffic, such as combustion
processes related to agricultural activities, as suggested in [35].

Overall, the above showed that, although the data-driven approach here adopted do
not consider the physical and chemical processes underlying the air pollution variability,
the model results were plausible and indirectly confirmed by others’ independent evidence.

3.3. Meteorological Normalization, Change Points and Trend Analysis

Daily concentrations of the observed and meteorologically normalized data for NOX,
SO2, CO and H2S are shown in Figures 5 and 6 (respectively red dots and green line).
The blue solid line represents instead the line joining the main 14 change points detected
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using the wbs algorithm and summarized in Table S2 of the Supplementary Materials for
each pollutant.

Figure 5. (a,c): daily averages of observed (red dots) and meteorologically normalized (green lines)
NOx and SO2 concentrations. (b,d) the wbs change points (blue lines) and the periods of COVA
plant shutdowns (grey areas).
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Figure 6. (a,c) daily averages of observed (red dots) and meteorologically normalized (green lines)
CO and H2S concentrations. (b,d) the wbs change points (blue lines) and the periods of COVA plant
shutdowns (grey areas).

As result of the meteorological normalization process, clear differences can be seen be-
tween the observed and normalized concentrations with the latter being a much smoother
data series, as illustrated in Figure 5a,c for NOX and SO2 and Figure 6a,c for CO and H2S.
The normalized pollutants concentrations time series were less noisy compared to the ob-
served values so allowing revealing the influence of changes in emissions to the pollution
level measured at the examined site. Applying the wbs method on the normalized signal,
number and location of change points were identified to highlight the main structural
changes in the time series of pollutants concentrations. Once these structural changes
were identified, it was possible to try to link them to known events through the available
metadata. In this regard, it is worth dwelling on two specific events, corresponding to
the periods represented by the grey areas in Figure 5b,d for NOX and SO2 and Figure 6b,d
for CO and H2S, for which public metadata are available. Indeed, by means of the infor-
mation obtainable through the ENI web site [45], it is known that the first period, from
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March to August 2016, corresponds to a COVA plant shutdown in the context of a judicial
investigation on the disposal of liquid waste produced by the exploration and pre-treatment
of hydrocarbon activities.

The second one, from April to July 2017, consists of another plant shutdown due to
a major accident caused by the release of hydrocarbons from a storage unit. As far as
the SO2 and CO signals are concerned, a decrease in concentrations corresponding to these
periods can be observed in Figures 5d and 6b. With respect to the NOX pollutant, a strong
correspondence was found between the normalized concentrations trend and the event
which occurred at the COVA plant in 2016, Figure 5b. The lack of correspondence with
the event registered in 2017 may be due to other sources contributing to the observed NOX
level. As shown in Figure 6d, H2S, instead, seems to be less affected by these closure periods,
as expected, since this pollutant is representative of the diffuse emissions of the COVA
plant, which plausibly persist even during periods of plant shutdown.

The examples above illustrated seem to confirm the goodness of the developed ap-
proach in identifying and explaining an atmospheric response in the observed data after
an unplanned event or a change in emission sources. However, further and independent
verification to confirm the various hypotheses are always desirable if not necessary, given
the extreme complexity of the phenomena considered.

Finally, Table 4 summarizes the results of the Theil-Sen regression analysis. Both
emissions and meteorological changes contribute to the observed trends of pollutant con-
centrations, while in the normalized trend the influence of meteorological changes is
disentangled. For NOX, a statistically significant trend was found for both normalized and
observed data (p < 0.001), while less statistically significant trends were found for H2S and
CO (p < 0.05) and SO2 (p < 0.1). Overall, the comparison between the observed and normal-
ized slopes for each pollutant showed a generally scarce influence of the weather conditions
on the trend of the pollutants. On the other hand, the low relevance of the weather condi-
tions is consistent with the information deduced from the results illustrated above, which
indicate in the local anthropic NOX sources the main drivers of NOX variability.

Table 4. Theil-Sen slope and 95% confidence intervals of the observed and meteorologically nor-
malized pollutants concentrations. The symbols shown next to the square bracket relate to how
statistically significant the trend estimate is: p < 0.001 = ***, p < 0.05 = * and p < 0.1 = +.

Pollutant Theil-Sen Slope
(µg m−3 Year−1)

95% Confidence
Interval

NOX observed −0.66 [−1.13, −0.27] ***
normalized −0.65 [−1.07, −0.39] ***

SO2 observed −0.03 [−0.32, 0.26]
normalized −0.19 [−0.39, 0.02]+

CO observed 0.01 [0.00, 0.02] *
normalized 0.01 [0.00, 0.01] *

H2S observed 0.12 [0.02, 0.20] *
normalized 0.11 [0.04, 0.17] *

Given the statistically significant trend observed for the NOx signal, a deeper joined
analysis of the Theil-Sen trend with the change points detection was carried out. To this
end, the meteorological normalized NOX data were divided into two segments, based on
the main change point as detected by the wbs method. Both segments were then analyzed
for the presence of trend and compared with the trend predicted when the whole dataset is
considered. According to the results shown in Figure 7a, a downward trend is observed
when the whole dataset is analyzed. The other way around, when we divide the dataset
into two segments and test them before and after the main change point, an increasing trend
can be observed in the first part and no trend in the second part of the data (Figure 7b,c,
respectively). In other words, assessing the overall trend on the whole dataset without
taking into account the main change point, the sharp change in the data in March of
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2016 is obscured. The same trend analysis carried out on the observed data gave similar
results. However, it is worth mentioning that analyzing a signal from which the weather
effect has been removed allows better highlighting of the other causes that determine
the changes in the signal. This example shows how the proposed approach could help
in the right attribution of changes in pollutant levels to specific events, and consequently
in the assessment of the effectiveness of the air quality interventions.

Figure 7. Trend analysis for (a) the NOX complete normalized series, (b) before and (c) after the main
change point. Plots show deseasonalized monthly mean concentrations of NOX. Solid red line shows
trend estimate and dashed red shows 95% confidence intervals.
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4. Conclusions

In the present paper a procedure combining change points, trend analysis and meta-
data has been illustrated to assess and explain the changes in pollutant concentrations
levels once the confounding effects of weather have been accounted for with ML-RF models.
The practical application of the procedure allowed linking the step-changes in the NOx
pollutant concentrations to a specific event related to the existing anthropic sources.

However, since the meteorological normalization process adopted in the developed
procedure is based on data-driven models, caution is required when generalizing the results
obtained to different conditions and/or sites. Moreover, strong interaction with the local
environmental and health authorities is desirable to widen the knowledge on the features
and the criticalities of the examined area.

Overall, our results show that the adopted procedure can improve the assessment of
observed air pollutants data and help in revealing shifts in pollutants levels that cannot be
clearly seen in the original data, so providing significant information for the implementation
of effective strategies to prevent the health impact of air pollution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13010064/s1, Table S1 summarizes name and equation
of the statistical indicators; Figure S1 summarizes main statistical aspects of the meteorological
parameters; Figure S2 illustrates the polar plots for SO2, CO and H2S; Table S2 lists the main 14
change points detected for each examined pollutant.
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