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Abstract: The conflict between economic growth and environmental pollution has become a consid-
erable bottleneck to future development throughout the world. The industrial structure may become
the possible key factor in resolving the contradiction. Using the daily data of air quality from January
to April in 2019 and 2020, we used the DID model to identify the effects of industrial structure on air
quality by taking the COVID-19 pandemic as a quasi-experiment. The results show that, first, the
impact of profit of the secondary industry on air quality is ten times higher than that of the tertiary
industry. Therefore, the secondary industry is the main factor causing air pollution. Second, the
effect of the reduction in the secondary industry on the improvement of air quality is better than that
of the tertiary industry in Beijing. Therefore, the implementation of Beijing’s non-capital function
relief policy is timely and reasonable, and the adjustment of the industrial structure is effective
in the improvement of air quality. Third, PM2.5, NO2, and CO are affected by the secondary and
tertiary industries, where PM2.5 is affected most seriously by the second industry. Therefore, the
transformation from the secondary industry to the tertiary industry can not only solve the problem of
unemployment but also relieve the haze. Fourth, the result of O3 is in opposition to other pollutants.
The probable reason is that the decrease of PM2.5 would lead to an increase in the O3 concentration.
Therefore, it is difficult to reduce O3 concentrationby production limitation and it is urgent to for-
mulate scientific methods to deal with O3 pollution. Fifth, the air quality in the surrounding areas
can also influence Beijing. As Hebei is a key area to undertake Beijing’s industry, the deterioration
of its air quality would also bring pressure to Beijing’s atmospheric environment. Therefore, in the
process of industrial adjustment, the selection of appropriate regions for undertaking industries is
very essential, which is worth our further discussion.

Keywords: industrial restructuring; air pollution; COVID-19; Beijing

1. Introduction

The conflict between economic growth and environmental pollution has become a
considerable bottleneck to future development throughout the world [1]. Economic growth
is the ultimate aim for every policymaker [2]. With the development of technology, produc-
tion efficiency has been greatly improved, but due to the rapid expansion of production
scale, economic development still brings many environmental problems [3]. During the
deepening of urbanization, industrial agglomeration and the increase of urban population
have caused many environmental pollution problems, especially the increasingly serious
atmospheric environment problems. In contemporary society, air pollution has become
a global city disease. In recent years, a large number of exhaust emissions have posed
a challenge to the sustainable development of the economies of all countries around the
world [4,5], and continue to endanger the health of urban residents. Air pollution causes
urban residents to suffer from the respiratory system, heat, and skin disease [6–8]. Air pol-
lution has become a stumbling block restricting regional economic development. Finding a

Atmosphere 2022, 13, 119. https://doi.org/10.3390/atmos13010119 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos13010119
https://doi.org/10.3390/atmos13010119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0003-0508-0962
https://doi.org/10.3390/atmos13010119
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos13010119?type=check_update&version=2


Atmosphere 2022, 13, 119 2 of 16

possible development path that takes urban economic growth and air control into account
has important theoretical and practical significance.

Academic circles have triggered a profound discussion on the trade-off between
economic development and air pollution. Some scholars have found that the relationship
between air quality and economic growth in Tunisia, a North African country, is suitable
to be described by monotonic growth [9,10]. However, there is an inverted U-shaped
relationship between economic growth and CO2 emissions in China [10], and there also
exists a U-shape between economic growth and SO2 for the technical inefficiency [11].
Therefore, the relationship between air pollution and economic development cannot be
described in a single dominant form [12]. The impact of economic development on air
quality actually has complex structural characteristics, which brings great difficulties in
solving the conflict between economic development and air quality. Further research shows
that the industrial structure determines the distribution of production resources between
different industries and has a decisive impact on resource consumption and pollutant
emissions in the process of economic development [13,14]. Therefore, as an important
link between human economic activities and air quality, the industrial structure may
become the key factor in resolving the contradiction between economic development and
the environment [15]. However, the research conclusions on the relationship between
industrial structure and air quality are not totally consistent. Some scholars believe that the
increase of heavy industry would aggravate CO2 emissions [16], leading to the deterioration
of air quality [17], but some found that during the transformation of industrial structure
from primary industry to secondary and tertiary industry, pollution showed a trend of
rising first and then declining [18]. Instead, some scholars believe that there is a U-shaped
relationship between industrial structure upgrading and haze, which is not in line with
the environmental Kuznets hypothesis [19]. The above research provides a rich experience
for the macro-understanding of the direct relationship between industrial structure and
environmental pollution, but the research results are inconsistent due to many interference
factors. Moreover, there are few studies that can clearly show the impact of industrial
structure adjustment on AQI and specific pollutants, such as ozone, etc.

