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Abstract: The combination of techniques that incorporate observational data may improve numerical
weather prediction forecasts; thus, in this study, the methodology and potential value of one such
combination were investigated. A series of experiments on a single case day was used to explore
a 3DVAR-based technique (the variational version of the Local Analysis and Prediction System;
vLAPS) in combination with Newtonian relaxation (observation and analysis nudging) for simulating
moist convection in the Advanced Research version of the Weather Research and Forecasting model.
Experiments were carried out with various combinations of vLAPS and nudging for a series of
forecast start times. A limited subjective analysis of reflectivity suggested all experiments generally
performed similarly in reproducing the overall convective structures. Objective verification indicated
that applying vLAPS analyses without nudging performs best during the 0–2 h forecast in terms
of placement of moist convection but worst in the 3–5 h forecast and quickly develops the most
substantial overforecast bias. The analyses used for analysis nudging were at much finer temporal
and spatial scales than usually used in pre-forecast analysis nudging, and the results suggest that
further research is needed on how to best apply analysis nudging of analyses at these scales.

Keywords: variational assimilation; nudging; Newtonian relaxation; 3DVAR

1. Introduction

A variety of techniques to incorporate observations have been used in numerical
weather prediction models to allow observations to improve the model forecasts. One
example is 3D variational analysis (3DVAR; e.g., [1,2]), and another is Newtonian relaxation
(nudging; e.g., [3,4]).

The 3DVAR technique has the potential to determine an optimal analysis by combining
observations with a background field. However, since an optimal analysis requires that the
background error covariance and the observation error covariance be perfectly known, in
practice, the analysis will not be optimal. Background error covariance may be estimated
by using model forecasts from a series of past times to find a climatological value, from
multiple model forecasts of the current time (i.e., an ensemble) to find case-dependent
values, or from a combination of these two methods (e.g., [5]). However, these techniques
are difficult to apply when creating on-demand forecasts for an area where equivalently
configured forecasts (e.g., horizontal resolution) have not been run in the past and there are
insufficient computational resources to carry out an ensemble matching the horizontal grid
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spacing of the on-demand forecasts (although coarser-resolution global ensembles can be
used to estimate the case-dependent background error covariance; [5]).

A 3DVAR analysis is commonly applied at a single time at the beginning of a model
simulation and can lack physical consistency. Applying the analysis at a single time could
result in noise as the model adjusts to a solution consistent with its equations. Additionally,
model fields not part of the 3DVAR analyses may not be consistent with the fields in the
3DVAR analyses and may pull the model solution away from the 3DVAR analyses. These
potential issues might be mitigated by applying the increments indicated by a 3DVAR
analysis over multiple model time steps using incremental analysis updating (e.g., [6,7]) or
by nudging towards the 3DVAR analysis. When applying a single analysis, observations
made at times other than the analysis time cannot easily be applied at their valid time.
While there are methods to mitigate this issue (e.g., first guess at appropriate time, [8]), it is
a challenge to know the actual state of the model at the valid time of the observation and to
apply the observation at its valid time.

Newtonian relaxation [9,10], also known as nudging, adds nonphysical terms to the
tendency terms of the model over a period of time to gradually nudge the model toward
analyses or observations. Since the nonphysical terms added by nudging should be smaller
than the physical terms in the governing equations, nudging can adjust the model’s state
variables while maintaining an improved physical consistency compared to inserting
modified fields directly at a single time. Nudging allows observations to be applied over
a time period centered on their individual valid times, and assimilating analyses valid
at multiple times allows observations to be applied to the analysis closest to the valid
time of the observation. Fields that are nudged towards must be prognostic variables of
the numerical weather prediction model, and thus observations of non-prognostic fields
must be converted to prognostic fields in order to be used with nudging. Additionally,
nudging is not usually applied in a way that fully accounts for case-specific background
error covariances.

Several techniques have combined nudging with another technique. Shaw et al. [11]
initialized WRF with a 3DVAR analysis and then used observation nudging and found that
the combination appeared to perform better than either solution individually. Liu et al. [12]
nudged towards 3DVAR analyses of radar-derived fields while also applying observation
nudging. Lei et al. [13–15] combined nudging and the ensemble Kalman filter (EnKF)
and applied it first in simplified models and then in the Advanced Research version of
the Weather Research and Forecasting model (WRF-ARW; [16]). Information from the
ensemble was used to determine how the influence of the observations was spread and
how observations of one variable affect another variable. They found the hybrid technique
performed better than EnKF for wind direction and better than observation nudging
in temperature and relative humidity. Lei et al. [15] also found that noise levels in the
hybrid technique were much lower than the EnKF simulation. Liu et al. [17] reported on
a hybrid nudging–ensemble system that uses an ensemble to determine the strength at
which observation nudging is applied. Lei and Hacker [18] used a Lorenz model to test
observation nudging, EnKF, and the nudging–EnKF hybrid developed by Lei et al. [13–15].
They found that in the Lorenz model, the nudging–EnKF hybrid they tested could not
simultaneously outperform both nudging and EnKF.

This study demonstrates the combination of a scheme involving 3DVAR (the varia-
tional version of the Local Analysis and Prediction System; vLAPS; [19]) and nudging for
a single case day with strong convection. This combination takes advantage of vLAPS
analysis with the best fit of the observations and nudging with improvement in the physical
consistency among the analysis states. Verification of the WRF reflectivity forecasts sug-
gests that further research is needed to improve analysis nudging of high-temporospatial
resolution analyses. The experiments described here were previously described in a re-
port [20]; however, that report does not include the objective verification included here.
Nonetheless, since this study reports on a subset of the experiments in Reen et al. [20], there
are similarities between the text of that document and this study.
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This study is unique in its use of analysis nudging to incorporate vLAPS analyses, and
there appears to be little past work on assimilating any 3DVAR analyses using analysis
nudging. Liu et al. [12] assimilated 3DVAR analyses using analysis nudging but used solely
radar observations as the basis for the 3DVAR analyses compared to the much broader set
of observations included in the 3DVAR analyses used in our study. While Shaw et al. [11]
used 3DVAR and observation nudging, they did not use analysis nudging to apply the
3DVAR analyses, as is done in this study. Analysis nudging is usually used for model
forecasts with a horizontal grid spacing much coarser than the 1 km spacing used here
(e.g., [21,22]) since analyses are not usually available to nudge towards at such a high
resolution. Huo et al. [23] applied what appears to be analysis nudging to assimilate radar-
derived fields at a fairly high resolution (3 km grid spacing), but one that is somewhat
coarser than the 1 km grid spacing in this study. As the current study is limited to a
single case day and evaluation of the radar reflectivity field, it is intended as a limited
demonstration of the combination of a 3DVAR-based technique (vLAPS) and nudging.
One motivating factor in this investigation was to explore assimilation techniques that
may be able to provide value for forward-deployed on-demand nowcasting using limited
computational capability.

2. Materials and Methods
2.1. WRF-ARW

The Advanced Research version of the Weather Research and Forecasting model (WRF-
ARW) V3.6.1 [16] was used with 56 vertical layers over a 1 km-spaced 801 × 801 horizontal
grid centered over Oklahoma (Figure 1). The Mellor–Yamada–Janjić scheme (MYJ; [24])
was used to parameterize the atmospheric boundary layer (ABL) with the background
turbulent kinetic energy and atmospheric boundary layer depth calculation altered as in
Lee et al. [25] and Reen et al. [26]. The Thompson microphysics parameterization [27], the
Rapid Radiative Transfer Model longwave scheme [28], the Dudhia shortwave scheme [29],
and the Noah land surface model [30] were used.
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2.2. vLAPS

LAPS [31] uses a modified Barnes analysis [32] with some 1D variational compo-
nents [33], while vLAPS changes to a multiscale 3DVAR scheme for specific fields (tempera-
ture, pressure, winds, and humidity) [19]. The vLAPS 3DVAR scheme is based on the Space
and Time Multiscale Analysis System [34] and is multiscale spatially and temporally. The
analysis was performed here four times with the coarsest analysis at 16 km horizontally
and 50 hPa vertically, and subsequent analyses divided the resolution in half through
to the final analysis, which was 2 km horizontally and 25 hPa vertically. The first two
analyses used a 30 min time window, whereas the final two analyses used a 15 min time
window. The multiscale technique allows observations to spread broadly in data-sparse
areas while retaining fine-scale features in more data-rich areas and makes the technique
less dependent on the accuracy of the background error covariance. For wind, the control
variables were the u- and v-wind components [35] since Xie et al. [34,36] demonstrated that
the alternative of the stream function and velocity potential introduce numerical errors and
noise. The cloud analysis [33] combined Geostationary Operational Environmental Satellite
(GOES) infrared and visible data, radar data, surface observations, and model first-guess
fields to construct a cloud fraction. The cloud fraction was used to determine hydrometeor
fields and vertical velocity, with the latter affecting the 3D wind. Additionally, the cloud
analysis was used as a constraint in determining the vLAPS relative humidity field.

