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Abstract: Wind speed affects the navigational safety of the Yangtze River, and assessing its spatiotem-
poral dynamics provides support for navigation management and disaster prevention. We developed
a wind multiplier downscaling method integrating the effects of land use and topography, and used
meteorological station observations and European Center for Medium-Range Weather Forecasts
(ECMWF) Reanalysis Interim (ERA-Interim) reanalysis data for statistical downscaling in the Yangtze
River inland waterway region from 1980 to 2017. Compared with reanalysis data, the downscaling
products showed improved accuracy (especially at 5–10 m/s), and are consistent with site-based
interannual variability observations. Increasing maximum wind speeds in the middle–downstream
area was observed from 1980 to 1990, while a decreasing trend was observed from 2010 to 2017; the
opposite was observed for the upstream. Land use has significant influence on wind speed, with
a decreasing trend observed year by year for wind speed above grade 9. Although the proportion
of grade 4–8 wind speed over water is small and the trend is not obvious, grade 9–10 wind speeds
displayed an increasing trend from 2010 to 2017, indicating that changes in surface roughness have a
significant influence on wind speed in the Yangtze River inland waterway.

Keywords: maximum wind speed; reanalysis data; wind multiplier; statistical downscaling; topography;
surface roughness

1. Introduction

Large-scale human activities have led to drastic changes in the frequency of strong
winds over the land surface, considerably endangering the safety of inland navigation and
sustainable regional socio-economic development [1,2]. The cargo throughput of Yangtze
River inland waterway transport accounts for approximately 55% of total cargo transport
in China. Strong winds and associated secondary disasters (e.g., power disruption, bridge
damage, ship accidents, etc.) have become the main destructive weather- and climate-
related events along the Yangtze River inland waterway transportation [3]. For example,
in June 2015, a tornado caused the sinking of the "Eastern Star" passenger ship [4]. The
traditional view is that wind speeds in the Yangtze River basin have generally been decreas-
ing over the past 50 years [5], which may be related to the rising Arctic Oscillation (AO)
index, urbanization, and large-scale climate change [6,7]. However, a new study found a
rebounding trend in global surface wind speeds from 2010 to 2017, with a 17±2% increase
in potential wind energy [8]. Climate change has significantly affected the frequency, inten-
sity, and magnitude of variability in global wind speeds [9]. Land use/land cover changes
(e.g., urbanization) can affect the surface roughness and cause small-scale wind distur-
bances [10]; spatiotemporal variation in wind speed at large scales is further influenced
by wind speed perturbations [11]. Although the spatiotemporal variation relationships
of wind speed at regional–global scales are well understood, characterizing multi-scale
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maximum wind speed variation due to urbanization and other surface processes in the
Yangtze River inland waterway remains problematic.

Wind speed data for inland waterways are mainly derived from river-shore mete-
orological stations, 80–100 m meteorological observation towers, and climate data; the
meteorological observations are often limited to monitoring environments, with missing
data and low estimation [12]. European Center for Medium-Range Weather Forecast
(ECWMF) reanalysis data can be used to characterize long time series and large-scale
climate changes caused by atmospheric circulation and greenhouse gas emissions, which
are also a source of data for analyzing the spatiotemporal characteristics of wind speeds at
regional scales [13]. However, ECWMF reanalysis data do not sufficiently consider land
surface processes during assimilation, resulting in low estimates of wind speed and low
sensitivity to land use change [14].