With the development of informationization and urbanization in China, city dis-eases
are more and more apparent [20]. Beijing is the political center, cultural center, international
exchange center, and scientific and technological innovation center of China. It has obvious
big city diseases such as air pollution [21,22], which is highly representative. Air pollution
in Beijing has gradually become a severe environmental issue, due to the continuing
growth in energy consumption and the resulting multiple pollutant emissions [23]. To
alleviate the city disease, Beijing has proposed the traffic restriction policy, and then the
non-capital functions relieving strategy in Beijing in 2015, as a policy of relieving non-capital
functions from Beijing was adopted by President Xi in 2015. The non-capital functions
refer to urban functions excluding administration, culture, international communication,
and technical innovation [24]. The focus of the policy is to ease the general manufacturing
industry and will bring about changes in the industrial structure. Therefore, Beijing has
strong representativeness and can be used as a sample to study the impact of industrial
structure adjustment on urban air quality [25]. Beijing’s decentralization may bring hope
to the solution of air quality problems. Studies have found that the traffic restriction
policy can significantly improve the air quality, and AQI has decreased by 19% due to
traffic restrictions based on even- and odd-numbered license plates [26]. However, Cao et al.
estimated the traffic restriction policy in Beijing and found that although the traditional OLS
regression showed that the traffic restriction policy had a strong effect, it had little impact
on air quality when the breakpoint regression was used to solve the endogeneity [27]. Later,
Li et al. also expressed support, believing that the non-capital functions relieving strategy in
Beijing has little contribution to improving the atmospheric environment [28]. Studying the
relationship between regional industrial structure adjustment and air quality helps to clarify
the possible path of air pollution control. Assessing the impact of industrial restructuring
brought about by the non-capital functions relieving strategy in Beijing on air quality is
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conducive to more comprehensive consideration of the formulation of national strategies.
However, since many factors affect air pollution, the air quality improvement brought by
industrial structure adjustment may be endogenous, and the effect of policies is difficult
to evaluate. The COVID-19 pandemic provides an opportunity to analyze the effects on
air quality of industrial structure adjustment as it has reduced human activities [29] and
changed the industrial structure in a short time. The coronavirus disease had massive
impacts on society and the economy across large parts of China, including Beijing [30–33].
Therefore, COVID-19-related restrictions, both mandated and voluntary, have, in effect,
created a “natural experiment”.

This study aims to clarify the impact of industrial restructuring on urban air quality,
estimate the effect of non-capital functions relieving strategy in Beijing on air quality,
and uncover possible improvements. To this end, based on the daily air quality and
meteorological data of Beijing from January to April in 2019 and 2020, we used the difference
in difference (DID) model [34] to identify the effects of industrial structure on air quality by
taking the pandemic as a natural experiment. This paper offers some important insights:
firstly, we conducted comparative research based on the assumption that the pandemic
provided a quasi-experiment to estimate the outcome of industrial restructuring on air
quality, which created a treated group. The use of DID effectively alleviates the endogenous
problems such as the correlation between error terms and explanatory variables caused
by missing variables, which provides evidence for accurately identifying the impact of
industrial structure on air quality. Secondly, we specifically analyzed the heterogeneity of
the five pollutants affected by industrial adjustments and found that limiting production is
not an effective way to control ozone pollution. Thirdly, we evaluated the effectiveness of
non-capital functions relieving strategy in Beijing, aimed at providing a reference for the
future improvement of the policy. These could also be general lessons for other countries to
probably learn from existing evidence in Beijing air governance.

The rest of the paper presents the methodology and data (Section 2), empirical results
(Section 3), and robust test (Section 4). Finally, we conclude in Section 5.

2. Methodology and Data
2.1. Variables and Data

The air pollution variables are measured by air quality index (AQI) which is calculated
by five air pollutants, including SO2, PM10, PM2.5, CO, NO2, and O3 [35–37]. AQI focuses
on assessing the health effects of breathing polluted air for hours, and AQI presents six
pollutants with unified evaluation standards. Therefore, we extracted the hourly data of
AQI from January to April in 2019 and 2020 in Beijing (pek), and then calculated the daily
average. It was obtained from the China Environmental Monitoring Center by weighting
data from 24 monitoring stations in Beijing (the spatial distribution of stations is shown in
Appendix A Figure A1). The ready dispersal of air pollution [38,39] determines that the
control of the air quality depends not only on the emission reduction in a city but also on the
pollutant control from the surrounding areas [40–42]. Therefore, Beijing’s air quality may
also be affected by the air quality of surrounding areas. We extracted the hourly data of AQI
from January to April in 2019 and 2020 in Hebei Province, namely Baoding (bad), Chengde
(chd), Langfang (laf), Zhangjiakou (zjk), Shijiazhuang (sjz), Tangshan (tas), Qinghuangdao
(qhd), Handan (had), Cangzhou (caz), Hengshui (hes), and Xingtai (xit), and then calculated
the daily average (NEIA). In order to analyze the heterogeneity of the impact that affects
different pollutants, we used PM2.5, O3, NO, CO, and SO2 as alternative indicators. The data
was from China Environmental Monitoring Center (http://www.cnemc.cn/ accessed on
25 November 2021).

