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Abstract: Sulfur dioxide (SO2) is a serious air pollutant emitted from different sources in many
developing regions worldwide, where the contribution of different potential influencing factors
remains unclear. Using Shandong, a typical industrial province in China as an example, we studied
the spatial distribution of SO2 and used geographical detectors to explore its influencing factors.
Based on the daily average concentration in Shandong Province from 2014 to 2019, we explored
the influence of the diurnal temperature range, secondary production, precipitation, wind speed,
soot emission, sunshine duration, and urbanization rate on the SO2 concentration. The results
showed that the diurnal temperature range had the largest impact on SO2, with q values of 0.69,
followed by secondary production (0.51), precipitation (0.46), and wind speed (0.42). There was no
significant difference in the SO2 distribution between pairs of sunshine durations, soot emissions, and
urbanization rates. The meteorological factors of precipitation, wind speed, and diurnal temperature
range were sensitive to seasonal changes. There were nonlinear enhancement relationships among
those meteorological factors to the SO2 pollution. There were obvious geographical differences in
the human activity factors of soot emissions, secondary production, and urbanization rates. The
amount of SO2 emissions should be adjusted in different seasons considering the varied effect of
meteorological factors.

Keywords: sulfur dioxide; air pollution; geographical detectors; meteorological factors; human influence

1. Introduction

There is no doubt that air pollution is a significant environmental risk to health, partic-
ularly in many underdeveloped countries. Sulfur dioxide (SO2) has been widely studied
among the anthropogenic pollutants. The most important effects of SO2 air pollution
include an increase in the risk of hospital admissions, cardiopulmonary disease, myocardial
infarction, chronic obstructive pulmonary disease, respiratory disease, and death [1–3].
After SO2 reaches the threshold of 8 µg/m3, a continuous increase in industrial SO2 emis-
sion increases the proportion of the population with chronic diseases, of which respiratory
diseases account for a significant proportion [4]. Through an analysis of the city-combined
effects of pollutants represented by SO2, it was shown that the residents of Asian cities
were more likely to have greater exposure to air pollution than those in western industrial
nations [5]. As one of the largest countries in Asia, China has paid attention to frequent
air pollution in recent years. According to the Bulletin of the State of China’s Ecological
Environment in 2019, four of the twenty cities with the worst air quality in China were
located in Shandong province. SO2 is one of the most important indicators to evaluate the
air quality. Therefore, a study of the factors related to SO2 pollution is of great significance
and is closely related to people’s quality of life.
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Various research methods have been applied to study the factors that affect SO2.
A stepwise multiple linear regression analysis was used to reveal a close relationship
between the concentration of urban air pollutants and meteorological parameters [6].
Global regression models have been used to study the determinants of SO2 concentration
from the perspective of pollution sources and diffusion [7]. The logarithmic mean divisia
index method was used to study the impacts of energy consumption, energy structure, and
treatment technology on SO2 emissions [8]. The influences of meteorological factors on
the multifractal properties of SO2 have also been investigated [9]. These studies analyzed
the factors influencing SO2 emissions from different perspectives. However, a detailed
exploration based on the spatial distribution of human factors and meteorological factors is
lacking.

Geographical detectors are a set of spatial statistical methods that can detect spatial
differentiation and can reveal the driving force behind it [10]. The method has a wide range
of applications in natural and human geography, such as in studies of the spatiotemporal
variations and driving factors of air pollution [11–15], the detection of the dominant
factors related to the spatial variation of land surface cutting [16], the identification of
environmental factors related to the spatial variation of neonatal jaundice [17], and the
spatiotemporal trends of diseases [18,19]. Geographical detectors can be used to reveal
the spatial similarity or the correlation between a certain independent variable and related
dependent variables. They can detect both numerical data and qualitative data and the
effect of the interaction of two factors on dependent variables. They can explain whether
two independent variables are linearly enhanced, nonlinearly enhanced, or weakened by
detecting the significance of their interaction; moreover, this method has no limitations
compared to traditional statistical methods [20].