Analyses were created every 15 min using vLAPS. The background field for these
analyses was taken from the 3 km-horizontal grid spacing High-Resolution Rapid Refresh
(HRRR; [37]); specifically, we used the output from the HRRR 15 UTC cycle on 20 May 2013
(i.e., the integration of HRRR that starts at 15 UTC and provides forecasts at a 15 min tem-
poral spacing). Only the 15 UTC cycle of HRRR was used here to approximate conditions in
the application driving this research, namely, use in regions where cycles of the numerical
weather prediction model used for initial conditions are available much less frequently
than hourly. Each vLAPS analysis used the forecast hour of the 15 UTC HRRR cycle corre-
sponding to the vLAPS analysis time (e.g., the 18 UTC vLAPS analysis used the 3 h forecast
of the 15 UTC HRRR cycle). Sources of observations used to create the analyses included
Meteorological Assimilation Data Ingest System (MADIS; https://madis.noaa.gov) surface,
mesonet, profiler, radiosonde, and Aircraft Communications Addressing and Reporting
System (ACARS) observations; pilot observations; WSR-88D radars; and GOES. In addition
to the quality control applied by the MADIS data provider, MADIS data were also quality
controlled by comparing them to the HRRR fields used as the background.

2.3. Nudging

Nudging [9,10,38] adds a term to the model’s tendency equations based on the differ-
ence between the current model value and the value from an analysis (analysis nudging;
e.g., [39]) or an observation (observation nudging; [40]). This difference is known as the
innovation and is multiplied by weighting factors to create the nonphysical addition to the
tendency equation. In this study, some experiments applied analysis nudging using vLAPS
analysis, and some experiments applied observation nudging of MADIS observations. For
brevity, the details of nudging are simplified in the following discussion (see Reen et al. [20]
for additional details).

The vLAPS analyses were used by analysis nudging to modify the potential tem-
perature, water vapor mixing ratio, and u- and v-wind components. Within the ABL
(atmospheric boundary layer), only the surface analysis was used to calculate analysis
nudging terms; at the first level above the ABL, both the surface and above-surface analyses
contributed; and above this, only the above-surface analyses contributed. The innovation
calculated at the surface (by comparing the vLAPS surface analysis to the WRF surface
values) was applied throughout the ABL for the potential temperature and wind. For water
vapor, the innovation for each level in the ABL was calculated by comparing the surface
analysis to the model value at that level. Innovations above the ABL were calculated by
comparing the above-surface analysis to the model value at that level.

https://madis.noaa.gov
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WRF-ARW analysis nudging linearly interpolates between analyses, which, in this
case, were vLAPS analyses available every 15 min. The assimilation period was 3 h, and
thus vLAPS analyses from 13 different times were applied. The analysis valid at the end
of the assimilation period was applied with a linearly decreasing weight over the 15 min
following the end of the assimilation period. The released version of WRF-ARW V3.6.1
does not properly execute this rampdown period, and thus we modified the code to fix
this (the fix was provided to the WRF-ARW maintainers and is included in WRF-ARW
starting with V3.8). The strength at which analysis nudging was applied was 3 × 10−4 s−1.
Analysis (and observation) nudging is designed to gradually modify the model solution
while allowing the physical tendency terms to dominate the equations so that the physical
consistency of the atmosphere is maintained; this should mitigate any potential issues
with overfitting.

Observation nudging used MADIS surface, mesonet, profiler, radiosonde, and ACARS
observations (ACARS and profiler observations were inadvertently omitted for part of
the simulation). In addition to using the quality control carried out by the data provider,
to account for the data quality issues that may be more prevalent in mesonet datasets
(e.g., siting issues), mesonet observations were filtered using use/reject lists designed for
the Real-Time Mesoscale Analysis [41]. The Obsgrid program [42] was also used to apply
quality control. It compared the observations against the 15 UTC cycle of the 3 km HRRR
model on 20 May 2013 (i.e., the HRRR forecast that creates forecasts with valid times every
15 min starting at 15 UTC) and against nearby observations. A non-standard version of the
WRF Preprocessing System (WPS) program Ungrib was used to vertically interpolate the
HRRR field to additional levels to facilitate quality control of single-level above-surface
observations (ACARS), and to allow more vertical structure to be retained in multilevel
observations (the capability is available in standard Ungrib starting with WPS V3.9).

As with analysis nudging, one must specify the strength of the observation nudging
(6 × 10−4 s−1 was used here), but additional specification is needed in regard to the vertical,
horizontal, and temporal weighting since, unlike the analysis, one does not have one
value per model grid cell to nudge towards. Vertical weighting depends on observation
type, with the innovation from surface observations being spread throughout the ABL
during convective conditions, innovations from single-level above-surface observations
being applied in a 100 hPa range, and innovations from multilevel observations being
interpolated to model layers within the vertical range of the observation. A 30 km radius of
influence was used for surface observations, but terrain differences limited the spreading
further. For above-surface observations, the radius of influence increased from 60 km near
the surface to 120 km at 500 hPa. Surface observations were used for a 2 h time period
centered on the observation valid time, and above-surface observations were used for 3 h
time periods. At the end of the assimilation period, observation nudging was ramped
down to zero in 1 h (no observations valid during the rampdown were assimilated). The
modification of water vapor observation nudging to prevent excessive drying described
in [43] was applied. When observation nudging spreads the innovation from a location
where the model is too moist to a nearby location that is much drier, this can result in
unrealistic drying of the location the innovation is spread to. To mitigate this issue, the
modification limits the magnitude of negative water vapor innovations being applied in
locations drier than the location where the innovation is calculated.

2.4. Case Description

The day investigated here (20 May 2013) had strong convection in the southern Great
Plains region. The base reflectivity (composited over relevant individual radars) of the
observed radar (Figure 2) indicated echoes <35 dBZ at 1200, 1500, and 1800 UTC, with
most echoes generally along an approximately southwest–northeast-oriented line in the
northwest of the domain at 1200 and 1500 UTC, but moving to the north central portion of
the domain by 1800 UTC. However, after 1800 UTC, a strong line of southwest-to-northeast-
oriented convection developed ahead of the previous echoes and moved eastward. Multiple
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tornadoes were observed this day, with one that was determined to be an EF5 on the ground
approximately from 1956 to 2035 UTC starting in Newcastle, Oklahoma, and traveling
through Moore, Oklahoma [44–46]. Severe hail was also observed in multiple locations.
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Figure 2. Observed composite base reflectivity for 20 May 2013 at (a) 1200 UTC, (b) 1500 UTC, (c) 1800
UTC, (d) 1900 UTC, (e) 2000 UTC, (f) 2100 UTC, (g) 2200 UTC, and (h) 2300 UTC, and for 21 May 2013
at (i) 0000 UTC. The white arrow in panel e shows the approximate location of the Moore tornado at
that time. Imagery from the Iowa Environmental Mesonet (http://mesonet.agron.iastate.edu/GIS/
apps/rview/warnings.phtml; accessed on 10 November 2021).

Various modeling studies have been performed on this case. Hanley et al. [47] used
the United Kingdom Met Office’s Unified Model with 4.4/2.2/0.5/0.2/0.1 km horizontal
grid spacings without data assimilation and found convection initiating in the Oklahoma
City area at approximately the right time, but the tornado-like vortices in their finest grids
occurred approximately 2.5 h later than the Moore tornado. Zhang et al. [48,49] used
WRF-ARW to look at predictability in this case. Zhang et al. [48], using 27/9/3/1 km
horizontal grid spacings, found that temporal shifting of initial conditions generally tempo-
rally shifts convection but, in some cases, does not because lateral boundary conditions
control convective initiation. Zhang et al. [49] used a 1 km ensemble with perturbations
smaller than the current observational network could resolve and found that the ensemble
members all produce a line of storms, but that details of individual storms differed. Snook
et al. [50] used 500 m-horizontal grid spacing Advanced Regional Prediction System (ARPS)

http://mesonet.agron.iastate.edu/GIS/apps/rview/warnings.phtml
http://mesonet.agron.iastate.edu/GIS/apps/rview/warnings.phtml
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simulations with assimilation of radar and surface observations every 5 min using EnKF
and found skill in predicting hail.

2.5. Experiment Design

The experiments in Table 1 and Figure 3 were used to investigate the potential value
of combining vLAPS (2.2) and nudging (2.3) in WRF-ARW (2.1) for the case day of 20 May
2013 (2.4). The names of the experiments begin with the source of the initial conditions
(HRRR or vLAPS), followed by the length of the pre-forecast in hours (0 or 3), and finally
an O is added if observation nudging was applied, and an A is added if analysis nudging
was applied. The pre-forecast refers to the period at the beginning of the model integration
during which the model is assumed to be coming into dynamic balance, and during which
observations may be assimilated. Hydrometeors are included in the initial conditions
provided by both HRRR and vLAPS. Boundary conditions are based on the output from the
15 UTC HRRR cycle. Assimilation of observations or analyses valid during the pre-forecast
time may extend into the beginning of the free forecast, but observations or analyses valid
during the free forecast should not be assimilated. However, the time window over which
observations are included in vLAPS analyses extends 15 min after the valid time of the
analysis, and thus observations during the first 15 min of the free forecast are included via
the vLAPS analyses.

