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Abstract: Constructive interference of lightning-generated signals in the extremely low frequency
(ELF) below 100 Hz is the source of a global electromagnetic phenomenon in the Earth’s atmosphere
known as Schumann Resonances (SR). SR are excited at frequencies of 7.8, 14, 20, 26, . . . Hz, and
their diurnal and seasonal intensity variations are largely dependent on changes in the location and
magnitude of the major lightning centres in Southeast Asia, Africa, and South America. In the last
five decades, extensive research has focused on reconstructing the spatial and temporal evolution in
global lighting activity using SR measurements, and more recently on analysing the links to climate
change, transient luminous events (TLE), and biological systems. In this study, a quasi-electrostatic
antenna, primarily designed as a thunderstorm warning system, is for the first time applied to
measure background variability in the SR band at an urban site in Southwest England. Data collected
continuously from June 2015 for a 5-year period are suitably filtered and analysed showing that
SR is the dominant contribution to the fair-weather displacement current measured by the sensor
in the band 10–45 Hz. Diurnal and seasonal signal amplitude variations have been found to be
consistent with previous studies and show the African-European lightning centre to prevail due to
the shorter source-observer distance. Also, it is shown that long-term global changes in the ocean
and land temperature, and the subsequent effect on the major lightning hotspots, may be responsible
for the inter-annual variability of SR intensity, indicating that the largest increase occurred during the
2015–2016 super El-Niño episode.

Keywords: Schumann resonance; lightning; atmospheric electricity; climate change; El-Niño; BTD-300

1. Introduction

Global lightning activity dominates the natural electromagnetic (EM) environment in
the lowest part of the Extremely Low Frequency (ELF) band. Schumann [1] first predicted
the existence of EM oscillations in the Earth-ionosphere waveguide at peak frequencies
close to 7.8, 14, 20, 26, 33, 39 Hz in the first six modes. Such resonant waves are thus
generally referred to as the Schumann resonances (SR) and up to 13 modes have been later
reported by Füllekrug [2]. SR are excited by EM radiation below 100 Hz emitted by lightning
return strokes and specifically those associated positive strokes with substantial continuing
current and charge moment change [3,4]. At these frequencies, propagating waves undergo
very little attenuation (~0.5 dB/Mm) and can bounce in the EM cavity several times before
dissipating in the background noise [5]. The SR peaks occur when the wavelength of ELF
waves is comparable with the Earth’s circumference (~40,000 km), because of constructive
interference of direct and antipodal waves. An approximate equation of the SR peak
frequency for the n-th mode is given by:

fn =
c

2πR

√
n(n + 1), (1)
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where n = 1, 2, 3, 4, . . . and R is the Earth’s mean radius. The resultant ELF signals can
be reliably monitored at a single site [6,7] and for any location on the Earth’s surface, the
relative intensity of the electric and magnetic fields depend uniquely on the source intensity
and source-observer distance (SOD) as well as the properties of the cavity through which
the EM waves propagate [8].

The first successful attempt to confirm the existence of SR was described by Balser and
Wagner [9]. In the following decades, extensive research has established the correlation
between lightning activity and the diurnal variation in the spectral properties of each SR
mode, namely peak frequency, peak amplitude, and quality factor (inversely proportional
to the line half-width) [10–13]. The time variations of the main parameters result from a
complex interplay of changes (temporal and spatial) of lightning chimney intensities and to
a lesser extent from changes of the lower ionosphere state (above all, from its conductivity
and density profile, which is also influenced by solar activity and day-night cycle) [14,15].
Most lightning activity occurs around the equatorial regions, created by large convective
clouds formed in the local afternoon, with a mean delay of about 3 h with respect to the
solar zenith [16]. Diurnal variations in the SR intensity thereby exhibit three main peaks
intensity at about 09, 15, and 20 UT (Figure 1) correlated with the equatorial lightning
centres in Southeast Asia [60◦ E to 150◦ E], Africa [30◦ W to 60◦ E] and South America
[120◦ W to 30◦ E], respectively.
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Figure 1. Comparison of the diurnal UT variations of thunderstorm surface area worldwide [16]
and the UT variation of electric potential gradient over the ocean (Carnegie curve), calculated
as percentage of the mean using annual values reported in Harrison [17]. The cumulative relative
intensity of the first three SR modes of the Ez field component observed at Nagycenk (NCK), Hungary,
for the period 1994–1998, follows a similar general diurnal trend and exhibits three maxima which
correspond to the three major sources of tropical thunderstorms. The peaks in the SR amplitude are
better resolved in autumn and winter, when the influence from local thunderstorm activity at the
observatory is lower [14].