We applied geographical detectors to explore the factors influencing SO2 emissions
in Shandong from 2014 to 2019. Factor detection, interaction detection, and ecological
detection of geographical detectors were used to explore the correlations of spatial distribu-
tions between SO2 concentration and various factors, including meteorological factors with
seasonal regularity and human factors based on inland and seaside locations. The results
offer a scientific and theoretical foundation for future pollution control.

2. Data
2.1. Study Area

Shandong Province is located on the east coast of China and covers an area of
158,000 km2 (Figure 1). Its eastern part protrudes between the Bohai Sea and the Yel-
low Sea, while the western and northern parts are on the North China Plain. There is a
large difference between seaside cities and inland cities, which is reflected in the level of
urban development and meteorological factors.
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As one of the most economically developed provinces in China with developed
industry and a large population, Shandong has a fast-growing secondary industry and
a continuously increasing rate of urbanization. Therefore, in 2016, large amounts of SO2
and soot were emitted and it had the highest SO2 emissions among the provinces. In
Shandong, March, April, and May belong to the spring; June, July, and August belong to
the summer; autumn consists of September, October, and November; and winter consists
of December and January and February of the following year. Shandong has a warm
temperate monsoonal climate with abundant sunlight, and the winter monsoon greatly
affects the wind speed. Summer is the most humid and the warmest season. Winter and
autumn are shorter than summer and spring. The temperature and precipitation are quite
variable due to the different positions of land relative to the sea.

2.2. Data Source

The daily SO2 concentration, precipitation, and wind speed data from 1 January 2014
to 31 December 2019, were collected from the online air quality data website of the China
National Environmental Monitoring Center. Ninety-one typical air pollution monitoring
stations distributed in sixteen cities in Shandong province were selected. Considering the
regional distribution, at least two stations in each city that could reflect the local situation
were adopted. Qingdao, Jinan, and Yantai are the top three cities in terms of GDP in
Shandong, with nineteen, twelve, and eleven stations, respectively. There are forty-six
monitoring stations in the inland region and forty-five in the peninsular region. For each
station, the daily data were the 24 h average values. The monthly value was calculated on
the basis of daily values. The quarterly value was the average for the corresponding three
months. The annual value was calculated from the twelve-monthly concentration values.

From the Shandong Provincial Bureau of Statistics, we retrieved yearly data on the
urbanization rate and increases in secondary industry and soot emissions. We also retrieved
the daily data on the temperature range and sunshine hours from the China Meteorological
Data Network. Figure 2 shows the distributions of SO2, the urbanization rate, secondary
industry, precipitation, wind speed, diurnal temperature range, sunshine duration, and
soot emissions in Shandong. The quarterly and annual data related to the influencing
factors were calculated and used in the research.
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Figure 2. Distribution of the annual average SO2 concentration and influencing factor data. Subgraphs
(a–h), respectively, describe the spatial distribution of the average values of SO2 concentration, the
urbanization rate, increase in secondary industry, precipitation, wind speed, diurnal temperature
range, sunshine duration, and soot emissions from 2014 to 2019.

3. Methods

A geographical detector model was adopted to determine the impact of different
factors on the spatial–temporal variation in the SO2 concentration in Shandong province. In
the model, we assumed that the study area was divided into several subregions, which were
categorized according to the K-means classification results of the factors that affect SO2. If



Atmosphere 2022, 13, 142 5 of 14

the sum of the variance of the subregion was less than the total variance of the region, there
would be spatial differentiation. If the spatial distributions of the two variables tended to
be consistent, there would be a statistical correlation between the two variables. Factor
detection, interaction detection, and ecological detection of the geographical detectors were
used [10,21]. In the application of the geographical detectors, the input data consisted
of a dependent variable and independent variables. The SO2 concentration was taken
as the dependent variable, and the independent variables included diurnal temperature
range, secondary industry, precipitation, wind speed, soot emission, sunshine duration,
and urbanization rate. The model can consider both linear and nonlinear relationships
between variables.