Table 1. Experimental design. Groups are HS = hot start, WS = warm start, ON = observation
nudging, and AN = analysis nudging (VLAPS3AO contains both analysis and observation nudging
but is assigned to group AN).

Name
Initial

Condition Source
Pre-Forecast
Length (h)

Nudging

Analysis Obs Group

HRRR0 HRRR 0 N N WS
HRRR3 HRRR 3 N N WS
VLAPS0 vLAPS 0 N N HS
VLAPS3 vLAPS 3 N N WS

VLAPS3O vLAPS 3 N Y ON
VLAPS3A vLAPS 3 Y N AN

VLAPS3AO vLAPS 3 Y Y AN

The experiments initialized with HRRR0 and HRRR3 served as the no-assimilation
control experiments for the 0 h pre-forecast and 3 h pre-forecast experiments, respectively.
HRRR0 and HRRR3 differ from one another in that, for a given cycle, the HRRR3 experiment
starts integrating 3 h earlier to allow WRF to spin up. For example, the 20 UTC cycle of
HRRR0 (referred to as HRRR020) starts integrating at 20 UTC using the 5 h forecast from the
15 UTC HRRR cycle, whereas HRRR320 starts integrating at 17 UTC using the 2 h forecast
from the 15 UTC HRRR cycle, but the output between 17 and 20 UTC is not considered
part of the forecast since it is during the spinup time. The experiments initialized with
vLAPS that applied no additional nudging were used to determine the potential value of
adding nudging. VLAPS0 represents the normal way in which vLAPS (and other 3DVAR
analyses) is used, while VLAPS3 allows the effect of a 3 h pre-forecast without additional
nudging assimilation to be ascertained. Both experiments used the vLAPS analysis as
the initial conditions for the model integration. The other three experiments used vLAPS
for the initial conditions, and during a 3 h pre-forecast, they analysis nudged toward the
thirteen vLAPS analyses valid during this period (VLAPS3A), observation nudged toward
observations (VLAPS3O), or both (VLAPS3AO). These experiments explore the value of
applying a series of vLAPS 3D analyses rather than just one, and whether observation
nudging might add value even when vLAPS analyses are used.
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Figure 3. Experimental design. The initial conditions for the experiment are labeled in white letters.
The short vertical blue lines represent the valid times of the variational version of the Local Analysis
and Prediction System (vLAPS) analyses which were used in analysis nudging for a time period
centered on the valid time. The rampdown period of nudging as described in Section 2.3 is omitted
from this figure for clarity. Each experiment was run with t0 values of 1800, 1900, 2000, 2100, 2200,
and 2300 UTC. Adapted from Reen et al. [20].

For the purpose of comparing the experiments in the objective verification section, we
broke them up into groups based upon the general method of data assimilation applied.
These groups are referred to as hot start (HS; VLAPS0), analysis nudge (AN; VLAPS3A and
VLAPS3AO), observation nudge (ON; VLAPS3O), and warm start (WS; HRRR0, HRRR3,
and VLAPS3). The experiment that used both analysis and observation nudging was placed
within the AN group, and the WS group included all experiments that “spun up” from
either a vLAPS- or HRRR-generated background state without further data assimilation
application. The motivation for including the non-vLAPS experiments in the WS group
was that the HRRR 15 UTC forecast cycle fields provide sufficiently “spun up” mesoscale
information (including hydrometeor fields), due to the model’s own high-quality data
assimilation methodology and 3 km native grid spacing, meaning it is essentially a warm
start. In summary (Table 1), HS included VLAPS0, AN included VLAPS3A and VLAPS3AO,
ON included VLAPS3O, and WS included HRRR0, HRRR3, and VLAPS3.

For each experiment, independent cycles were carried out hourly with the integration
period of all cycles ending at 0000 UTC on 21 May 2013 (Figure 4). The 0 h forecast time is
the end of the pre-forecast and the beginning of the forecast (t0 in Figures 3 and 4), which
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was 1800 UTC for the first cycle and 2300 UTC for the final cycle (i.e., cycles were run with
the following t0 values: 1800, 1900, 2000, 2100, 2200, and 2300 UTC). Each cycle is referred
to by its 0 h forecast time (t0). Each WRF cycle includes the integration of WRF through
the 3 h pre-forecast period up to t0 (except for VLAPS0 and HRRR0, which do not have a
pre-forecast period) and the integration of WRF from t0 until the end of the forecast at 0000
UTC. For example, the 18 UTC cycle of VLAPS3AO (referred to as VLAPS3AO18) starts
integration at 1500 UTC, applies analysis and observation nudging data assimilation during
the integration in the 3 h pre-forecast period ending at 1800 UTC (t0), and then continues
integrating until the end of the forecast period at 0000 UTC. Each cycle is independent in
that it is not affected by any of the other cycles.
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All experiments used the 1500 UTC cycle of HRRR as the starting point to determine
the initial conditions and boundary conditions, with the vLAPS analyses using this cycle
as the first-guess field. This simplifies the experimental design and is more representa-
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tive of the limited frequency of updated model data available to drive finer-scale model
simulations in battlefield conditions.

In order to more concretely illustrate the experimental configuration, Figure 5 shows
how one specific experiment (VLAPS3AO) was configured for one specific cycle (2100 UTC),
i.e., VLAPS3AO21. The lower portion of Figure 5 illustrates how analysis nudging was
applied during the 3 h pre-forecast (1800–2100 UTC for this cycle) using 15 min vLAPS
analyses by showing the analysis nudging details for the first hour of this period (i.e., 1800–
1900 UTC). Each analysis was applied to the model over 30 min centered on the valid time
of the analysis. The weight at which it was applied linearly increased in the 15 min prior
to the valid time of the analysis and linearly decreased in the 15 min following the valid
time. Observation nudging applied observations over a time window centered on each
individual observation; as described in Section 2.3, a 2 h time window was used for surface
observations, and a 3 h time window was used for above-surface observations.
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Figure 5. Schematic illustrating the details of a specific experiment (VLAPS3AO) for a specific cycle
(21 UTC), i.e., VLAPS3AO21. While the lower half of the figure shows the details of how vLAPS
analyses were applied using analysis nudging between 1800 and 1900 UTC, analysis nudging towards
vLAPS analyses took place throughout the 3 h pre-forecast period.

3. Results

Here, the evaluation of the combination of a 3DVAR-based technique (vLAPS) and
nudging is limited to reflectivity. To demonstrate the variation among the experiments, a
single forecast time for a single cycle is examined subjectively. However, given the number
of experiments, cycles, and forecast times, the objective evaluation that follows allows for a
more holistic understanding of the results.
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3.1. Subjective Evaluation

The observed composite base reflectivity is compared to the WRF-ARW lowest-level
reflectivity for the 18 UTC cycle of each experiment in Figure 6 for 2015 UTC 20 May
2013. This is near the time of the peak of the EF5 tornado and was chosen as a time where
strong convection is present. The observed reflectivity (Figure 6c) shows convection along
a southwest-to-northeast-oriented line from Texas through the southeast corner of Kansas.
There are weaker echoes (<30 dBZ) in a short line in central Kansas, and scattered echoes
in the northwest corner of the domain. All of the experiments forecast the main line of
convection and some echoes in the northwest corner of the domain, but there are notable
differences among the experiments.
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The observed reflectivity is from the Iowa Environmental Mesonet (http://mesonet.agron.iastate.
edu/GIS/apps/rview/warnings.phtml; accessed on 10 November 2021).
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The northern portion of the main line of convection is not well simulated by the
experiments initialized with HRRR (HRRR018 in Figure 6a and HRRR318 in Figure 6d). The
use of vLAPS as the initial condition slightly strengthens convection in this area (VLAPSO18
in Figure 6b), and the addition of the 3 h pre-forecast without nudging (VLAPS318 in
Figure 6e) brings the strength closer to the observations. However, it appears that the
experiment analysis nudging to the vLAPS analyses and applying observation nudging
(VLAPS3AO18 in Figure 6h) best reproduces the continuous strength of the convection
along this line in Kansas. The southern edge of the main line of convection does not extend
far enough south in VLAPS318 (Figure 6e), but most of the other experiments appear to
extend it too far south. All experiments show echoes in the general region of the observed
EF5 tornado, but only three experiments (VLAPSO18 in Figure 6b, VLAPS318 in Figure 6e,
and VLAPS3O18 in Figure 6g) show echoes at the location, with two of these experiments
(VLAPSO18 in Figure 6b and VLAPS3O18 in Figure 6g) showing echoes ≥ 40 dBZ very
close to the location.