In the longer term, additional sources of variability include the north-south seasonal
shift of global lightning, the SR response to lower ionosphere height changes linked to the
solar activity, and redistribution of global thunderstorms on the ENSO time scale [18–20].
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SR are currently monitored at various recording stations around the world, including
Antarctica [21,22]. A typical observatory normally consists of two horizontal induction coil
magnetometers for detecting the horizontal north-south and east-west magnetic fields (Hns
and Hew), and one electric field antenna for observing the vertical electric field component
(Ez), in the ideal case in which both the ionosphere and the Earth are considered perfectly
conducting spherical boundaries. Under this assumption, the electric field is always radial
in the spherical cavity, given the boundary condition that the tangential component of
E at the perfectly conducting boundaries is zero. To resolve the SR signal, the detectors
need to be sensitive to very small vertical electric fields (~100–200 µVm−1 Hz−1/2), and to
amplitudes of ~0.5–1 pT Hz−1/2 for the horizontal magnetic field. The electric component
is commonly measured with a ball antenna connected to a high-impedance and low-noise
amplifier, as proposed by Ogawa et al. [6]. SR electric field measurements are primarily
affected by power-line interference (primary frequency at 50 or 60 Hz, and harmonics) and
other relevant noise sources such as wind-blown atmospheric space charge or dust, and
oscillations in nearby trees.

The aim of this paper is to exploit an existing long-term dataset otherwise unused
by the scientific community to provide serendipitous observation of the electric compo-
nent of SR resonance over time, which contributes to the fair-weather output signal of
an electric field sensor operating in the 1–45 Hz range. An adequate method of data pro-
cessing has been applied to estimate the total intensity of signal recorded in the SR band
(10–45 Hz), avoiding contamination by the turbulent movement of local space charge (SC),
which instead dominates the sensor response at lower frequencies. Diurnal, seasonal, and
inter-annual variations are investigated and compared to global climate data, suggesting
the results are coherent with previous observations using different techniques. While SR
magnetic field measurements have been conducted since 2012 by the British Geological
Survey (BGS) at Eskdalemuir in Scotland [23,24], this study represents also the first suc-
cessful attempt to observe long-term changes of SR in the electric component from the UK,
achieved in an urban environment. Given these detectors can operate in any remote area
with any temperature range and weather conditions, the selection of an ideal site for SR
recordings would further enable the sensor capabilities, while providing reliable data to
the wide SR research community.

2. Materials and Methods
2.1. Site and Instrumentation

Atmospheric electrical measurements have been performed at Portishead in Southwest
England (51.483◦ N, 2.769◦ W). The site is located among light industry within the town
of Portishead, in the vicinity (~1 km) of the muddy shoreline of Severn estuary. Despite
the typical low levels of air pollution which can affect the measurement as a source of SC,
the observatory site is still far from the ideal mostly because of the surrounding vegetation
and buildings. The most pronounced disturbing signals in the electric data for this specific
case were those caused by wind-induced movement of the surrounding trees and turbulent
motion of atmospheric SC. Other occasional transient sources of noise include nearby
electrical devices and birds flying by the detector.