In the existing research, the industrial proportion has been used as the measurement
index of industrial structure [43], but in fact, the adjustment of industrial structure should
also consider the industrial profit, which can also reflect the industry restructuring. There-
fore, we respectively used the profits of the secondary and tertiary industries in Beijing as
the proxy variable to measure the industrial structure (TECP, TERP) of Beijing aimed at

http://www.cnemc.cn/
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more accurate research results. The data was from Beijing Municipal Bureau of Statistics
(http://tjj.beijing.gov.cn/ accessed on 30 September 2021).

We used the daily passenger flow of Beijing Subway to represent the number of people
choosing public transport in Beijing (passen). According to the statistics of the “Beijing
Transport Development Annual Report”, the passenger flow of Beijing rail transit was
3.85 billion passengers in 2018 [44]. The subway is one of the main public transportation
methods for residents in Beijing. The data was from the daily passenger flow information
published on the official Weibo website of Beijing Subway (available online at https://
weibo.com/bjsubway accessed on 8 October 2021).

In order to ensure the accuracy of the research results, we used meteorological data as
control variables. Some air pollutants are water soluble; thus, rain may be one of the factors
affecting air quality. Therefore, we chose the depth of liquid precipitation that is measured
over a six-hour accumulation period to measure the rainfall (rain). Because of the flowing
air, the wind can bring air pollutants from other areas or take local air pollutants away. We
chose the rate of horizontal travel of air past a fixed point to measure the wind speed (speed).
The ground temperature may accelerate the natural source emission or decomposition of
precursors (such as VOCs) of some air pollution components (such as O3) [45]. Therefore,
we chose temperature (temp) as one of the control variables. The previous study shows
that the air qualities in northern China had a prominent correlation with the pressure [46].
Therefore, we chose atmospheric pressure (pressure) as a control variable. We extracted hourly
meteorological data such as wind speed from Beijing Meteorological Station (No. 545110),
and then calculated the daily average, obtaining the daily data from China Meteorological
Administration (http://www.cma.gov.cn/2011qxfw/2011qsjcx/ accessed on 15 October 2021).

In addition, this paper used multiple imputation, based on five replications and a
chained equation approach method in the R multiple imputation procedure, to account for
missing data [47,48].

2.2. Methodology

Previous literature on the relationship between industrial structure and environmental
pollution is mainly based on OLS [49], threshold model [15], and SGVAR model [43], but
they cannot solve the interference of missing variables, which will cause errors in the
consistent estimation of parameters. It is always a difficult problem to effectively deal with
the identification deviation caused by endogeneity. DID is a measurement method specially
used for policy effect evaluation, which regards the implementation of the new policy as
an exogenous experiment. As it is more and more mature, the DID model is gradually
widely used in many fields. The DID model is able to reduce the problems of endogenous
problems [50,51]. The pandemic can be seen as a quasi-experiment [29]. Compared with
the traditional model, the research results by DID are more accurate and reliable [52].
Therefore, taking Beijing as an example, we constructed a natural experiment and used the
DID model to identify the impact of industrial structure on urban air quality, and evaluated
the implementation effect of non-capital functions relieving strategy in Beijing.

In order to estimate the impact of urban industrial structure on air quality, we used
DID regression based on the daily data of air quality, meteorology, and industrial statistics
in Beijing. This paper divided the data from January to April in 2019 and 2020 into the
control group and the treated group. And we defined that the year with COVID-19 pandemic
(2020) was the treated group, and the year without COVID-19 (2019) was the control group.
Then, according to the time of pandemic restrictions, the treated group was divided into
prepandemic restrictions and post-pandemic restrictions, and the control group was divided,
as well. Theoretically, there should be no significant difference in air quality between the
treated group and the control group in January. Since February 2020, due to strict pandemic
restrictions, the pandemic might change the industrial structure and then affect the air quality.
Therefore, we took the samples from 1 January 2020 to 30 April 2020 as the treated group,
and the samples from 1 January 2019 to 30 April 2019 as the control group, with a total of
241 samples. The data distribution is shown in Table 1.

http://tjj.beijing.gov.cn/
https://weibo.com/bjsubway
https://weibo.com/bjsubway
http://www.cma.gov.cn/2011qxfw/2011qsjcx/
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Table 1. The number of observations in the DID.