3.1. Factor Detection

Factor detection was used to detect the spatial differentiation of SO2 and the extent to
which the influencing factor X explains the attributes of the spatial differentiation of SO2.
The influence of factor X on the spatial differentiation of SO2 is measured by the q value.
The expression is described as follows:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST
(1)

SSW =
L

∑
h=1

Nhσ2
h (2)

SST = Nσ2 (3)

where h = 1, L is the strata of factor X, i.e., the K-means classification. Nh and N are the
numbers of units in stratum h and the entire area, respectively. σ2

h is the variance of the Y
value of stratum h, and σ2 is the variance of the Y value of the entire area. SSW and SST are
the sum of squares within and the total sum of squares, respectively. The range of the q
values is (0, 1). A larger q corresponds to a stronger explanatory power of an influencing
factor X on SO2. By comparing the sizes of the q values of the factors (Xs), the dominant
factor that affects SO2 can be determined.

3.2. Interaction Detection

Interaction detection is used to calculate q (X1) and q(X2) and their interaction, i.e., the
value q(X1 ∩ X2) of the new polygon distribution formed by the superposition of the layers
X1 and X2. By comparing these results, the relationships between influencing factors can
be divided into five categories: nonlinear weakening, single-factor nonlinear weakening,
two-factor enhancement, independent enhancement, and nonlinear enhancement. Through
interaction detection, the relationships between factors (Xs) can be obtained.

3.3. Ecological Exploration

Ecological exploration is used to compare whether the effects of two factors X1 and
X2 have significant differences in their influence on the spatial distribution of SO2. It is
measured as follows by the F statistic:

F =
NX1

(
NX2 − 1

)
SSWX1

NX2

(
NX1 − 1

)
SSWX2

(4)

SSWX1 =
L1

∑
h=1

Nhσ2
h (5)

SSWX2 =
L2

∑
h=1

Nhσ2
h (6)
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where NX1 and NX2 are the sample sizes of two factors X1 and X2, respectively. SSWX1 and
SSWX2 are the sums of the intralayer variances of the stratifications formed by X1 and X2,
respectively; and L1 and L2 are the strata of layers in X1 and X2, respectively. The null
hypothesis is H0:SSWX1 = SSWX2 . If H0 is rejected at the significance level of α, so the two
factors X1 and X2 have a significant difference in their effects on the spatial distribution of
SO2.

Using the statistical software R 3.6 and the package kernlab, the number of stratifi-
cations of each influencing factor was determined based on the elbow method. Then we
imported the stratification into the geographical detector model and obtained the results.

4. Results
4.1. Overview of the Data Set

The average concentration of SO2 from 2014 to 2019 was high in inland areas and low
in coastal areas, and the maximum concentration appeared in the transition area between
the peninsular and the inland areas of Shandong (Figure 2). The SO2 concentration during
the six years followed an obvious monthly pattern: the maximum value appeared in
January, and the minimum value appeared in July (Figure 3). The maximum value was
more than three times larger than the minimum value.
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4.2. Annual Detection Results

The factor detection of the geographical detectors processed the six-year data and
obtained the following results (q value): diurnal temperature range, secondary indus-
try, precipitation, wind speed, soot emission, sunshine duration, and urbanization rate
(Figure 4). The interaction detection shows that the interactions among all the factors were
in two states: bilinear enhancement and nonlinear enhancement. Bilinear enhancement
was reflected between the diurnal temperature range and all the other influencing factors,
between secondary industry and precipitation, between secondary industry and wind
speed, and between precipitation and wind speed. All pairwise relationships among the
remaining factors were nonlinear enhancements.