Since the early months of 2015, a BTD-300 [25,26] thunderstorm warning system has
been operating without interruptions except for the cases when the measuring hardware or
software was being updated. The sensing electrode consists of a grounded stainless-steel
sphere of 0.15 m radius, placed on an elevated mast at about 2.5 m above a flat roof surface,
whose height above ground is ~3 m. The spherical shape of the antenna is ideal to minimize
the corona effects and maximize the surface area (0.28 m2). According to Gauss’s law, the
amount of charge on the sphere depends upon its surface area and the electric flux through
the area enclosed by the conductor. If this electric flux changes with time and the conductor
remains at ground potential, the conductor’s charge will need to vary, and a current is
produced between the conductor and ground. Currents induced by temporal fluctuations
in the atmospheric electric field around the exposed electrode are hence amplified and
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converted to voltage through a transimpedance amplifier. The high gain of the circuit
forces the input current from the antenna to flow through the feedback resistor (22 MΩ).
The input capacitance of the antenna is dominated by the self-capacitance of the sphere
(~17 pF), with the addition of 10 pF introduced at the front-end amplifier parallel to the
input resistor. The signal from the antenna is digitized by a 16-bit analog to digital converter
and sampled at 1 kHz. Then a digital filter is applied in a field-programmable gate array
(FPGA) to remove power supply interference. The filter used is a low pass 256-tap digital
FIR filter, beginning at 47 Hz and offering at least 25 dB attenuation for frequencies ≥50 Hz.
Once filtered in the FPGA, the 1 kHz signal is passed to a PIC microcontroller where it
is reduced to a 100 Hz output and communicated to a storage device via an RS232 serial
connection. The effective measurement bandwidth of the sensor is in the 1–45 Hz frequency
range. Although not primarily designed to measure the SR, the use of low internal noise
circuitry and sharp low- and high-pass filters means the antenna can resolve extremely
small currents down to approximately 1 pA. These currents are smaller than the signals
generated by local lightning (<100 km) but provide a different perspective on local and
global scale meteorology that can be used to enhance scientific research.

2.2. Data Processing

The digitized raw data are collected every 15-min (90,000 samples taken with 100 Hz
sampling frequency) and stored locally in binary format. Each sample contains a series of
information including system status, timestamp, and signal amplitude. The time-series
of antenna output are used in this specific case to obtain the spectrograms and amplitude
spectra described in Section 3.1. The long-term analysis is rather based upon stats files that
are generated from the raw data for the period from 1 June 2015 to 31 May 2020. In this
case, the raw data are filtered using a six-pole Butterworth bandpass filter to separate SC
motion (1–5 Hz) from global lightning (10–45 Hz) (i.e., selecting the first and higher SR
harmonics and suppressing lower frequency noise), before computing summary statistics
(i.e., min/max, mean, standard deviation) for the antenna output on 15-min time periods.
The standard deviation (hereafter SD) is specifically used as a measure of the SR cumulative
intensity in that bandwidth, after showing that SR dominate the displacement current
spectrum in fair-weather at those frequencies (Section 3.1). Locally disturbed conditions
are filtered out by rejecting SD values larger than a maximum threshold of 12 pA. The SD,
in fact, significantly increases by several orders of magnitude in disturbed weather (~tens
of nA), due mainly to tropospheric sources such as precipitation and local lightning or in
the presence of local interference. Nevertheless, disturbed weather samples and missing
data constitute at most less than about 10% of the 5-year total observation time.