Before After Total

Control 31 89 120
Treated 31 90 121

Total 62 179 241

Taking Beijing as an example, this paper used the DID model to analyze the impact of
industrial structure adjustment on air quality. The model is set as follows:

Yt = β + β1treated× T + β2SECP× treated× T + β3TERP× treated× T
+β4SECP + β5TERP + β6 passen + β7NEIA + β8speed + β9rain

+β10temp + β11 pressure + β12treated + β13T + λt + εt

(1)

where Yt represents the interpreted variable, namely AQI (subscript t represents time
series), PM2.5, O3, NO, CO, SO2; SECP and TERP represent the industrial structure, SECP
is the secondary industry profit and TERP is the tertiary industry profit; passen is the
number of people choosing public transport; NEIA represents average AQI or specific
pollutants of cities in Hebei Province; speed represents the rate of horizontal travel of air
past a fixed point; rain is the depth of liquid precipitation that is measured over a six-hour
accumulation period; temp is the daily temperature; pressure is the atmospheric pressure;
λt is the fixed effect, and εt is the random error.

treated is a dummy variable, indicating whether the research object is the treated group.

treated =

{
1, i f year ∈ 2020
0, i f year ∈ 2019

(2)

T is a treated period dummy variable, that is, only the treated group would be impacted
by the policy during the treated period. On 23 January 2020, Wuhan announced closure
of the city. From 24 January to 30 January, Chinese provinces successively announced
strict control measures for the pandemic, which happened to be the Spring Festival holiday.
In view of the general shutdown during the Spring Festival holiday over the years, the
industrial restructuring caused by the pandemic could not be shown during the Spring
Festival holiday. Therefore, we assumed that the policy impact occurred after the Spring
Festival, that is, the impact of the pandemic on industrial restructure and human activities
actually began in February 2020.

T =

{
0, i f month ≤ 1
1, i f month > 1

(3)

3. Empirical Results
3.1. Descriptive Statistics

Descriptive statistics were calculated for the 241 samples. As can be seen from Appendix A
Table A1, the average value of AQI in Beijing is 76.69, which is defined as “moderate” by the
Ministry of Ecology and Environment of China, indicating that air quality is acceptable overall
but for some pollutants, there may be a moderate health concern for a very small number of
people who are unusually sensitive to air pollution. Compared with the average value, the
maximum of the AQI in Beijing is 256.38, relatively large, which is defined as “very unhealthy”
in the Technical Regulation on Ambient Air Quality Index. At that time, everyone should
avoid all outdoor exertion and may experience more serious health effects. The results of
other pollutants are similar. The results of AQI are also very similar in Hebei Province, with a
“moderate” average value (95.63) and a “very unhealthy” maximum (286.13). Therefore, the air
pollution in Beijing must attract attention.
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3.2. Analysis of Time Heterogeneity of Beijing Air Quality

First, we compared the differences in air quality in Beijing before and after the pan-
demic. According to the results in Table 2, there was no significant difference in air quality
in Beijing between January 2020 and January 2019. However, from February 2020 to April
2020, compared with February 2019 to April 2019, the average value of AQI decreased by
13.900, with the proportion similar to Bao and Zhang [53], which was significant at the level
of 10%. It shows that the pandemic has indeed affected the air quality in Beijing. However,
it is a bit lower than 18.2 in the study of Chen et al. [54]; the possible reason is that he also
considered 2018. The difference of mean change can only make a rough statistic of the
impact of pandemic shutdown restriction policy on air quality. To estimate the specific
effect, a more accurate regression statistical analysis is needed.

Table 2. Differences of AQI between January to April 2019 and January to April 2020.

T = 0 T = 1

Treated group 81.578 68.518
Control group 79.039 82.419

Difference 2.539 −13.900 *
Note: * p < 0.10.

3.3. Basic Regression Estimation

Initially, we tested the stationarity properties of the series using the augmented Dickey–
Fuller (ADF) test. The maximum lag order was 21 [55]. The sequences of the variables were
stationarity. To test for multicollinearity among the explanatory variables, we generated a matrix
(Table 3), and the maximum and minimum variance inflation factor (VIF) values were less than
10 and not less than 0, respectively. Therefore, it means there is no serious multicollinearity.

Table 3. Multicollinearity test results.

Variable VIF 1/VIF

SECP × treated × T 3.98 0.25
TERP × treated × T 4.96 0.2

SECP 1.92 0.52
TERP 4.94 0.2

passenger 3.09 0.32
NEIA 1.29 0.78
speed 1.08 0.93
rain 1.11 0.9

temperature 2.81 0.36
pressure 1.96 0.51

In order to investigate the impact of industrial structure on air quality in Beijing, we
performed OLS regression based on 241 samples of air quality, meteorology, and industrial
statistics in Beijing. The regression results are shown in Table 4.