The area of weak echoes in central Kansas is not well forecast by any of the experiments.
The HRRR-initialized experiment without a pre-forecast (HRRR018 in Figure 6a) shows
the feature stronger and smaller than observed and, unlike the observations, does not
show an area with no echoes between it and the echoes in the northwestern portion of the
domain. The vLAPS-initialized experiment without a pre-forecast (VLAPS018 in Figure 6b)
shows a pair of lines of convection in this area that are both much stronger than observed.
The 3 h pre-forecast (HRRR318 in Figure 6d) allows the HRRR initialization to reproduce
more of the separation between the feature and echoes in the northwestern portion of
the domain observed but shows the feature with much less coverage than observed. For
experiments with the 3 h pre-forecast, using vLAPS as the initial conditions broadens
the area covered by this feature compared to the HRRR initialization (HRRR318) and
removes the second line of convection seen in the vLAPS experiment without the 3 h
pre-forecast (VLAPSO18). The experiments with the area covered by this feature that most
closely match the observations appear to be the experiments analysis nudging the vLAPS
analyses (VLAPS3A18 in Figure 6f and VLAPS3AO18 in Figure 6h). However, all of the
experiments that produce the feature show it stronger than observed. The echoes in the
northwest quadrant of the domain, in general, appear to be stronger than observed in the
experiments, perhaps most so for experiments analysis nudging towards vLAPS analyses or
observation nudging (VLAPS3A18 in Figure 6f, VLAPS3O18 in Figure 6g, and VLAPS3AO18
in Figure 6h).

All of the experiments produce model base reflectivity fields that are at least generally
consistent with the observed composite radar reflectivity, but there is notable variation
among the experiments. While it is difficult to subjectively determine which experiment
performs best at the time shown here for this cycle, the results suggest that the experiment
analysis nudging to the vLAPS analyses and applying observation nudging performed
reasonably well (VLAPS3AO18 in Figure 6h).

3.2. Objective Evaluation

The previous subsection presented subjective support that the model simulations
realistically reproduced the general convective outbreak event on the afternoon of 20 May,
including aspects associated with the timing, spatial location, alignment, and convective
mode. Reen et al. [20] showed that the model had some ability in capturing realistic gross
structures seen in supercellular storms. However, the evolution of the convective outbreak
and structural details of individual convective elements differed among the experiments;
this variation offers a spread of potential solutions, consistent with what might be expected
based on the findings in Zhang et al. [49]. The following section provides a more objective
evaluation using several forecast performance measures to compare all of the different
experiments aggregated across the hourly cycles during the afternoon of May 20.

Although the results are only valid for this single unique case study event, they may
provide valuable clues as to how the various techniques can perform in a more general
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sense. We are also interested in whether our combined 3DVAR analysis/observation
nudging strategy might be of value in supporting stand-alone operational nowcasting
systems run on a more modest computational hardware platform.

3.2.1. Metrics Used in Objective Evaluation

To quantitatively measure the performances of each cycle across the full spectrum
of our experiments, a trio of well-established forecast evaluation measures was used to
examine the short-range convective forecasts by comparing observed to model forecast
radar reflectivity fields. The fractions skill score, or FSS [51], is a spatial verification metric
often used for assessing the performance of precipitation forecasts from numerical weather
prediction (NWP) models (frequently for convective precipitation). The critical success
index, or CSI [52], is another common metric used to evaluate categorical forecasts, taking
into account hits, misses, and false alarms. Finally, the frequency bias score (FBIAS) [53,54]
is also used to assess the quality of model-derived radar reflectivity field forecasts against
real radar observations [19,53]. The FBIAS is simply the ratio between the number of
model grid points where the model forecasts reflectivity above a certain threshold and
the number of model grid points where the observed radar reflectivity values exceed the
same threshold.

The FSS was computed for different neighborhood sizes aggregated from the native
grid resolution. The aggregation was also conducted across all of the relevant cycles for each
lead forecast time in each experiment (not all cycles are relevant for each forecast lead time
since some cycles are too short to include some forecast lead times). For example, the FSS
for the 1.25 h forecast lead time of VLAPS3AO aggregates the verification of VLAPS3AO18
at 1915 UTC, VLAPS3AO19 at 2015 UTC, VLAPS3AO20 at 2115 UTC, and VLAPS3AO21
at 2215 UTC (Figure 4 shows the relationship between forecast lead time and valid time
for each cycle). Since model forecast skill often varies based on the forecast lead time,
aggregating statistics by forecast lead time reveals how the temporal evolution of error
varies among methodologies. The CSI and FBIAS were not computed using neighborhoods
but were both calculated on the highest available resolution grid (here, our native model
grid spacing of 1 km) and, as with FSS, were aggregated across cycles for each lead forecast
time in each experiment. The FBIAS of reflectivity measures how much the model either
overforecasts (forecast is more than the actual) or underforecasts (forecast is less than the
actual) coverage of reflectivity values exceeding a threshold. No verification takes place
during the pre-forecast (where data assimilation occurs), but verification is instead limited
to the forecast period.

As noted previously (and shown in Figure 4), a model integration with a t0 of each
hour from 1800 UTC to 2300 UTC was launched (i.e., an hourly refresh) for each experiment
and produced 15 min forecasts from t0 out to 0000 UTC of 21 May. The latest time verified
is 2300 UTC because radar data provided by vLAPS were not available after this time. The
output was produced in 15 min intervals, which thus produced forecasts for verification
with lead times ranging from 15 min to 5 h (resulting in statistics at 20 different forecast
lead times). Due to the 0000 UTC end time of all cycles, but radar data not being available
after 2300 UTC, only the 1800 UTC cycle produced a 5 h forecast lead time. Because of
various pre-forecast requirements across different experiments, some experiments start
their integration before their 0 h lead time (e.g., a model cycle with a base time of 1800 UTC
with a 3 h pre-forecast requirement was actually initialized at 1500 UTC with lead times
of forecasts based on the 1800 UTC mark). Since all simulations terminated at 0000 UTC,
the model integrations which started at 2300 UTC had only a maximum 1 h lead forecast
available. Because radar data were not available after 2300 UTC, all verification forecast
times of the 2300 UTC cycle (other than the 0 h forecast time) are after the end of radar
data availability, and thus the 2300 UTC cycle is not included in the objective verification
statistics. WRF-ARW “restart” forecasts were not used to initialize from a previous cycle’s
forecast—all first-guess initial condition (and lateral boundary tendency) fields for all cycles
leveraged the 1500 UTC HRRR cycle forecast fields available at hourly increments. A single
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HRRR cycle was used to more closely approximate the cycle frequency that is available
outside of the United States for models such as the Global Forecast System that could be
used as boundary conditions for fine-scale simulations.

Each experiment was aggregated across its simulations to create statistics, with each
value representing that experiment’s performance for the forecast lead time, reflectivity
threshold, and (for FSS) neighborhood size being evaluated. Similar to other studies, the
column maximum radar reflectivity from both the model and the National Weather Service
WSR-88Ds (provided by the National Oceanic and Atmospheric Administration; NOAA)
was used to evaluate the convective forecasts [55]. The ground truth column maximum
radar reflectivity fields obtained from the NOAA are the same type as those used for
previous studies involving the original LAPS product [33]. The model column maximum
reflectivity was computed using the WRF-ARW diagnostic method [56] that uses prognostic
hydrometeor fields from the model microphysics parameterization.

The FSS for two radar reflectivity thresholds (25 dBZ and 35 dBZ) using a 9 km
neighborhood size is shown in Figure 7. The CSI and FBIAS metrics are shown in Figures 8
and 9. The neighborhood size of 9 km is here considered to be a reasonable estimate for
the “effective resolution” of the WRF-ARW when run on a mesh with a native 1 km grid
spacing [57]. The number of cycles included in the statistics varies by forecast lead time,
with five cycles included at the 1 h forecast and one cycle included at the 5 h forecast.

3.2.2. Outcome of Objective Evaluation

For the purpose of comparing the experiments in this section, we utilized the groups
described in Section 2.5 which are based upon the general method of data assimilation
applied. The various FBIAS, FSS, and CSI curves throughout the lead forecast period
of study (as seen in Figures 7–9) show similarity within these assimilation methodology
groups, namely, hot start (HS), analysis nudge (AN), observation nudge (ON), and warm
start (WS). Note that the time subscript is omitted when referring to the evaluation of the
WRF forecasts in this section because each experiment is evaluated based on data that are
combined across the cycles.