3. Results and Discussion
3.1. Displacement Current Sources in Fair-Weather

The analysis of the raw data is initially made in the frequency domain to identify the
dominant natural sources of background variability in the 1-45 Hz electric field. Dynamic
spectrograms using the Welch method [27] are created for sample fair-weather days from
midnight (00 UT) to midnight of the following day. The Welch’s method computes an
estimate of the power spectral density by dividing the data into overlapping segments,
computing a modified periodogram for each segment, and averaging the periodograms.
Daily spectrograms are computed using 100 s (10,000 points) intervals of filtered data
and applying a 4096-points Fourier transform to produce 864 1-D spectra plots per day.
Figure 2 shows an example of a spectrogram (frequency window: 1–45 Hz) from 9 July
2016. The SR modes are resolved in this graph as persistent horizontal bands of enhanced
power centred roughly around 8, 14, 20, 26, 32, and 38 Hz (Figure 2a). SR can therefore be
considered as a major source of output current in fair weather, aside from local turbulent
SC which instead largely dominates below 5 Hz (Figure 2b). The SC effect is largely
dependent on surface wind speed and influenced by different weather conditions. Yet, it
can increase during advection of pollutants from surrounding cities and sea salt aerosols
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at the site. The variability of 1–3 Hz band of the antenna current was previously used
as a proxy for near-surface turbulence during March 2015 solar eclipse by Bennett [28].
Some additional transient disturbances are visible as thin vertical lines. These artifacts are
normally associated with occasional high amplitude but short duration noise from charged
feathers of birds flying nearby the sensor or electrical interference at the installation site.
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Figure 2. Daily spectrogram of 100 Hz output current from the spherical antenna at Portishead
during 6 July 2016, with spectra calculated every 100 s. The major contribution to fair-weather current
is given by a combination of turbulent space charge (SC) motion (<5 Hz) and global SR signal (>5 Hz),
the latter visible as a series of diffuse horizontal bands corresponding to each SR mode frequency
that falls within the antenna range (1–45 Hz) (panel (a)). Superimposed vertical lines originate from
occasional transient local disturbances. Panel (b) magnifies the SC effect and indicates that this is at a
minimum during late night but largely increases after 0500 UT, hence the need to remove potential
data contamination when looking at the SR variability.
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A typical example of the SR electric component raw amplitude spectrum taken from
the BTD is given in Figure 3. The spectrum is computed using an FFT algorithm on filtered
data in the frequency interval 5–45 Hz. The SR peaks up to the 6th mode are distinctly
detected in fair weather and in the absence of relevant manmade interference. The principal
parameters of each mode, such as modal frequency and relative peak amplitude, can be
estimated by least-squares fitting of the experimental spectrum with the sum of 6 Lorentzian
functions (red line in Figure 3) of the form:

Ai( f ) = Ai

[
( f − fi)

ωi

]2
+ 1, (2)

where Ai is the amplitude of mode i as a function of frequency f, fi the central frequency of
mode i and ωi the half-width of mode i in Hz, in analogy to the method used by Price and
Melnikov [12].
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Figure 3. Typical raw spectrum of the output current, depending on the electric component of
SR signal, measured at Portishead at 0300 UT on 9 July 2016, under favourable conditions. The
spectrum is fitted with a sum of 6 Lorentzian functions (red line) and the peak frequency of each
mode, determined by the best fit parameters, is shown. The rise of power with frequency is caused
by the specific response function of the sensor.

As anticipated, the main aim of this research is to study the diurnal and long-term
variability of the SR signal, related primarily to the diurnal/seasonal cycle of global thun-
derstorm activity. Unlike the majority of SR-related studies, however, the possibility to
use the time-series of 15-min antenna current SD in the 10–45 Hz band as a measure of the
SR cumulative intensity variation rather than the SR peak parameters are examined in the
following sections. The chosen filter bandwidth implies the disadvantage of cutting off the
SR fundamental frequency. Nevertheless, this does not invalidate the results presented,
since it allows to avoid lower frequency noise at the installation site, which could eventually
affect the first mode most.