According to the results in Table 4, the profit of the secondary industry in Beijing
would strongly increase the air quality at the level of 1% significant level (0.257), almost
30 times that of the tertiary industry (0.007). It shows that the development of the secondary
industry would worsen the air quality in Beijing, and it provides support for the non-capital
functions relieving strategy in Beijing. The profit of the tertiary industry also has a positive
impact on air quality, which is similar to the result found by He et al. [56]. In order to
alleviate the urban disease in Beijing, the secondary industry should gradually transfer
away from Beijing, which is consistent with the current industrial policy.
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Table 4. OLS estimation results of industrial adjustment on air quality.

Variable AQI PM2.5 O3 NO2 CO SO2

SECP 0.257 *** 0.205 *** −0.029 0.037 *** 0.002 *** 0.006 *
(0.048) (0.041) (0.018) (0.014) (0.000) (0.003)

TERP 0.007 *** 0.005 *** −0.001 0.0014 ** 0.00003 ** 0.000005
(0.002) (0.002) (0.001) (0.0006) (0.000015) (0.0001)

passen −0.033 *** −0.026 *** 0.001 −0.001 −0.0002 *** −0.001 *
(0.006) (0.005) (0.002) (0.002) (0.000) (0.000)

NEIA 0.886 *** 0.839 *** 0.965 *** 1.013 *** 0.733 *** 0.360 ***
(0.046) (0.045) (0.038) (0.045) (0.033) (0.019)

speed 0.378 −0.485 0.390 −0.919 * −0.002 −0.115
(1.593) (1.330) (0.472) (0.475) (0.012) (0.104)

rain −2.572 −3.195 ** 1.413 ** −1.435 ** −0.042 *** −0.221
(1.856) (1.547) (0.548) (0.554) (0.014) (0.121)

temp 0.827 0.571 −0.340 *** 0.481 *** 0.010 *** 0.009
(0.422) (0.352) (0.125) (0.130) (0.003) (0.028)

pressure −0.078 −0.305 −0.047 −0.072 −0.002 −0.031
(0.432) (0.361) (0.128) (0.130) (0.003) (0.028)

constant 59.361 300.313 50.535 66.054 2.224 31.049
(444.956) (371.936) (131.233) (133.837) (3.357) (29.026)

R2 0.631 0.639 0.847 0.749 0.736 0.647
Note: *** p < 0.01, ** p < 0.05, * p < 0.10.

Next, we analyzed the impact of the five pollutants by the industrial structure. SECP
(0.205) and TERP (0.005) have a positive effect on PM2.5 at a significant level of 1%, where
the impact of SECP is more than 40 times that of TERP. The increase of the second industry
significantly increases PM2.5 in Beijing. The concentration of O3 is also significantly affected
by the industrial structure, with the fact that SECP (0.037) is nearly 25 times higher than
TERP (0.0014). The increase in SECP would also cause an increase in CO at a significant
level of 1%, which is more than 50 times that of TERP. However, O3 and SO2 are not
significantly affected by the industrial structure. The possible reason is that the implicit
assumptions of OLS are too strict and inconsistent with reality, so the results may not be
accurate. Therefore, we used the DID model to measure the impact of industrial structure
on air quality more precisely.

3.4. DID Estimation
3.4.1. Parallel Trend Test

To more accurately verify the changes of air quality in Beijing before and after the
shutdown caused by the pandemic, we constructed a natural experiment and used DID
estimation to analyze, based on 241 samples from January to April in 2019 and 2020. An
important premise for the effective application of DID method is to meet the parallel trend
hypothesis, that is, without the shutdown caused by the pandemic, changes in the treated
group (2020) are in line with the control group (2019), so that the average treatment effect
obtained will not have estimation error caused by the periodic change of the sample itself.
Therefore, we used Coefplot to carry out the parallel trend test. The test results shown in
Figure 1 reveal that the coefficient does fluctuate around 0 before the outbreak, and the
coefficient is negative after the outbreak shutdown, which demonstrates that the shutdown
caused by the pandemic has alleviated air pollution. Thus, it can be determined that the
sample data used in this paper meet the ex-ante parallel trend hypothesis.
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3.4.2. Regression Results of DID

Table 5 shows the estimation results of the DID model. The coefficient of treated × T,
which is most important, is 58.558 and significant at the level of 1%. It shows that the change of
industrial structure brought about by the pandemic does have a significant impact on Beijing’s
air quality. The coefficient of SECP (0.405) is more than ten times that of TERP (0.034), which
is significant at the level of 1%, reflecting that the impact of the secondary industry profit on
air quality is much higher than that of the tertiary industry. Thus, the secondary industry is
the main factor affecting air quality and causing air pollution. Therefore, it is very necessary
for Beijing to transform its industrial focus from the secondary industry to the tertiary industry,
which is also in line with previous studies [57,58]. Interaction item SECP × treated × T also has
a significant negative effect on AQI (−0.365) at the level of 1% and is much greater than the
coefficient of the interaction term TERP× treated × T (−0.031). It indicates that the pandemic
has reduced the production of both the secondary and tertiary industries in Beijing, which
has significantly improved the air quality in Beijing. Moreover, the effect of the reduction of
the secondary industry on the improvement of air quality is better than that of the tertiary
industry. Therefore, the implementation of the non-capital functions relieving strategy in Beijing
is very timely and reasonable, and the industrial restructuring is effective and significant to the
improvement of air quality.