To address these issues, scale-down methods are generally used to downscale coarse-
grid reanalysis data to local values. For example, statistical downscaling methods have
been used to extrapolate and interpolate riverbank observations to obtain river surface
wind speeds [15], dynamic downscaling methods such as numerical simulations of weather
forecasts have been adopted to obtain accurate data [16], and coupled dynamic-statistical
downscaling methods (e.g., the Wind Atlas Analysis and Application program) can also be
used [17,18]. These methods can effectively reduce prediction-observation errors due to
missing local features in climate models [19]. Specifically, dynamic downscaling methods
are numerical weather prediction models get their initial and boundary conditions from
a low-resolution global forecast system and are interpolated into the model domain of
interest [20], which are sensitive to the boundary conditions, often lack assimilation in the
initialization of mesoscale models, require a large computational volume, and have the
uncertainty of interpolation methods and large systematic spatial errors. [21,22]; traditional
statistical methods are based on modeling meteorological observation factors and do
not consider the influence of geographical elements such as land use and topographic
environment on wind speed; coupled dynamic-statistical downscaling methods are limited
by the computational capacity of computational fluid dynamics models and cannot provide
large-scale and long time series products. Among them, improved statistical downscaling
methods can be used to consider the effects of surface processes and effectively reduce
reanalysis data errors [23], with good reliability and applicability [24], such as the wind
multiplier method that integrates the effects of land use and topography [25,26]. Therefore,
this method can be developed for complex geographical environments; in the case of this
study, we used it to provide a high-precision wind speed dataset for the Yangtze River
inland waterway.

To highlight the above key scientific issues and knowledge gaps, a regional wind mul-
tiplier downscaling method integrating high-precision land cover and topographic local
effects was proposed. Using this method, reanalysis wind speed data for 1980, 1990, 2000,
2010, and 2017 at 0.7◦ × 0.7◦ resolution was downscaled from a coarse grid to high spatial
resolution data (1 km × 1 km: 1980–2010; 10 m × 10 m: 2017), and the spatiotemporal
characteristics of the downscaled maximum wind speed we determined. We focused on
assessing wind speed heterogeneity in the water-land area. The results provide scientific
reference and data support for navigation management and disaster prevention and miti-
gation in the Yangtze River inland waterway. Specifically, (1) the land use and elevation
datasets were integrated to obtain the surface roughness parameter Mz and the slope pa-
rameter Mh, respectively, and the wind multiplier downscaling method was used to obtain
a high-resolution wind speed dataset, which is applicable to the navigable environment of
the Yangtze River inland waterway; (2) the observed and downscaled wind speed data were
compared and analyzed using spatial mapping methods, and the accuracy of downscaled
products was assessed using three error test metrics (the Kolmogorov–Smirnov two-sample
test, mean difference, and R2) based on comparison to 51 meteorological stations in the
study area; (3) the spatiotemporal characteristics of the downscaled maximum wind speed
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data under different land use types were analyzed, and the applicability and potential
improvement of the wind multiplier downscaling method was considered.

2. Data and Methods
2.1. Data

Based on the segment management regulations of Changjiang Waterway Bureau
(http://www.cjhdj.com.cn/, accessed on 13 September 2021), the Yangtze River inland wa-
terway (104◦28′1′′ E–121◦54′10′′ E, 27◦39′30′′ N–32◦42′28′′ N) was divided into 9 sections
(Figure 1): Shanghai section, Nanjing section, Anhui section, Jiujiang section, Yueyang sec-
tion, Wuhan section, Yichang section, Chongqing section, and Yibin section. In accordance
with the characteristics of waterway maintenance, management, and research practices [27],
the inland waterways of the Yangtze River were further grouped into three major waterway
areas using ArcGIS 10.5 software (esri, Redlands, CA, USA): the upstream waterway from
the Yibin section to the Chongqing section, the midstream waterway from the Yichang
section to the Jiujiang section, and the downstream waterway from the Anqing section to
the Shanghai section.
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Meteorological observations were obtained from the Global Surface Summary of
the Day (GSOD) dataset (https://www.ncei.noaa.gov/access/search/data-search/global-
summary-of-the-day, accessed on 13 September 2021) for 1980–2017. The dataset was
subjected to multi-process automated data quality control to eliminate random errors and
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mistakes [28]. First, we obtained 51 available stations from 101 ground-based meteorologi-
cal stations in the study area to satisfy the time continuity and data integrity of strong wind
analysis, and then extracted the 10 m daily maximum wind speed (Vmax_OBS) to validate
the accuracy of the maximum wind speed downscaling product. Second, we extracted
14 representative riverine stations near the river surface from the 51 stations (Table 1) to
analyze the maximum wind speed trend within the navigation segment. The reanalysis
information was obtained from the ECMWF Reanalysis Interim (ERA-Interim) dataset
(https://apps.ecmwf.int/datasets/, accessed on 13 September 2021). The ERA-Interim
product is a uniform Gaussian grid surface grid point field (horizontal latitude and longi-
tude grid 0.7◦ × 0.7◦); it is operated by the ECMWF Integrated Forecasting System cycle
31r2 and integrates a variety of physical processes of sea-air-land interactions. The product
is credible and can effectively describe the spatiotemporal dynamics of the atmosphere,
wind, and waves that affect navigation [29]. Specifically, the 10 m maximum wind speed
(Vmax_ERA) of the ERA-Interim dataset was extracted using the Python 3.8 software.