3.2. Diurnal Variation

The electric component of SR, which is the source of the antenna output, is independent
of the direction of the source relative to the observer. A typical SR diurnal record hence
reflects the properties of both global thunderstorm activity, although biased by the SOD, and
in a smaller measure the state of the Earth-ionosphere cavity between the source region and
the observer. The diurnal cycle of the 10–45 Hz frequency band is shown as a density plot
in Figure 4, that distinguishes between working days (a) and weekends only (b). During
the daylight period, the ionospheric profile would be relatively constant, so the change
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in SR magnitude is considered representative of the strength of global thunderstorms. In
general, both cases illustrate that, in analogy to SR, the diurnal SD variation increases at
early morning hours, in response to the development of thunderstorm activity in southeast
Asia and Oceania, which is peaked at around 09 UT. The SD increase reaches its maximum
peak at around 15–16 UT, coinciding with the maximum lightning activity of the African
centre. The overall amplitude of the signal from the Amazon basin and South America
in the evening hours (20–21 UT) is typically less pronounced during most of the year at
the observation site. Yet, it becomes more evident in the winter season of the northern
hemisphere, when the influence of European thunderstorm activity is low. The reduced
strength of the SR power during the night is in general attributed to a reduction in the global
thunderstorm activity during the time when the sun passes over the Pacific. Given the time
coincidence between the observed diurnal trend of SR power and the day-night terminator,
past studies also investigated the possible influence of variations of the ionosphere (i.e.,
the upper waveguide boundary) on SR, suggesting a modulation by the dynamic local
ionospheric height [29]. Later studies, though, estimated the effect of diurnal ionospheric
changes on the amplitude of the SR fundamental frequency in about ~10% with respect to
a uniform model [30], indicating that diurnal and seasonal changes in the source properties
are the primary drivers.
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Figure 4. Diurnal variation of the standard deviation of current induced on the antenna in the
10–45 Hz frequency range (1 June 2015–31 May 2020) during (a) working days (Mon–Fri) and
(b) weekends only (Sat–Sun), represented as a 2-D histogram with 15-min temporal resolution
(96 bins in each dimension). The solid curve indicates the trend of interpolated hourly median
SD values.

It is worth noticing that anthropogenic disturbances at the installation site during
working days determine an increased variability of the SD amplitude during the daytime
that superimposes to the global lightning effect, which is hence better represented by
weekend data (i.e., no ongoing activity in the building). This influence is particularly
pronounced during working hours (07–17 UT). Its removal by considering weekends data
only is beneficial to better characterize the seasonal and long-term variability.

The same output for the 1–5 Hz band is shown in Figure 5, which represents the nearby
windblown charge band. The median SC diurnal fluctuations are essentially associated
with changing tropospheric conditions during the typical day and less sensitive to other
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types of manmade disturbances. In particular, calmer and more stable wind conditions
on average during the night reduce the amount of turbulence near the BTD, causing a
reduction in windblown charge. This is shown in Figure 5, where the 1–5 Hz band has
a consistently low variability between 2100 UTC and 0600 UTC, before increasing and
becoming considerably more variable in response to greater mixing during the daytime.
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In Figure 6, the diurnal variation of the SD of current induced on the antenna in the
10–45 Hz is presented for each season in the 5-year observation time. Similarly to the results
found in previous studies, each season exhibits a specific pattern likely resulting from the
dynamics of the north-south seasonal migration of global lightning, that is reproducible
through the period considered. Minor differences in the peak amplitude are attributable to
inter-annual variability in climate drivers, such as convective activity and lightning inten-
sity changes in specific areas of the globe in response to the trend of global temperatures,
as shown in Section 3.3. In general, the seasonal plots in Figure 6 illustrate some antici-
pated features, such as the minimum around 2–4 UT and a peak activity centred between
14–16 UT, determined by the African lightning chimney because of the relatively shorter
SOD. Yet, substantial differences emerge that highlight the site-dependent SR measurement
response to the seasonal shifts in the major lightning centres. The summer (JJA) diurnal
pattern exhibits a single oscillation, culminating at about 18 UT. This may suggest a possible
distortion from mid-latitude lightning activity in Europe during the northern hemisphere
summer, potentially obscuring additional oscillations that are instead observed during the
other seasons. In particular, the diurnal oscillations in the cumulative SR intensity [14] are
more pronounced during winter months (DJF), when European thunderstorm activity is at
a minimum [31]. Additionally, a higher correlation is found in SON-DJF months (0.94 and
0.92, respectively) compared with JJA months (0.85) for diurnal SD (Portishead)-diurnal SR
(NCK), as highlighted in Table 1.
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diurnal changes are superimposed to increased daytime variability from surrounding 
manmade interference. Each season well reproduces the expected diurnal features, nota-
bly the dominant afternoon peak (15 UT), but relevant differences are also found with 