The regression results of the control variables indicate that passen has a significant
negative impact on AQI (−0.034), which means that if more people chose public transport,
the air quality would be better. The air quality of Hebei Province also has a significant
positive impact on Beijing. An increase of 1% on the average AQI in Hebei Province
will lead to a rise of 0.978% on AQI in Beijing. It shows that as Hebei is a key area to
undertake Beijing’s industry, the deterioration of its air quality will also bring pressure
to Beijing’s atmospheric environment. Thus, the air quality in the surrounding areas is
also very important, which is consistent with the result of Tao et al. [29]. If the non-capital
functions relieving strategy in Beijing only relieves Beijing’s secondary industry to the
surrounding areas, it will not be able to maximize the effect of the policy, which may show
the shortcomings of the current strategy. Different from the research results of Yu et al. [43],
we find that the increase of wind speed will lead to the increase of AQI, which may be
due to the fact that Hebei has already undertaken many manufacturing industries [59].
Therefore, the greater the regional wind speed is, the greater the impact of air quality in
surrounding areas such as Hebei on Beijing will be.
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Table 5. DID regression results of industrial adjustment on AQI.

Variable AQI

treated × T 58.558 ***
(12.810)

SECP × treated × T −0.365 ***
(0.107)

TERP × treated × T −0.031 ***
(0.006)

SECP 0.405 ***
(0.063)

TERP 0.034 ***
(0.006)

passen −0.034 ***
(0.010)

NEIA 0.988 ***
(0.045)

speed 0.571 *
(0.344)

rain −1.774
(1.666)

temp 0.653
(0.599)

pressure −0.075
(0.407)

treated 24.313 ***
(8.819)

T −9.678
(10.046)

constant −1.324
(421.249)

λt control
R2 0.717

Note: *** p < 0.01, * p < 0.10.

3.4.3. Heterogeneity Analysis of Five Pollutants

We further analyzed whether there was heterogeneity in the impact of industrial
adjustment caused by the pandemic on different pollutants. According to Table 6, the
effects of the variables treated ×T on PM2.5, NO2, and CO are 48.979, 11.928, and 0.303,
respectively, at the significance level of 1%. It shows that the pandemic does affect PM2.5,
NO2, CO. The increase of SECP and TERP will significantly aggravate these pollutants such
as PM2.5, NO2, and CO, which is in line with Pei et al. [60] and Xue et al. [61]. Combined
with the previous OLS model results, the regression coefficient of SECP is the biggest on
PM2.5 (0.332) among the five pollutants, which means that PM2.5 is affected most seriously
by the second industry. Interaction item SECP × treated × T also has a significant negative
effect on PM2.5 (−0.303), NO2 (−0.106), and CO (−0.002) at the level of 5%. It shows that
the shutdown of the secondary industry has a significant impact on the improvement of
the air quality, which is greater than that of the tertiary industry.

The impact of the pandemic shutdown on SO2 is not very significant. The main reason
may be that the main sources affecting SO2 concentration in Beijing are the heating boiler
and the general industrial boiler [11]. The heating industry is affected by temperature
and has little correlation with the pandemic and the adjustment of industrial structure.
Therefore, it is reasonable that the impact of the shutdown on SO2 is not significant. The
coefficients of SECP, TERP, SECP × treated × T, and TERP × treated × T on O3 are
opposite and significant compared to other types of pollutants. There are also several
possible reasons. Researchers found that a decrease in PM2.5 can lead to an increase in the
O3 concentration [62,63] because PM2.5 can eliminate the precursors of ozone, including
hydroxyl radicals and nitrogen–oxygen free radicals [64,65]. When the PM2.5 concentration
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falls, the concentrations of hydroxyl radicals and nitrogen–oxygen free radicals in the
air will increase, thereby promoting the production of ozone [66]. Furthermore, as PM2.5
decreases, the higher amount of solar radiation would reach the near-surface air, thereby
accelerating the photochemical reactions involved in ozone production, so more O3 would
be produced [67].

Table 6. DID regression results of industrial adjustment on specific pollutants.