The ecological exploration showed no significant difference in SO2 distributions be-
tween sunshine duration and urbanization rate, between soot emission and urbanization
rate, between secondary industry and precipitation, between secondary industry and wind
speed, between precipitation and wind speed, between wind speed and soot emission, or
between sunshine duration and soot emission. There were significant differences among
the remaining elements.
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4.3. Seasonal Detection Results

Four meteorological factors with large annual detection values and obvious seasonal
changes—precipitation, wind speed, diurnal temperature range, and sunshine duration—
were selected for geographical detection by quarter (Figure 5).
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In 2014, the q values of precipitation were relatively high in the third and fourth
quarters. The influence of the wind speed significantly increased in the fourth quarter. The
q values of the diurnal temperature range were lower in the third quarter than in the other
quarters, and the influence of the sunshine duration significantly decreased in the fourth
quarter.

In 2015, the q value of precipitation was maximal in the second quarter. The q values
of wind speed were higher in the third and fourth quarters and lower in the first and
second quarters. The period with the highest q values of the diurnal temperature range
was around the first and fourth quarters. There was a large gap in the q values between
those two quarters and the second and third quarters. The largest q value of sunshine
duration occurred in the third quarter, and the q values of sunshine duration had a large
gap between the maximum and minimum values.

In 2016, the seasonal fluctuations in the q values of precipitation were large, with the
maximum value in the third quarter and a large difference in values between the third
and fourth quarters. The influence of wind speed became extremely small in the second
quarter, and the overall trend of the q value first sharply decreased, subsequently increased,
and finally decreased. The influence of the diurnal temperature range showed a trend of
gradually increasing from the first quarter to the fourth quarter. The q values of sunshine
duration were the highest in the second quarter.

In 2017, the influence of precipitation was largest in the second quarter (approximately
twice as large as that in other quarters) and the first and fourth quarters had high and
extremely similar q values of wind speed. The ranking of the q values of the diurnal
temperature range in descending order was the fourth, first, third, and second quarters,
and the difference between the maximum and minimum was 0.3. The influence of the
sunshine duration was larger in the first quarter than in the other quarters.

In 2018, the q values of precipitation gradually increased during the first three quarters;
in the fourth quarter, they fell to one-half of those in the second quarter. The q values of
wind speed evenly increased in the first, third, and fourth quarters, but the second quarter
showed an extremely low value. The influence of the diurnal temperature range was higher
in the first and fourth quarters and lower in the second and third quarters, but the overall
differences were not large. The q values of sunshine duration reached their highest value in
the third quarter.

In 2019, the q values of precipitation reached their highest value in the third quarter.
The ranking of the q values of wind speed in descending order was the fourth, third, first,
and second quarters. The ranking of the q values of the diurnal temperature range in
descending order was the second, first, third, and fourth quarters. The q value in the first
quarter was 0.17, and the q values in the remaining quarters were extremely low.

4.4. Regional Human Factor Detection Results

Human factors, including soot emissions, secondary production, and urbanization
rates were selected to detect their q values. The geographical division of Shandong, Yan-
tai, Weihai, Qingdao, Weifang, and Rizhao were classified as peninsular areas, and the
remaining cities were classified as inland areas.

The detection results showed that there were significant differences in the human
activity factors between the peninsular areas and the inland areas. The q values of the
urbanization rates, secondary industry, and soot emissions in the inland areas and the
peninsular areas are shown in Figure 6. All the q values in the peninsular areas were greater
(two or more times) than those in the inland areas.