Figure 6. Seasonal diurnal variation (weekends) of the standard deviation of current induced on
the BTD-300 primary antenna in the 10–45 Hz frequency range (1 June 2015–31 May 2020). The
normalised 1-h resolution median lines (dashed) are superimposed to the interquartile range (shaded
area). The observed trend is compared with the seasonal diurnal variation of global thunderstorms
derived from WWLLN data (2012–2013) [32] (dotted) and the cumulative intensity of the first 3 SR
modes measured at NCK observatory (1994–1998) [14], both normalised by the mean.

Table 1. Annual and seasonal Pearson correlation coefficient between median diurnal variation of
BTD primary antenna SD and SR cumulative intensity of the first 3 modes (NCK) [14], WWLLN
global thunderstorms [32], Carnegie curve [17], respectively.

Period BTD-SR (NCK) BTD-Thunderstorms BTD-Carnegie

Annual 0.92 0.63 0.62
MAM 0.87 0.65 0.36

JJA 0.85 0.69 0.13
SON 0.94 0.72 0.76
DJF 0.92 0.54 0.70

A comparison versus the working days’ output is shown in Figure 7, where seasonal
diurnal changes are superimposed to increased daytime variability from surrounding
manmade interference. Each season well reproduces the expected diurnal features, notably
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the dominant afternoon peak (15 UT), but relevant differences are also found with respect
to the weekend dataset. In particular, the influence of cultural noise on the diurnal SD
amplitude appears more pronounced at morning hours, causing a systematic shift forward
on average of the morning peak (~8 UT) relative to the reference SR measurements at NCK
and the weekend data.
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Figure 7. Seasonal diurnal variation (all days) of the standard deviation of current induced on
the BTD-300 primary antenna in the 10–45 Hz frequency range (1 June 2015–31 May 2020). The
normalised 1-h resolution median lines (dashed) are superimposed to the interquartile range (shaded
area). The observed trend is compared with the seasonal diurnal variation of global thunderstorms
derived from WWLLN data (2012–2013) [32] (dotted) and the cumulative intensity of the first 3 SR
modes measured at NCK observatory (1994–1998) [14], both normalised by the mean.