Variable PM2.5 O3 NO2 CO SO2

treated × T 48.979 *** −4.674 11.928 *** 0.303 *** −0.834
(10.819) (3.927) (4.035) (0.101) (0.936)

SECP × treated × T −0.303 *** 0.092 *** −0.106 *** −0.002 ** −0.005
(0.090) (0.033) (0.034) (0.001) (0.008)

TERP × treated × T −0.024 *** 0.006 *** −0.006 *** −0.0002 *** −0.0001
(0.005) (0.002) (0.002) (0.00005) (0.0004)

SECP 0.332 *** −0.069 *** 0.071 *** 0.003 *** 0.008
(0.053) (0.021) (0.020) (0.001) (0.005)

TERP 0.027 *** −0.006 *** 0.006 *** 0.0002 *** 0.00002
(0.005) (0.002) (0.002) (0.00005) (0.0004)

passen −0.023 *** 0.009 *** −0.006 * −0.0002 *** −0.002 *
(0.008) (0.003) (0.003) (0.00008) (0.001)

NEIA 0.949 *** 1.056 *** 1.103 *** 0.822 *** 0.371 ***
(0.044) (0.045) (0.048) (0.036) (0.025)

speed −0.273 0.044 −0.776 * 0.004 −0.092
(1.230) (0.453) (0.462) (0.012) (0.107)

rain −2.339 * 1.413 *** −1.262 *** −0.037 *** −0.223
(1.408) (0.517) (0.530) (0.013) (0.123)

temp 0.479 −0.076 0.349 *** 0.006 −0.012
(0.506) (0.187) (0.190) (0.005) (0.044)

pressure −0.244 0.003 −0.092 −0.003 −0.030
(0.344) (0.126) (0.130) (0.003) (0.030)

treated 21.153 *** −5.951 ** 3.400 0.154 ** 0.731
(7.459) (2.999) (2.854) (0.071) (0.721)

T −7.463 −3.416 −0.397 0.030 0.572
(8.483) (3.138) (3.232) (0.082) (0.785)

constant 187.800 0.677 76.987 2.071 30.441
(356.309) (130.863) (134.804) (3.356) (31.131)

λt control control control control control
R2 0.715 0.871 0.781 0.773 0.653

Note: *** p < 0.01, ** p < 0.05, * p < 0.10.

4. Robust Test
4.1. Placebo Test

The placebo test is one of the most commonly used robustness test methods in the DID
model. In order to test whether the improvement of air quality is really caused by the impact
of the shutdown, we made up the time node of the pandemic impact. The dates 10 January
and 20 February 2020 are selected as fictitious nodes for regression. Table 7 shows that the
estimated coefficients in both variables are not significant; thus, the pandemic shutdown
did not play a role after the virtual time point, and the placebo test passed. It implies that
after the Spring Festival in 2020, the air quality in Beijing has improved compared with
the same period in 2019, which is indeed caused by the industrial changes brought about
by the pandemic. Therefore, it can be considered that the research results of this paper are
robust, and the conclusion is reliable.

4.2. Data Robust Test

Aimed at eliminating the specific regression results due to the particularity of the
data, we used the daily data during 2019~2021 to replace the data from January to April in
2019 and 2020 for regression analysis. The method and other data are consistent with the
previous regression. The DID regression results shown in Table 8 are roughly consistent
with the main explanatory variables in Table 5 (SECP × treated × T, TERP × treated × T).
Thus, it can be considered that the research results of this paper are robust, and the
conclusion is reliable.
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Table 7. Placebo test results.

Variable Shock on 10 January 2020 Shock on 20 February 2020

treated × T 10.803 18.497
(15.887) (21.436)

SECP × treated × T −0.173 *** −0.238
(0.097) (0.166)

TERP × treated × T −0.029 *** −0.027 ***
(0.005) (0.007)

SECP 0.361 *** 0.340 ***
(0.057) (0.096)

TERP 0.031 *** 0.030 ***
(0.005) (0.007)

passen −0.047 *** −0.046 ***
(0.010) (0.010)

NEIA 0.945 *** 0.949 ***
(0.044) (0.045)

speed 0.739 0.684
(1.471) (1.469)

rain −2.322 −2.309
(1.716) (1.714)

temp 0.684 0.710
(0.479) (0.467)

pressure 0.028 0.025
(0.409) (0.409)

treated 35.346 ** 31.598 ***
(14.193) (10.416)

T 4.123 4.017
(11.014) (11.953)

constant −94.330 −86.799
(424.447) (422.489)

λt control control
R2 0.697 0.698

Note: *** p < 0.01, ** p < 0.05.

Table 8. Data robust test results.