Table 1. Location information for 14 stations in the study area.

Stream Section No. Name Latitude (◦) Longitude (◦) Elevation (m)

Upstream

Yibin 56492 Yibin 28.8 104.6 342

Chongqing
57426 Liangping 30.683333 107.8 455
57633 Youyang 28.833333 108.766667 665
57348 Fengjie 31.016667 109.533333 303

Midstream

Yichang 57461 Yichang 30.733333 111.366667 257.7
57476 Jingzhou 30.333333 112.183333 33

Yueyang 57584 Yueyang 29.383333 113.083333 52

Wuhan 57494 Wuhan 30.783758 114.2081 34.44

Jiujiang 57598 Xiushui 29.033333 114.583333 147
58506 Lushan 29.583333 115.983333 1165

Downstream

Anqing 58424 Anqing 30.616667 116.966667 63.2

Nanjing 58238 Nanjing 31.742042 118.862025 14.93

Shanghai 58367 Longhua 31.197875 121.336319 3.04
58265 Lvsi 32.066667 121.6 9.6

The geographic data primarily included land use data and a digital elevation model
(DEM). The 1980–2015 Landsat dataset in China (1 km × 1 km) was obtained from the
Chinese Academy of Sciences Resource and Environmental Science Data Center (http:
//www.resdc.cn/, accessed on 13 September 2021) [30]; this dataset is based on Landsat’s
Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) images, through manual vi-
sual interpretation and multiple sources. The land use types include 6 primary types (arable
land, forest land, grassland, water, residential land, and unused land) and 25 secondary
types. The 2017 land use data were derived from the Finer Resolution Observation and Mon-
itoring of Global Land Cover 10 (FROM-GLC10) dataset (http://data.ess.tsinghua.edu.cn/,
accessed on 13 September 2021), which successfully produced the world’s first 10-m resolu-
tion 10-classification land cover map using a finite sample stable classification method [31].
Land use data for the years 1980, 1990, 2000, and 2010 were reclassified into cropland,
forest, grassland, shrubland, wetland, water, tundra, impervious surface, bare land, and
snow/ice based on the classification descriptions of the 2017 land use data. The DEM
was derived from the Shuttle Radar Topography Mission (SRTM) dataset (90 m × 90 m,
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/, accessed
on 13 September 2021) [32] and resampled to the spatial resolution of the corresponding
land use data. Then, the land use data and DEM were subjected to standard pre-processing
such as projection transformation (Krasovsky_1940_Transverse_Mercator) and clipping [33]
to obtain the DEM data of the study area (Figure 1) and a land use dataset from 1980 to

https://apps.ecmwf.int/datasets/
http://www.resdc.cn/
http://www.resdc.cn/
http://data.ess.tsinghua.edu.cn/
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
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2017 (Figure 2). Finally, the spatial analysis module of ArcGIS 10.5 was used to obtain the
slope and land use types for the input data of the wind multiplier downscaling method.
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Figure 2. Land use map of the study area from 1980 to 2017. (a) 1980, (b) 1990, (c) 2000, (d) 2010, (e) 2017.