3.3. Combined Annual and Inter-Annual Variation

The presence of SR power and frequency inter-annual variability has been found
to emerge from a complex interplay of global land-ocean temperature changes, related
convective rainfall and lightning intensity variation, and the solar cycle progression. Ev-
idence of such long-term modulation is clearly seen also from the BTD measurements
taken at Portishead. Figure 8 shows the observed trend in the daily antenna median SD
amplitude, represented as the blue solid line which is superimposed to the interquartile
range calculated for each day (light blue shaded area). The rolling mean, calculated with a
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30-point window convolution filter (black line), exhibits an unambiguous annual oscillation
that is a manifestation of the annual global surface air temperature (Figure 8b) changes
(~1.5–2 ◦C) determining variation with the same period in the global lightning activity,
and accordingly in the SR signal amplitude. The maximum peak in the SD occurs during
the northern hemisphere summer (JJA), where most of the continental landmasses are
distributed, and coincides with the maximum lightning intensity recorded globally [33].
Hayakawa et al. [34] reported a strong correlation between periodic variations of SR in-
tensity recorded at Moshiri (Japan) and global surface temperature in the ±45◦ latitude
band. Similarly, the BTD output signal in the SR band is found to oscillate in-phase with
the combined global land-sea temperature from NOAA’s National Climatic Data Center,
indicating a cross-correlation coefficient of about 0.9, that is consistent with the result
found by Sekiguchi et al. [35] using magnetic field data. Yet, it is worth noticing that
the SD amplitude annual oscillations are not stationary but show evidence of an over-
lapped inter-annual trend. This trend is extracted from the SD daily medians, applying a
seasonal decomposition technique [36] to decompose the time series into three additive
components (trend, seasonal and residual). The observed inter-annual trend (solid red
line in Figure 8a) decreases between June 2015 and June 2018, which corresponds to the
SD extrema (maximum and minimum, respectively) recorded during the 5-year period,
and subsequently becomes nearly constant. An exceptional increase of the SR intensity
for the period 2015/2016 has been documented by other studies, that considered the SR
modes average peak frequency and intensity measured at various observatories distributed
globally [20,24,37]. In analogy with other SR amplitude observations taken at similar
mid-high latitudes (i.e., Eskdalemuir [25]), the steady decline in the inter-annual SD is
found to be in phase with the transition from the maximum to the minimum of the 11-year
solar cycle (Figure 8c). Satellite observations do not show a solar phase-related variation
in the intensity and distribution of global thunderstorm activity (i.e., the primary origin
of SR) [38]. Solar cycle-related long-term changes in the SR frequency and power are thus
attributed to the modification of the earth-ionosphere medium, and in particular to a reduc-
tion of local ionospheric height resulting from increased solar X-rays and energetic electron
precipitation (EEP) near to periods of maximum solar activity [37,39]. In the absence of
data covering an entire solar cycle, however, a univocal interpretation of the long-term
trend observed in the BTD data is still challenging. Intrinsic source changes associated
with other global climate drivers may in fact play a significant role in the inter-annual SR
variability observed worldwide. A qualitative agreement is actually found when looking at
the evolution of the 10 N–10 S ocean temperature anomaly for the same period (Figure 8b),
indicating a possible SR (and in turn the antenna current) response to global climate effects
on major lightning sources.

In this regard, Williams [18] found a significant positive correlation between the rela-
tive tropical temperatures during an El Niño cycle and the amplitude of the SR fundamental
frequency, suggesting a complex modulation of the lightning flash rate by global tempera-
ture changes. Several later works investigated the inter-annual changes in SR parameters
on the basis of the ENSO (El Niño Southern Oscillation) phenomenon which can change
the global atmospheric circulation, and in turn, affect the weather pattern around the
world [40–42]. In particular, most of them considered the influence of sea surface tem-
perature (SST) anomalies in the Pacific Ocean under warm and cold ENSO phases as a
source of spatial shifts of the thunderstorm regions globally, thus affecting the measured
SR intensity at a given observing station. More recently, Williams et al. [20] investigated
this idea further by making use of SR data from multiple recording stations worldwide.
They found a considerable increase of the 1st SR mode intensity in the transition months
preceding the peak in two super El Niño events (1997/1998 and 2015/2016), associated
with an increase in lightning activity observed from independent satellite and ground
observations. This is attributed to increased instability due to thermodynamic imbalance
between the surface and the mid-troposphere at the transition. In Figure 9b the long-term
SD relative variation recorded by the antenna is shown and compared to the Oceanic Niño



Atmosphere 2022, 13, 38 12 of 15

Index (ONI) (3 months running mean of ERSST.v5 SST anomalies in the Niño 3.4 region
(5 N–5 S, 120–170 W), based on centred 30-year base periods updated every 5 years). Warm
and cold ENSO episodes are classified as such when a threshold of ±0.5 ◦C above or
below the normal SST is met for at least 5 consecutive overlapping seasons. This approach
highlights the months and the UT time characteristics of the SD magnitude anomalies. In
order to emphasize the effect of long-term climate changes, diurnal and seasonal influence
on the data is removed by calculating the monthly average diurnal variation of the SD
with 1-h time resolution (i.e., a 24 × 12 matrix characterises each processed year) and then
normalising each bin value (SDi) by the 5-year average for the specific time and month
(SDi,avg) as follows:

SDi,norm(%) =
SDi − SDi,avg

SDi,avg
∗ 100, (3)
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Figure 8. Long-term variations of the 10–45 Hz SD from Jun 2015 to May 2020. (a) Daily SD median
(solid blue) and rolling mean smoothed curve (solid black), superimposed to the observed trend
derived from seasonal decomposition. (b) NOAA’s combined global land-sea temperature and
10 N–10 S SST anomaly. (c) Monthly sunspot number and intensity of solar radiation at 10.7 cm
wavelength, used as a proxy of solar activity.