Variable AQI

treated × T 12.654 *
(7.160)

SECP × treated × T −0.042 *
(0.024)

TERP × treated × T −0.002 *
(0.001)

SECP 0.043 *
(0.023)

TERP 0.001
(0.001)

passen −0.007 **
(0.003)

NEIA 0.973 ***
(0.022)

speed 1.664 **
(0.660)

rain −0.194
(0.413)

temp −0.354 **
(0.143)

pressure −0.340 **
(0.155)

treated −1.591
(6.162)

T 36.882 ***
(5.063)

constant 302.339 *
(160.059)

λt control
R2 0.682

Note: *** p < 0.01, ** p < 0.05, * p < 0.10.
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5. Conclusions

Based on the opportunity provided by the pandemic, this study aims to clarify the
impact of industrial restructuring on urban air quality, estimate the effects of non-capital
functions relieving strategy in Beijing on air quality, and uncover possible improvements.
The research results show that, first, the impact of profits of the secondary industry on
air quality is ten times higher than that of the tertiary industry. Therefore, the secondary
industry is the main factor causing air pollution. According to the fourth national economic
census of Beijing in 2018, which is the latest one in China, the revenue of Beijing’s secondary
and tertiary industries totaled CNY 18,310.34 billion. Among them, the secondary industry
is CNY 3846.84 billion, accounting for 21.01%, while the tertiary industry is as high as
CNY 14463.5 billion, accounting for 78.99%. The tertiary industry has become the pillar of
Beijing’s economic development nowadays. It means the non-capital functions relieving
strategy in Beijing has great progress. Second, the pandemic has reduced the production
of both the secondary and tertiary industries in Beijing, which has significantly improved
the air quality in Beijing. Moreover, the effect of the reduction in the secondary industry
on the improvement of air quality is better than that of the tertiary industry. Therefore, it
is very necessary for Beijing to transform its industrial focus from the secondary industry
to the tertiary industry. In 2018, 13.61 million people were employed in the secondary
and tertiary industries in Beijing. Among them, there were 2.036 million people in the
secondary industry, accounting for 14.96%, and 11.574 million people in the tertiary in-
dustry, accounting for 85.04%. Therefore, the transformation from the secondary industry
to the tertiary industry can not only relieve the pressure of air quality but also solve the
problem of unemployment. Third, PM2.5, NO2, and CO are affected by the secondary
and tertiary industries, where PM2.5 is affected most seriously by the second industry,
and the shutdown of the secondary industry can bring greater benefits. Therefore, the
implementation of the non-capital functions relieving strategy in Beijing is very timely and
reasonable, and the adjustment of the industrial structure is effective and significant to
the improvement of air quality. Fourth, the coefficients of O3 are opposite and significant
compared to other types of pollutants. The probable reason is that the decrease of PM2.5
will lead to an increase in the concentration of O3. Fifth, the air quality of Hebei Province
also has a significant positive impact on the air quality of Beijing, hence the aggravation of
air pollution in Hebei will also bring pressure to Beijing’s air quality control. Therefore, for
the industrial adjustment in the process of air pollution control, reasonable planning of the
region is very essential.

In the end, combined with the current situation of Beijing, we propose the following
enlightenment to improve air quality: First, the implementation of the non-capital functions
relieving strategy in Beijing is very timely. The policy promotes the adjustment of the
industrial structure in Beijing and effectively alleviates air pollution. These could also be
general lessons for other countries to probably learn from existing evidence in Beijing air
governance. Second, although the shutdown and restriction policy can improve PM2.5,
NO2, CO, and other conventional pollutants, O3 pollution cannot be reduced. O3 can
damage the respiratory tract and mucous membrane, without conventional protective
methods to deal with. Therefore, it is urgent to formulate scientific methods to deal with O3
pollution. Last but not least, under the non-capital functions relieving strategy in Beijing,
Hebei is regarded as a key area to undertake Beijing’s transfer industries, while the air
pollution in Hebei will also infect Beijing. Therefore, in the process of industrial adjustment,
the selection of appropriate regions for undertaking industries is very vital. We will pay
attention to that in the future.
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Appendix A

Table A1. Data characteristics.

Variable Description Mean p50 sd Min Max

AQI Air quality index 76.69 61.13 49.86 20.00 256.38
PM2.5 PM2.5 concentration in the air 52.79 53.96 22.87 7.13 166.92

O3 Ozone concentration in the air 34.10 30.63 18.04 3.67 99.88
CO CO concentration in the air 0.71 0.57 0.44 0.13 2.53
NO NO concentration in the air 5.42 4.33 3.32 1.96 21.67
SO2 SO2 concentration in the air 34.10 30.63 18.04 3.67 99.88

NEIAaqi

The average AQI of cities in Hebei
including bad, chd, laf, zjk, sjz, tas,

qhd, had, caz, hes, xit
95.625 81.545 47.724 25.841 286.125

Notes: The city in Hebei Province and its abbreviation are Baoding (bad), Chengde (chd), Langfang (laf),
Zhangjiakou (zjk), Shijiazhuang (sjz), Tangshan (tas), Qinghuangdao (qhd), Handan (had), Cangzhou (caz),
Hengshui (hes), and Xingtai (xit).
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