Although VLAPS0 is considered as a HS, it does differ from previous LAPS/vLAPS HS
experiments [19,58] in that it did not directly insert the vertical velocity from the analysis
into the WRF-ARW initial conditions. However, the hydrometeor fields produced in the
vLAPS analyses are used in the appropriate initial WRF-ARW arrays. Additionally, since
both reflectivity and radial wind information from the WSR-88D radars were incorporated
into the vLAPS analyses, it is expected that the initial vertical velocity fields adjusted
quickly through continuity considerations to the convective-scale information provided by
the radar data. Any experiment that used a pre-forecast period and which started from an
initial vLAPS analysis also filled the initial WRF-ARW arrays in the same fashion (Section 2
provides more details on the use of vLAPS analyses for model initialization). When the
vLAPS analyses are used instead solely as a source for 15 min intermittent analysis nudging
across a pre-forecast period by WRF-ARW, the analyses are only used to nudge the potential
temperature, water vapor mixing ratio, and u- and v-wind components, as these are the
variables for which analysis nudging is available in WRF-ARW.
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Figure 7. FSS by lead forecast time (by experiment) and for (a) 25 dBZ and (b) 35 dBZ reflectivity
threshold levels (for a 9 km neighborhood size). Line colors indicate whether an experiment is in the
warm start (WS), hot start (HS), analysis nudge (AN), or observation nudge (ON) group. The number
of cycles included in the statistics at each integer lead time hour is shown along the top of the figure.
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Figure 8. CSI by lead forecast time (by experiment) and for (a) 25 dBZ and (b) 35 dBZ reflectivity
threshold levels. Line colors indicate whether an experiment is in the warm start (WS), hot start
(HS), analysis nudge (AN), or observation nudge (ON) group. The number of cycles included in the
statistics at each integer lead time hour is shown along the top of the figure.
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Figure 9. FBIAS by lead forecast time (by experiment) and for (a) 25 dBZ and (b) 35 dBZ reflectivity
threshold levels. Line colors indicate whether an experiment is in the warm start (WS), hot start
(HS), analysis nudge (AN), or observation nudge (ON) group. The number of cycles included in the
statistics at each integer lead time hour is shown along the top of the figure.

Upon examining Figures 7–9, the first thing of immediate note is that for this case
study event, the HS experiment stands out from the others, mostly within the initial lead
forecast hour. The FSS and CSI scores for the HS experiment are clearly superior to all
other groups during at least the first 30 min of lead forecast time (independent of whether
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the 25 dBZ or 35 dBZ reflectivity threshold value is used). This strong advantage for
very short term nowcasting of vLAPS is most likely due to its use of a diabatic hot start
methodology and has been noted previously [19,58]. The motivation with vLAPS has
always been to compete with and exceed the skill of simpler nowcasting methods such as
feature-based advection/extrapolation or basic persistence during the initial hour. This
is a very challenging goal for convective-scale NWP modeling. In at least this study, the
flip side to HS seems to be that the FSS and CSI scores quickly degrade back to those of
the other methods by approximately a 2 h lead time and, by a 5 h lead time, even appear
to result in somewhat worse scores. Perhaps this is some evidence of an overfitting to
the stronger reflectivity echoes at time 0 h, and that some degree of imbalance could still
remain between the full set of mass and momentum model fields produced by the hot start
analysis itself.

The AN group of experiments exhibited the highest FSS and CSI scores during the first
lead hour (outside of HS). The AN group shows that both FSS and CSI gradually declined
to approximately 2 h and then remained mostly flat until approximately 4 h. During most of
the period after approximately the 1 h lead forecast time, the AN experiments clump in with
the other groups in terms of general FSS and CSI scores. An exception is the VLAPS3AO
experiment in the AN group, which shows a gradual decrease in FSS and CSI scores after
the 4 h lead forecast—all other experiments in all groups show a slight increase in FSS
and CSI scores starting at approximately the 4.5 h lead forecast. This may be an artifact of
the very limited number of cycles (and thus very small sample size) available to compute
metrics at the 4 h and 5 h lead forecasts. It could also point to some need to fine-tune aspects
of the combined analysis and observation nudging criteria used by VLAPS3AO, particularly
when combining meso/synoptic-scale conventional observations via observation nudging
with convective-scale observation data assimilated through analysis nudging to the 15 min
updated vLAPS analyses (when the radar data are incorporated).

The ON group fell in the middle to lower half of the pack of all groups, both for the
short and longer lead forecast times, in terms of FSS and CSI scores. The FSS and CSI scores
for the VLAPS3O experiment generally remained fairly consistent at all lead forecast times.

The FSS and CSI scores for the WS group tended to track fairly closely to those of the
ON group, although HRRR0 was a bit lower initially, while VLAPS3 beyond 2.5 h was
a notable exception (higher FSS at further lead times). For the 25 dBZ threshold, the WS
group (including HRRR0 and HRRR3) tended to outperform the ON group in FSS and
CSI through much of the lead forecast period after approximately 3 h. VLAPS3 generally
showed the highest FSS and CSI scores of all experiments from lead forecasts of 2.5 h and
beyond, particularly for the 25 dBZ reflectivity threshold.

Tables 2 and 3 show the FSS scores at lead forecast times of 0.25 h, 1.75 h, 3.50 h, and
5.00 h for each experiment, and for the 25 dBZ and 35 dBZ thresholds, respectively (for a 9
km neighborhood size). The tables more clearly show the data values, which can also be
estimated from Figure 7.

Table 2. FSS for 25 dBZ threshold and 9 km neighborhood size, at four different lead forecast times (h).

Experiment
FSS by Lead Forecast (h)

0.25 1.75 3.50 5.00

HRRR0 0.22 0.34 0.38 0.42
HRRR3 0.33 0.34 0.35 0.41
VLAPS0 0.75 0.40 0.30 0.22
VLAPS3 0.29 0.33 0.42 0.53

VLAPS3A 0.44 0.40 0.38 0.41
VLAPS3AO 0.41 0.39 0.33 0.26
VLAPS3O 0.28 0.35 0.32 0.46
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Table 3. FSS for 35 dBZ threshold and 9 km neighborhood size, at four different lead forecast times (h).

Experiment
FSS by Lead Forecast (h)

0.25 1.75 3.50 5.00

HRRR0 0.11 0.22 0.22 0.28
HRRR3 0.20 0.22 0.21 0.28
VLAPS0 0.72 0.23 0.16 0.11
VLAPS3 0.18 0.23 0.30 0.34

VLAPS3A 0.33 0.25 0.24 0.26
VLAPS3AO 0.31 0.24 0.20 0.11
VLAPS3O 0.19 0.28 0.22 0.31

Examining the FBIAS among the groups (Figure 9), we can determine whether the
model was forecasting too much (overforecasting; FBIAS > 1.0) or too little (underforecast-
ing; FBIAS < 1.0) areal coverage of reflectivity at or above a given reflectivity threshold.
Early in the lead forecast period, nearly all the groups of experiments showed a significant
tendency to overforecast the stronger convection (higher reflectivity) areas, such as at the
higher 35 dBZ threshold. HRRR0 from the WS group produced the least biased FBIAS
results for both thresholds early in the lead forecast time, but with increasing FBIAS through
approximately the 3 h lead forecast. The VLAPS3 and HRRR3 experiments, also from the
WS group, tended to also be less high biased during the early lead forecast period. All of
the other experiments from the different groups started in mostly the 2.0 to 3.0 FBIAS range
for both the 25 dBZ and 35 dBZ thresholds but dropped steadily towards FBIAS values of
1.0 to 1.5 by the end of the 5 h lead forecast period. At the 25 dBZ threshold, the ON group
began to underpredict areal coverage by the end of the forecast period (VLAPS3O).

At the 25 dBZ and 35 dBZ thresholds, overforecasting was the main forecast feature
across all experiments, particularly early in the lead forecast period. The single HS experi-
ment, VLAPS0, showed the most exaggerated overforecasting at approximately the 30 to
45 min lead forecast for the 35 dBZ threshold (as high as approximately 3.25) but dropped
steadily towards ≈1.25 by the end of the 5 h forecast period. The experiments VLAPS3AO,
VLAPS3A, and VLAPS3O followed a similar FBIAS evolution (in terms of rate of increase
and decrease) to VLAPS0 for both the 25 dBZ and 35 dBZ thresholds after the 1 h lead time.
During the 0 h to 1 h lead forecast period, the FBIAS decreased in the VLAPS3O forecasts,
whereas the VLAPS3A and VLAPS3AO FBIAS remained fairly constant. In contrast to all
of the other experiments, the VLAPS0 FBIAS sharply increased between the 0.25 h and
0.50 h forecasts, suggesting that the initial analysis solution may not be in complete balance
(perhaps from overfitting to the radar observations) with the WRF-ARW model on the
1 km domain. Tables 4 and 5 show the specific FBIAS scores at lead forecast times of 0.25 h,
1.75 h, 3.50 h, and 5.00 h for each experiment, and for the 25 dBZ and 35 dBZ thresholds,
respectively. The overforecasting at the 25 dBZ and 35 dBZ thresholds is generally more
pronounced for forecasts recently influenced by observations (via vLAPS analyses directly
inserted at t0 in VLAPS0, via vLAPS analyses being analysis nudged towards in VLAPS3A
and VLAPS3AO, or via observation nudging in VLAPS3O). It may be that the methods used
to incorporate observations into vLAPS analyses and through observation nudging make
assumptions that do not work optimally for this specific case and the specific observations
available; future work should explore the generality of this bias and seek to determine how
the methodologies could be improved to lower the overforecast bias.