Ecological exploration shows that human factors had no significant effect on the SO2
distribution in inland areas but had a significant effect on that in peninsular areas.
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5. Discussion
5.1. Analysis of Influencing Factors

When the q values of the influencing factors were sorted from large to small, meteo-
rological factors and human activity factors alternately appeared, which shows that both
meteorological factors and human activity factors were important factors that affected
the SO2 concentration. The q value of the diurnal temperature range was 0.69, which
was much higher than the q value of secondary production (0.51). Therefore, the diurnal
temperature range was the leading factor of SO2 pollution in Shandong from 2014 to 2019.
A previous study showed that the diurnal temperature range was positively related to
the air quality API [22], and SO2 concentration is an important evaluation index of air
quality. To a certain extent, the secondary industry factor reflects the expansion of industrial
scale in a region, and the expansion of the industrial scale led to more SO2 [23]. The wind
speed directly affects the diffusion of SO2, and precipitation can dissolve SO2 and affect the
concentration of SO2 in the air [24]. Compared with the effects of other factors, the effects
of soot emissions and urbanization rates on SO2 were not obvious.

These factors affect SO2 and interact with one another. According to the interaction
detection results, all influencing factors were enhanced (Figure 7). The interaction of the q
values between the diurnal temperature range and the other influencing factors was greater
than 0.69, which was very high. In addition, more than half of the interaction q values
between the factors were higher than 0.6. Although the urbanization rate had the lowest
q value of SO2, its interaction q value with the diurnal temperature range was as high as
0.87, which was the highest of all interaction q values. There was a very strong interaction
and a very complex coupling relationship between the urbanization rate and the diurnal
temperature range.
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The ecological detection results show obvious differences among most factors. The
selected factors have their own characteristics, and the repeatability among the factors is
small.

5.2. Seasonal Variability in Meteorological Factors

The quarters with larger precipitation q values were the second and third quarters.
This result is consistent with the time when precipitation is concentrated in North China.
The rainy season in Shandong starts at the end of June, reaches its peak at the end of
July, and ends in early September [25]. The summer rainfall time coincided with the
third quarter. Although the precipitation in the spring accounts for only 14% of the total
annual precipitation in North China, the precipitation in the summer accounts for 65%.
Considering the one-month deviation between the division of quarters and the division of
seasons and the instability of the summer monsoon in China, the summer precipitation
during June was included in the second quarter, so the time of precipitation concentration
and the quarters with larger SO2 q values roughly coincided with each other. Moreover, the
chemical properties of SO2 are unstable, and it reacts extremely easily with water, which
supports the conclusion that precipitation can affect the SO2 concentration. In terms of the
form of precipitation, the SO2 concentration absorbed by rainfall was much higher than
that absorbed by snowfall [26]. The winter precipitation in Shandong is small, and part of
it appears in the form of snow, so the absorption of precipitation during winter is not as
good as that during summer.

Large q values of the diurnal temperature range often appeared in the fourth and first
quarters. North China has its largest diurnal temperature range during the spring [27],
which roughly corresponded with the fourth and first quarters. Among temperature,
humidity, and wind speed, temperature had the most obvious long-term relationship
with pollutants in the corresponding study area [9]. The factors that affect the diurnal
temperature range are complex, and some studies have noted that there is reasonable
agreement between the trend of SO2 emissions and the diurnal temperature range in highly
polluted areas [28]. On a sunny day, the temperature varies greatly, and the vertical air
convection is strong, which can make the inversion layer quickly disappear, which is
conducive to the diffusion of pollutants [29].

The highest q value of wind speed was in the fourth quarter, followed by the first
quarter. Research has shown that the average wind speed on the North China Plain is
relatively high during the first and fourth quarters but higher during the fourth quarter [30].
In addition, strong tropospheric stability is beneficial to the accumulation of SO2 over the
North China Plain [31]. Analysis of the existing data showed that the SO2 concentration
was high in spring and winter, and the wind speed in the first and fourth quarters was
also high. It is generally believed that a high wind speed helps diffuse pollutants [32],
which is contrary to the above research. This result shows that the factors influencing SO2
concentration include more factors than wind speed alone. This conclusion is consistent
with the results of Goudarzi et al. which showed that poor fuel quality leads to the
deterioration of ambient air quality [33]. The massive burning of biomass fuels during
spring and coal-fired central heating during winter have greatly increased SO2 emissions
(Figure 8) [34,35]. Multifactor coupling caused the ultimate effects on SO2.