2.2. Wind Multiplier Method

The wind multiplier method integrates the effects of land use types and slope on
wind speed by using the surface roughness coefficient (Mz) and slope coefficient (Mh) to
reduce the 10 m maximum wind speed (Vmax_ERA) at the ERA-Interim grid point. Thus,
downscaled maximum wind speed (Vmax_WM) datasets with 1 km and 10 m resolutions
were obtained for the Yangtze River inland waterway for the period 1980–2017.

Vmax_WM = Vmax_ERA ×Mz ×Mh (1)

TC = log10(z0/2) + 4 (2)

where Vmax_ERA is the maximum wind speed (m/s) at the ERA-Interim grid point. Mz
was calculated by reference to the Australian wind load standard AS/NZS 1170.2 [34]
for roughness (z0); terrain category (TC) correspond to the original Mz, which is widely
used and has a parametric solution of credibility. A table of the TC, elevation, and z0 was
first obtained with reference to the above corresponding relationships (Table 2): water
and grassland were classified as Class 2 features with heights of 1.5–10 m and a z0 of
0.02 m; bareland, cropland, wetland, and shrubland were Class 3 features with heights of
0.5–10 m. Mh was used to characterize the effect of topography on wind speed, which is
influenced by land steepness and the distance between a site and the nearest topographical
high point [35]; there are significant local terrain effects near the tops of the mountains and
along the edges of cliffs [36]. New Mh values were obtained from the original Mh–slope
corresponding relationship in AS/NZS 1170.2 (2011): 1.0 (< 2.9◦), 1.08 (2.9◦–5.7◦), 1.16
(5.7◦–11.3◦), 1.32 (11.3◦–16.7◦), 1.48 (16.7◦–24.2◦) and 1.71 (=24.2◦). In summary, distri-
bution maps and parameter sets for Mz and Mh were obtained for the study area for
different periods; for example, good spatial heterogeneity was found in both parameters in
2017 (Figure 3).
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Table 2. Land uses type information for Mz in the study area.

Land Uses Types Cropland Forest Wetland Water Grassland Shrubland Impervious Bareland

Nominated height (unit: m) 3–5 3–10 3–10 1.5–10 1.5–10 0.5–10 3–200 0.5–5

Terrain category (TC) 3 4 3 2 2 3 4 3

Mz 0.83 0.75–1.03 0.83 0.91–1.0 0.83–0.92 0.83 0.83–1.16 0.83

Atmosphere 2021, 12, x FOR PEER REVIEW 6 of 18 
 

 

and along the edges of cliffs [36]. New Mh values were obtained from the original Mh‒
slope corresponding relationship in AS/NZS 1170.2 (2011): 1.0 (< 2.9°), 1.08 (2.9°‒5.7°), 1.16 
(5.7°‒11.3°), 1.32 (11.3°–16.7°), 1.48 (16.7°‒24.2°) and 1.71 (≧ 24.2°). In summary, distribu-
tion maps and parameter sets for Mz and Mh were obtained for the study area for different 
periods; for example, good spatial heterogeneity was found in both parameters in 2017 
(Figure 3). 

Table 2. Land uses type information for Mz in the study area. 

Land Uses Types Cropland Forest Wetland Water Grassland Shrubland Impervious Bareland 
Nominated height 

(unit: m) 
3‒5 3‒10 3‒10 1.5‒10 1.5‒10 0.5‒10 3–200 0.5–5 

Terrain category (TC) 3 4 3 2 2 3 4 3 
Mz 0.83 0.75–1.03 0.83 0.91–1.0 0.83–0.92 0.83 0.83–1.16 0.83 

 

Figure 3. (a) Surface roughness coefficient (Mz) and (b) slope coefficient (Mh) in 2017 (① Shanghai 
section, ② Nanjing section, ③ Anhui section, ④ Jiujiang section, ⑤ Yueyang section, ⑥ Wuhan 
section, ⑦ Yichang section, ⑧ Chongqing section, and ⑨ Yibin section). 