The variation in performance by neighborhood size and reflectivity threshold (as
measured by FSS) for this case study can be seen more clearly in Table 6. In Table 6, the FSS
is shown for a few different lead forecast times near the start and end of the forecast period
(0.50 h and 5.00 h), and for different neighborhood sizes (1 km, 9 km, 17 km). The lower 10
dBZ threshold is focused upon in Table 6, although for the 9 km neighborhood (closest to
the effective resolution of the WRF 1 km grid spacing output), additional thresholds of 25
dBZ and 35 dBZ are also shown. The tendency of FSS to improve with lower reflectivity
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thresholds and larger neighborhood sizes, as seen in most previous NWP convection-
allowing precipitation studies, is repeated here.

Table 4. FBIAS for 25 dBZ threshold at four different lead forecast times (h).

Experiment
FBIAS by Lead Forecast (h)

0.25 1.75 3.50 5.00

HRRR0 1.23 1.36 1.46 1.16
HRRR3 1.53 1.33 1.18 1.08
VLAPS0 1.73 1.97 1.44 1.02
VLAPS3 1.65 1.37 1.27 1.16

VLAPS3A 2.02 1.98 1.49 1.25
VLAPS3AO 2.32 2.10 1.42 1.01
VLAPS3O 2.37 1.55 1.10 0.91

Table 5. FBIAS for 35 dBZ threshold at four different lead forecast times (h).

Experiment
FBIAS by Lead Forecast (h)

0.25 1.75 3.50 5.00

HRRR0 1.08 1.56 1.77 1.48
HRRR3 1.79 1.53 1.53 1.37
VLAPS0 1.86 2.40 1.66 1.20
VLAPS3 1.82 1.55 1.53 1.60

VLAPS3A 2.41 2.42 1.79 1.69
VLAPS3AO 2.76 2.49 1.65 1.33
VLAPS3O 2.67 1.64 1.23 1.25

Table 6. FSS as it varies across three different neighborhood sizes for the 10 dBZ threshold, and for
two different lead forecast times (near the start and end of the forecast period). Note that additional
thresholds of 25 dBZ and 35 dBZ are shown only for the 9 km neighborhood size (since 9 km is of
interest due to it closely representing the effective resolution of the WRF output produced from the
1 km grid spacing nest).

FSS by Neighborhood Size (NS), Threshold (T), and Lead Time (LT)
NS 1 km 9 km 17 km
T 10 dBZ 10/25/35 dBZ 10 dBZ

Experiment LT 0.25 h 5.00 h 0.25 h 5.00 h 0.25 h 5.00 h

HRRR0 0.43 0.65 0.50/0.22/0.11 0.71/0.42/0.28 0.54 0.74
HRRR3 0.50 0.61 0.59/0.33/0.20 0.67/0.41/0.28 0.64 0.70
VLAPS0 0.67 0.56 0.77/0.75/0.72 0.62/0.22/0.11 0.80 0.65
VLAPS3 0.51 0.61 0.60/0.29/0.18 0.67/0.53/0.34 0.64 0.70

VLAPS3A 0.54 0.64 0.64/0.44/0.33 0.70/0.41/0.26 0.68 0.72
VLAPS3AO 0.51 0.55 0.60/0.41/0.31 0.61/0.26/0.11 0.64 0.64
VLAPS3O 0.45 0.52 0.51/0.28/0.19 0.57/0.46/0.31 0.55 0.59

4. Discussion

This study’s main goal was to complete a preliminary investigation of how nudging
and vLAPS 3DVAR compare, and how combining them could improve short-range now-
casting. This paper’s focus was more upon the overall methods, and less upon the specific
differences across the forecast results, because statistical evaluation of additional cases is
needed to draw conclusive statements.

From a subjective standpoint, the experiments captured the main features/structures
and general timing of the severe convective outbreak over Oklahoma on the afternoon of
20 May 2013 (some more realistically than others). This was a strongly forced convective
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event and was likely to be inherently more predictable [59–62]. The FSS and CSI metrics
showed that the experiments performed similarly around the 2 h forecast, while differences
among the experiments were somewhat larger at other forecast hours. VLAPS0 is an outlier
with much higher scores over the initial lead forecast hour (but generally the lowest scores
during the 3 to 5 h lead forecast period). The experiments that applied data assimilation
across a short pre-forecast period, including the VLAPS3AO hybrid observation/analysis
nudging approach introduced by the authors of this paper, appeared to improve FSS and
CSI at the start of the nowcast cycles compared to not performing data assimilation during
this pre-forecast period (i.e., VLAPS3AO, VLAPS3A, and VLAPS3O compared to VLAPS3).
However, they could not match the FSS and CSI gained by inserting vLAPS analyses at the
beginning of the simulation without a pre-forecast period (VLAPS0).

The VLAPS3 combination of starting the model integration from a 3D variational
analysis (leveraging radar data), followed by a subsequent 3 h pre-forecast period, per-
formed well relative to most of the other experiments for bias in the first portion of the
forecast period (HRRR0 had better bias and HRRR3 was very similar to VLAPS3). It also
performed better than all of the other experiments for CSI/FSS in the latter portion of the
forecast period.

While analysis nudging toward high-resolution 3DVAR vLAPS analyses shows poten-
tial promise for improving short-term convection forecasts, the results suggest further work
is needed to best leverage high-resolution analyses. The rapid increase in overforecast bias
in VLAPS0 at the beginning of the forecast and CSI and FSS performing worse than any
other experiment later in the forecast suggest that the VLAPS0 method of directly inserting
the analysis at the beginning of the forecast may not be optimal. Analysis nudging towards
a series of vLAPS analyses may be a way to improve the assimilation of vLAPS analyses.
However, two factors suggest room for improvement in the methodology used to analysis
nudge towards the vLAPS analyses (VLAPS3A, VLAPS3AO). One factor is that the analysis
nudging experiments have a noticeably higher overforecast bias than an experiment started
with the same initial conditions but no subsequent data assimilation (VLAPS3). The second
factor is that during the first hour, directly inserting vLAPS analyses at the beginning of the
forecast (VLAPS0) performs much better (in terms of CSI and FSS) than analysis nudging
towards the vLAPS analyses. Analysis nudging is not normally used to assimilate analyses
with the high temporal (15 min) and horizontal (1 km) spacing used here. Thus, informing
the analysis nudging weights by previous research may have resulted in analysis nudging
having been applied more weakly or more strongly than would best assimilate the analyses.
Additionally, in order to fully assimilate the vLAPS analyses, nudging towards additional
fields from the analyses may be needed to supplement those currently available for anal-
ysis nudging in WRF. Given the verification results, it is not clear that using observation
nudging (VLAPS3A vs. VLAPS3AO) adds values in this case; this may be because the
high-temporal and spatial resolution observations used in the vLAPS analysis limit the
added value of assimilating individual observations at a time centered on their valid times.

Both HRRR0 and HRRR3 (also in the WS group) proved competitive in FSS and
CSI scores after approximately the first 90 min of the lead forecast and out through the
longer lead times (and for FBIAS throughout the forecast); this is consistent with both the
high-resolution nature and the sophisticated data assimilation methodology built into the
HRRR cycling model itself. Since the 15 UTC HRRR cycle forecasts were leveraged in
every experiment across all cycle times, the oldest HRRR forecast used to provide a lateral
boundary condition (at 00 UTC 21 May) had a 9 h lead time. Some recent studies [63–65]
indicate that convection-resolving NWP models, using sophisticated data assimilation
approaches (including radar data ingest), can show skill and predictability out to 6–12 h.
This is especially true for strongly forced convection, which is the type of convection in
this study. Weakly forced convection (such as the type common over the summer in the
southeastern US) tends to be considerably less predictable at these same resolutions, due to
less certainty in capturing the convective initiation mechanisms [66].
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Two advantages our simulations had were that (1) a high-quality 3 km HRRR forecast
produced at 15 UTC was available for creating lateral boundary tendencies (and either the
initial conditions or the first guess for the analysis used as the initial conditions); and (2)
multiple Doppler WSR-88D radars were available to the vLAPS analyses. If we consider a
forward-deployed army unit running a similar modeling configuration on a laptop with
restrictive communication bandwidth availability, conditions such as (1) and (2) above
will likely not typically be present. However, this study shows that atmospheric data
assimilation approaches not reliant on a full EnKF [67] or 4DVAR [68] approach, and not
in need of high-performance computing cluster solutions, can still provide value-added
short-range nowcast guidance to local human forecasters and automated forecast systems
and weather decision support tools.