The patterns seen in the time-UT anomalies of SD amplitude plot for the 10–45 Hz
band show a noticeable increase (~20–30% of the mean) during the summer months of
2015, while approaching the peak of the exceptional 2015–2016 warm ENSO episode, which
culminated in the maximum ocean temperature anomaly recorded for the entire period
considered. The subsequent decrease to values lower than about 0.5 ◦C in the 10 N–10 S
SST anomaly, coincided with a substantial transition to negative SD anomalies, which is
particularly evident from the second half of 2017, during the months that preceded the
2018 cold ENSO phase. Similar enhancements/diminutions in the SD amplitude would
require more specific analysis, combining measurements from other observatories and
including global convective rainfall and lightning data. Yet, if confirmed by future studies,
the amplitude and time of occurrence of such anomalies in the SD may be used as a proxy
of complex global scale relationships with ENSO, revealing changes in lightning frequency
and distribution pattern in specific areas of the globe. The necessity of choosing an ideal
site for such measurements is further highlighted in Figure 9a, where it is shown that the
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increased daytime local variability during working hours may mask eventual diurnal SD
anomalies otherwise seen in the weekend data. Such effect is observed, for example, during
JJA 15.
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Figure 9. SR intensity anomalies measured at Portishead over the period 2015–2020 during working
days (a) and weekends (b). The top panel shows the ENSO phases, along with 10 N–10 S SST anomaly
and global land temperature. The SD relative variation is shown in the lower panel. The color scale
represents the deviation (%) of each bin value from the corresponding mean of absolute values based
on the 5-year period.

4. Conclusions

The BTD-300 sensor installed at Portishead (UK), has proved its ability to detect and
monitor the Schumann resonances at a single site on a permanent basis, even in an urban
environment where manmade interference during working hours may not be negligible.
The data presented in this work are a valuable reference in atmospheric electricity studies,
as they represent the first continuous survey of SR effects in the electric field component
from the UK since 2015, helping also in characterising site-specific environment influence
on the SR measurements.

The method of data acquisition and processing can provide both principal SR mode
parameters (peak frequencies and amplitudes) for at least the first six SR modes and
additional quantities (i.e., displacement current SD), useful as a proxy of the cumulative SR
power in the 10–45 Hz frequency band. These latter data, collected during the 5 years of
observations 2015/2020, are analysed and presented in various graphical forms to point
out eventual SR intensity changes on a diurnal, seasonal, and inter-annual basis.

Measurements at Portishead qualitatively confirm the overall pattern of diurnal and
seasonal variations in SR amplitudes as reported from other observatory sites, confirming
that the changes in source-observer distance are dominant for seasonal variations in the
diurnal pattern, with the African chimney being prevailing through most of the year at this
specific site.

Recorded inter-annual variations in SD amplitude are better explained in terms of SR
response to a complex interplay of solar cycle progression and climate variables leading to
a modulation of global lightning intensity, not limited to only the 3 major lightning hotspots
on Earth. This has been confirmed by preliminary agreement found with previous studies
linking SR to global climate indexes as the SST anomaly and trend in the global land-sea
temperature. Yet, a concurrent role played by the 11-year solar cycle in determining the
observed inter-annual SD trend cannot be ruled out. The still ongoing data collection
would certainly be beneficial in consolidating these findings, especially if (1) additional
comparisons with other observatories will be made, (2) future measurements will be
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conducted at sites less affected by cultural noise, (3) the equipment will be improved for
future application in SR research.
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