There was no special quarterly pattern in the q values of sunshine duration, and the
quarterly values of each year varied.
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5.3. Regional Analysis of Human Factors

There were obvious differences in the spatial distributions of the human factors
(Figure 2). All cities with a large increase in secondary industry were located in peninsular
areas, and the q value of the peninsular areas was indeed nearly three times that of the
inland areas. Thus, a greater increase in secondary production has a greater impact on SO2
emissions. However, a larger increase in secondary production does not indicate more
SO2 emissions. There is an inverted U-shaped relationship between emissions and the
economy [36]. When the economy reaches a certain level, the technical and structural effects
dominate. The deterioration has slowed down. The economic disparity could increase SO2
emission inequality [37].

The urbanization level of Shandong was concentrated from 54.61% to 57.04%. Many
cities were in this urbanization level segment, and there was a very large gap in urban-
ization between the 58.9–67.04% segment and the above 67.04% segments. In general, the
urbanization rate was higher in the peninsular areas than in the inland areas. Studies
have shown that changes in SO2 in urban areas are less affected by meteorological factors
because urban SO2 depends on the traffic volume [9]. Therefore, places with higher levels
of urbanization were more affected by the traffic volume, so peninsular areas had a larger
effect than inland areas.

The areas with large soot emissions are mainly concentrated near the boundary be-
tween peninsular areas and inland areas, and most of them are located in inland areas. The
concentrations of SO2 and soot emissions in inland areas were significantly higher than
those in peninsular areas, but the q value in peninsular areas was more than twice that
in inland areas. The reason may be that the ratio of SO2 to soot emissions was higher in
peninsular areas than in inland areas.

The main purpose of this study was to analyze the effects of selected influencing factors
on the spatiotemporal distribution of SO2 air pollution through geographical detection.
As the formation and transmission mechanism of air pollution is complex, its influencing
factors are also numerous. Through analysis and comparison, we selected seven factors
with high probability, and the research results proved our choice was correct. In the
research process, we fully considered the spatio-temporal distribution, spatial stratified
heterogeneity, and variable coupling of data, and analyzed SO2 air pollution and influencing
factors from the three perspectives of factor detection, interactive detection, and ecological
exploration, so as to ensure the reliability of the results. In addition, the long time series
and comprehensiveness of the data are also worth determining. However, we lacked an
in-depth analysis of the action mechanisms of the influencing factors, which will be the
focus of our attention in the future. For example, a limitation of the research is that we
did not take into account the potential effect of the distribution of thermal power stations,
changes in generation capacity, and improvements in discharge devices due to the lack of
data. This should be further studied in later research.
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6. Conclusions

The analysis of SO2 influencing factors in Shandong from 2014 to 2019 based on
geographical detectors shows that the diurnal temperature range had the largest influence
on SO2 in Shandong, which made it the dominant factor. The secondary industry increase,
precipitation, wind speed, soot emission, sunshine duration, and urbanization rate followed.
There were mutually reinforcing relationships between influencing factors, and more than
half of the relationships between the factors had significant differences. The meteorological
factors of precipitation, diurnal temperature range, and wind speed were sensitive to
seasonal changes, and the months with higher q values were consistent with the months
with higher values in the factors related to physical geography. The sunshine duration had
no obvious seasonal regularity. Among the meteorological factors, there were complex
coupling relationships. There were obvious differences in the geographical distributions of
the following human activity factors: soot emissions, secondary industry increases, and
urbanization rates. These factors had greater influence in peninsular areas than in inland
areas.

This research provides effective decision-making references to govern SO2 emissions.
It lays the foundation for people to combine weather forecasts with production and life
according to the seasonal regularity of the effects of meteorological factors on SO2, which
will enable people to plan seasonal production to minimize adverse effects. Based on
human factor detection, people can rationally plan the industrial development and manage
upgrades to industrial structures.
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