While this study used a single, large domain to simplify the experiment setup (made
possible by the availability of the high-resolution HRRR output), in order to make this
tractable for a forward-deployed system, nested grids with a much smaller innermost
domain would be needed. In the case of a tactical NWP-based nowcasting system (a rapid
update cycling model), the ability to collect and effectively assimilate special tactical
weather observations (sensors on unmanned aerial systems, lidar, radar, etc.) along with
non-traditional sources of weather observations (for example, the Air Force Global Synthetic
Weather Radar product [69], which leverages satellite observations and other data sources)
will be an important avenue to full success. Additionally, while this study used vLAPS
analyses, the techniques investigated could be used with other high-resolution analyses.

In terms of convective forecasting, which was the focus of this paper, there is still
ample work remaining towards improvement upon the bias and skill issues, especially at
the higher reflectivity threshold levels. Future work should investigate additional cases to
explore the generality of the results seen in this case, including exploring whether the high
reflectivity bias seen in the current case is seen in other cases and determining the causes of
this bias. Given that this was a strongly forced and large-scale convective outbreak, these
issues are likely going to be even more challenging in weakly forced convective environ-
ments [66]. This case study describes methodologies that can be used to apply 3DVAR
analyses in conjunction with nudging, demonstrates that applying these methodologies
for vLAPS analyses for this case study does not show a clear overall improvement, and
suggests areas for future research to explore how to improve the combination of 3DVAR
analyses and nudging. In this case study, directly applying the vLAPS analyses at the
0 h forecast time without analysis nudging resulted in higher FSS and CSI than the other
experiments throughout the 0–1 h forecast, but this was also the only experiment with
bias increasing substantially during this time period. Similarly, Jiang et al. [19] found that
in WRF forecasts initialized with vLAPS, the equitable threat scores were highest at the
beginning of the forecasts

At a national level, convection-permitting models are already performing with good
skill and with a high degree of sophistication in data assimilation strategies and NWP
physics [70]. Running limited-area mesoscale modeling configurations on hardware tech-
nology as restricted as a desktop or laptop, while maintaining a flexibility to adjust quickly
for operations over diverse and often data-restricted locations around the world, will
require making intelligent adjustments to the national approaches at convection-permitting
scales. The 1 km (and even finer) grid spacing is important for resolving many boundary
layer flow phenomena that impact both military and civilian interests near the earth’s
surface, and convective forecasting is just one aspect of those (although a potentially highly
impactful one).
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24. Janjić, Z.I. Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso Model; NCEP Office Note 437;
National Centers for Environmental Prediction: Camp Springs, MD, USA, 2001; p. 61. Available online: http://www.lib.ncep.
noaa.gov/ncepofficenotes/files/on437.pdf (accessed on 10 November 2021).

25. Lee, J.A.; Kolczyinski, W.C.; McCandless, T.C.; Haupt, S.E. An Objective Methodology for Configuring and Down-Selecting an
NWP Ensemble for Low-Level Wind Prediction. Mon. Weather Rev. 2012, 140, 2270–2286. [CrossRef]

26. Reen, B.P.; Schmehl, K.J.; Young, G.S.; Lee, J.A.; Haupt, S.E.; Stauffer, D.R. Uncertainty in Contaminant Concentration Fields
Resulting from Atmospheric Boundary Layer Depth Uncertainty. J. Appl. Meteorol. Climatol. 2014, 53, 2610–2626. [CrossRef]

27. Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk
Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115.
[CrossRef]

28. Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a
validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [CrossRef]

29. Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional
Model. J. Atmos. Sci. 1989, 46, 3077–3107. [CrossRef]

30. Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System.
Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [CrossRef]

31. McGinley, J.A.; Albers, S.C.; Stamus, P.A. Validation of a Composite Convective Index as Defined by a Real-Time Local Analysis
System. Weather Forecast. 1991, 6, 337–356. [CrossRef]

32. Hiemstra, C.A.; Liston, G.E.; Pielke, R.A.; Birkenheuer, D.L.; Albers, S.C. Comparing Local Analysis and Prediction System
(LAPS) Assimilations with Independent Observations. Weather Forecast. 2006, 21, 1024–1040. [CrossRef]

33. Albers, S.C.; McGinley, J.A.; Birkenheuer, D.L.; Smart, J.R. The Local Analysis and Prediction System (LAPS): Analyses of Clouds,
Precipitation, and Temperature. Weather Forecast. 1996, 11, 273–287. [CrossRef]

34. Xie, Y.; Koch, S.; McGinley, J.; Albers, S.; Bieringer, P.E.; Wolfson, M.; Chan, M. A Space–Time Multiscale Analysis System: A
Sequential Variational Analysis Approach. Mon. Weather Rev. 2011, 139, 1224–1240. [CrossRef]

35. Xie, Y.F.; MacDonald, A.E. Selection of momentum variables for a three-dimensional variational analysis. Pure Appl. Geophys.
2012, 169, 335–351. [CrossRef]

36. Xie, Y.; Lu, C.; Browning, G.L. Impact of Formulation of Cost Function and Constraints on Three-Dimensional Variational Data
Assimilation. Mon. Weather Rev. 2002, 130, 2433–2447. [CrossRef]

http://doi.org/10.3402/tellusa.v64i0.18484
http://doi.org/10.3402/tellusa.v64i0.18485
http://doi.org/10.1002/qj.1939
http://dx.doi.org/10.5065/D68S4MVH
http://dx.doi.org/10.5065/D68S4MVH
https://ams.confex.com/ams/95Annual/webprogram/Paper269311.html
http://doi.org/10.1175/MWR-D-14-00295.1
http://doi.org/10.1175/BAMS-D-13-00185.1
https://apps.dtic.mil/sti/pdfs/AD1039383.pdf
http://doi.org/10.1175/JAMC-D-12-0280.1
http://doi.org/10.1175/JCLI-D-15-0030.1
http://doi.org/10.3390/rs13193821
http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on437.pdf
http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on437.pdf
http://doi.org/10.1175/MWR-D-11-00065.1
http://doi.org/10.1175/JAMC-D-13-0262.1
http://doi.org/10.1175/2008MWR2387.1
http://doi.org/10.1029/97JD00237
http://doi.org/10.1175/1520-0469(1989)046&lt;3077:NSOCOD&gt;2.0.CO;2
http://doi.org/10.1175/1520-0493(2001)129&lt;0569:CAALSH&gt;2.0.CO;2
http://doi.org/10.1175/1520-0434(1991)006&lt;0337:VOACCI&gt;2.0.CO;2
http://doi.org/10.1175/WAF961.1
http://doi.org/10.1175/1520-0434(1996)011&lt;0273:TLAAPS&gt;2.0.CO;2
http://doi.org/10.1175/2010MWR3338.1
http://doi.org/10.1007/s00024-011-0374-3
http://doi.org/10.1175/1520-0493(2002)130&lt;2433:IOFOCF&gt;2.0.CO;2


Atmosphere 2022, 13, 127 25 of 26

37. Alexander, C.; Smirnova, T.; Hu, M.; Weygandt, S.; Dowell, D.; Olson, J.; Benjamin, S.; James, E.; Brown, J.; Hofmann, P.; et al.
Recent advancements in convective-scale storm prediction with the coupled Rapid Refresh (RAP)/High-Resolution Rapid Refresh
(HRRR) forecast system. In Proceedings of the 14th Annual WRF Users’ Workshop, Boulder, CO, USA, 24–28 June 2013; Available
online: http://www2.mmm.ucar.edu/wrf/users/workshops/WS2013/ppts/2.3.pdf (accessed on 10 November 2021).

38. Stauffer, D.R.; Seaman, N.L. Multiscale Four-Dimensional Data Assimilation. J. Appl. Meteorol. Climatol. 1994, 33, 416–434.
[CrossRef]

39. Gilliam, R.C.; Godowitch, J.M.; Rao, S.T. Improving the horizontal transport in the lower troposphere with four dimensional data
assimilation. Atmos. Environ. 2012, 53, 186–201. [CrossRef]

40. Reen, B.P. A Brief Guide to Observation Nudging in WRF. 2016. Available online: http://www2.mmm.ucar.edu/wrf/users/
docs/ObsNudgingGuide.pdf (accessed on 10 November 2021).

41. De Pondeca, M.S.; Manikin, G.S.; DiMego, G.; Benjamin, S.G.; Parrish, D.F.; Purser, R.J.; Wu, W.; Horel, J.D.; Myrick, D.T.; Lin,
Y.; et al. The Real-Time Mesoscale Analysis at NOAA’s National Centers for Environmental Prediction: Current Status and
Development. Weather Forecast. 2011, 26, 593–612. [CrossRef]

42. National Center for Atmospheric Research. User’s Guide for the Advanced Research WRF (ARW) Modeling System Version
3.8. 2016. Available online: https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/user_guide_V3.8/contents.html
(accessed on 10 November 2021).

43. Reen, B.P.; Dumais, R.E.; Passner, J.E. Mitigating Excessive Drying from the Use of Observations in Mesoscale Modeling. J. Appl.
Meteorol. Climatol. 2016, 55, 365–388. [CrossRef]

44. Atkins, N.T.; Butler, K.M.; Flynn, K.R.; Wakimoto, R.M. An Integrated Damage, Visual, and Radar Analysis of the 2013 Moore,
Oklahoma, EF5 Tornado. Bull. Am. Meteorol. Soc. 2014, 95, 1549–1561. [CrossRef]

45. Burgess, D.; Ortega, K.; Stumpf, G.; Garfield, G.; Karstens, C.; Meyer, T.; Smith, B.; Speheger, D.; Ladue, J.; Smith, R.; et al. 20 May
2013 Moore, Oklahoma, Tornado: Damage Survey and Analysis. Weather Forecast. 2014, 29, 1229–1237. [CrossRef]

46. Kurdzo, J.M.; Bodine, D.J.; Cheong, B.L.; Palmer, R.D. High-Temporal Resolution Polarimetric X-Band Doppler Radar Observa-
tions of the 20 May 2013 Moore, Oklahoma, Tornado. Mon. Weather Rev. 2015, 143, 2711–2735. [CrossRef]

47. Hanley, K.E.; Barrett, A.I.; Lean, H.W. Simulating the 20 May 2013 Moore, Oklahoma tornado with a 100-metre grid-length NWP
model. Atmos. Sci. Lett. 2016, 17, 453–461. [CrossRef]

48. Zhang, Y.; Zhang, F.; Stensrud, D.J.; Meng, Z. Practical Predictability of the 20 May 2013 Tornadic Thunderstorm Event in
Oklahoma: Sensitivity to Synoptic Timing and Topographical Influence. Mon. Weather Rev. 2015, 143, 2973–2997. [CrossRef]

49. Zhang, Y.; Zhang, F.; Stensrud, D.J.; Meng, Z. Intrinsic Predictability of the 20 May 2013 Tornadic Thunderstorm Event in
Oklahoma at Storm Scales. Mon. Weather Rev. 2016, 144, 1273–1298. [CrossRef]

50. Snook, N.; Jung, Y.; Brotzge, J.; Putnam, B.; Xue, M. Prediction and Ensemble Forecast Verification of Hail in the Supercell Storms
of 20 May 2013. Weather Forecast. 2016, 31, 811–825. [CrossRef]

51. Skok, G.; Roberts, N. Analysis of fractions skill score properties for random precipitation fields and ECMWF forecasts. Q. J. R.
Meteorol. Soc. 2016, 142, 2599–2610. [CrossRef]

52. Schaefer, J.T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [CrossRef]
53. Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Academic Press: San Diego, CA, USA, 2005; p. 264.
54. Hong, S.-Y.; Park, H.; Cheong, H.-B.; Kim, J.-E.E.; Koo, M.-S.; Jang, J.; Ham, S.; Hwang, S.-O.; Park, B.-K.; Chang, E.-C.; et al. The

global/regional integrated model system (GRIMs). Asia Pac. J. Atmos. Sci. 2013, 49, 219–243. [CrossRef]
55. Sun, J.; Xue, M.; Wilson, J.W.; Zawadzki, I.; Ballard, S.P.; Onvlee-Hooimeyer, J.; Joe, P.; Barker, D.M.; Li, P.-W.; Golding, B.; et al.

Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Am. Meteorol. Soc. 2014, 95, 409–426.
[CrossRef]

56. Koch, S.; Ferrie, B.; Stoelinga, M.; Szoke, E.; Weiss, J.; Kain, S.J. The use of simulated radar reflectivity fields in the diagnosis
of mesoscale phenomena from high-resolution WRF model forecasts. In Proceedings of the 11th Conference on Mesoscale
Processes/32nd Conference on Radar Meteorology, Albuquerque, NM, USA, 24–28 October 2005; Available online: https:
//ams.confex.com/ams/32Rad11Meso/techprogram/paper_97032.htm (accessed on 10 November 2021).

57. Skamarock, W.C.; Park, S.-H.; Klemp, J.B.; Snyder, C. Atmospheric kinetic energy spectra from global high-resolution non-
hydrostatic simulations. J. Atmos. Sci. 2014, 71, 4369–4381. [CrossRef]

58. Shaw, B.L.; Albers, S.; Birkenheuer, D.; Brown, J.; McGinley, J.A.; Schultz, P.; Smart, J.R.; Szoke, E. Application of the Local Analysis
and Prediction System (LAPS) diabatic initialization of mesoscale numerical weather prediction models for the IHOP—2002 field
experiment. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather
Prediction, Seattle, WA, USA, 12–15 January 2004; Available online: https://ams.confex.com/ams/84Annual/techprogram/
paper_69700.htm (accessed on 10 November 2021).

59. Wapler, K.; Harnisch, F.; Pardowitz, T.; Senf, F. Characterisation and predictability of a strong and a weak forcing severe convective
event a multi-data approach. Meteorol. Z. 2015, 24, 393–410. [CrossRef]

60. Keil, C.; Heinlein, F.; Craig, G.C. The convective adjustment time-scale as indicator of predictability of convective precipitation.
Q. J. R. Meteorol. Soc. 2014, 140, 480–490. [CrossRef]

61. Stensrud, D.J.; Fritsch, J.M. Mesoscale convective systems in weakly forced large-scale environments. Part II: Generation of a
mesoscale initial condition. Mon. Weather Rev. 1994, 122, 2068–2083. [CrossRef]

http://www2.mmm.ucar.edu/wrf/users/workshops/WS2013/ppts/2.3.pdf
http://doi.org/10.1175/1520-0450(1994)033&lt;0416:MFDDA&gt;2.0.CO;2
http://doi.org/10.1016/j.atmosenv.2011.10.064
http://www2.mmm.ucar.edu/wrf/users/docs/ObsNudgingGuide.pdf
http://www2.mmm.ucar.edu/wrf/users/docs/ObsNudgingGuide.pdf
http://doi.org/10.1175/WAF-D-10-05037.1
https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/user_guide_V3.8/contents.html
http://doi.org/10.1175/JAMC-D-14-0301.1
http://doi.org/10.1175/BAMS-D-14-00033.1
http://doi.org/10.1175/WAF-D-14-00039.1
http://doi.org/10.1175/MWR-D-14-00357.1
http://doi.org/10.1002/asl.678
http://doi.org/10.1175/MWR-D-14-00394.1
http://doi.org/10.1175/MWR-D-15-0105.1
http://doi.org/10.1175/WAF-D-15-0152.1
http://doi.org/10.1002/qj.2849
http://doi.org/10.1175/1520-0434(1990)005&lt;0570:TCSIAA&gt;2.0.CO;2
http://doi.org/10.1007/s13143-013-0023-0
http://doi.org/10.1175/BAMS-D-11-00263.1
https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_97032.htm
https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_97032.htm
http://doi.org/10.1175/JAS-D-14-0114.1
https://ams.confex.com/ams/84Annual/techprogram/paper_69700.htm
https://ams.confex.com/ams/84Annual/techprogram/paper_69700.htm
http://doi.org/10.1127/metz/2015/0625
http://doi.org/10.1002/qj.2143
http://doi.org/10.1175/1520-0493(1994)122&lt;2068:MCSIWF&gt;2.0.CO;2


Atmosphere 2022, 13, 127 26 of 26

62. Duda, J.D.; Gallus, W.A. The impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with
convection-allowing grid spacings in the WRF. Weather Forecast. 2013, 28, 994–1018. [CrossRef]

63. Stratman, D.R.; Coniglio, M.C.; Koch, S.E.; Xue, M. Use of Multiple Verification Methods to Evaluate Forecasts of Convection
from Hot- and Cold-Start Convection-Allowing Models. Weather Forecast. 2013, 28, 119–138. [CrossRef]

64. Carlberg, B.R.; Gallus, W.A.; Franz, K.J. A Preliminary Examination of WRF Ensemble Prediction of Convective Mode Evolution.
Weather Forecast. 2018, 33, 783–798. [CrossRef]

65. Pan, L.; Liu, Y.; Lei, Y.; Xu, M.; Child, P.; Jacobs, N. Development of a CONUS radar data assimilation WRF-RTFDDA system
for convection-resolvable analysis and prediction. In Proceedings of the 16th WRF Annual User’s Workshop, Boulder, CO,
USA, 15–19 June 2015; Available online: https://www2.mmm.ucar.edu/wrf/users/workshops/WS2015/WorkshopPapers.php
(accessed on 10 November 2021).
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