2.3. Accuracy Evaluation of Downscaling Wind Speed 
We compared the similarity between Vmax_OBS and Vmax_ERA or Vmax_WM by scatterplot, 

and analyzed the performance of Vmax_ERA and Vmax_WM by using the D statistic of the two-
sample Kolmogorov–Smirnov (K–S) test. This method is a non-parametric test based on 
the empirical cumulative distribution function (ECDF) and is used to assess the difference 
in ECDF between N data points (Y1, Y2, ..., YN) in two datasets. First, the ECDF of Vmax_OBS‒

Figure 3. (a) Surface roughness coefficient (Mz) and (b) slope coefficient (Mh) in 2017 ( 1© Shanghai
section, 2© Nanjing section, 3© Anhui section, 4© Jiujiang section, 5© Yueyang section, 6© Wuhan
section, 7© Yichang section, 8© Chongqing section, and 9© Yibin section).

2.3. Accuracy Evaluation of Downscaling Wind Speed

We compared the similarity between Vmax_OBS and Vmax_ERA or Vmax_WM by scatterplot,
and analyzed the performance of Vmax_ERA and Vmax_WM by using the D statistic of the two-
sample Kolmogorov–Smirnov (K–S) test. This method is a non-parametric test based on
the empirical cumulative distribution function (ECDF) and is used to assess the difference
in ECDF between N data points (Y1, Y2, ..., YN) in two datasets. First, the ECDF of
Vmax_OBS–Vmax_ERA and Vmax_OBS–Vmax_WM was calculated, then the ECDF was sorted in
ascending order to obtain the absolute difference of the cumulative frequency series of the
sample points. Finally, the D statistic of K-S was calculated for these sequences. The mean
absolute error (MAE) is the average of the absolute value of the error, and the coefficient
of determination (R2) is the goodness fit between Vmax_OBS and Vmax_ERA or Vmax_WM,
respectively.

YN =
ni
N

(3)
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D1 = Yi,OBS −Yi,ERA (4)

D2 = Yi,OBS −Yi,WM (5)

MAE =
1
n ∑n

i=1

∣∣Vi,OBS −Vi,ERA/WM
∣∣ (6)

R2
1,2 = 1−

(
SSEres1,2

SEtot1,2

)
(7)

SSEres1,2 =
n

∑
i=1

(Vi,OBS −Vi,ERA/WM)2 (8)

SEtot1,2 =
n

∑
i=1

(
Vi,OBS −Vi,ERA/WM

)2 (9)

where YN is the ECDF value at point N, and ni is the number of points less than Yi. ECDF
is a step function that jumps up by 1/n at each of the n data points when there are repeated
wind speed data. Yi,WM, Yi,ERA, and Yi,OBS are the ECDF values of Vmax_ERA, Vmax_WM,
and Vmax_OBS with 1/n equal probability, respectively. Vi,ERA, Vi,WM, and Vi,OBS are the
maximum wind speed values for each station in the dataset, with smaller MAE values
indicating a good result as a difference between Vi,WM and Vi,OBS is smaller than the
difference between Vi,ERA and Vi,OBS. The increasing R2 value indicates an improvement
when comparing a regression of Vi,WM and Vi,OBS to a regression of Vi,ERA and Vi,OBS.

2.4. Nexus Analysis of Wind Speed and Land Use

The area ratio of the downscaled maximum wind speed AVi (i = 1, ..., 10) was classified
by wind speed levels in the study area (Table 3), and the area ratio of different land use
types ATCj (j = 1, ..., 8) was obtained using land use data in the study area. Finally, the area
ratio of wind speed Ak per unit area for each land type was calculated after normalization
(Equation (10)), where k is the number of wind speed-land type classification units (k = 1,
..., 80). The nexus analysis of wind speed and land use assesses the extent and impact of
land use on wind speed and provided information for wind speed risk assessment.

Ak =
AVi ∩ ATCj

ATCj
(10)

Table 3. Wind speed levels.

No. Wind Speed Level Name Threshold (m/s)

1 4 Moderate breeze 5.5–7.9
2 5 Fresh breeze 8.0–10.7
3 6 Strong breeze 10.8–13.8
4 7 Moderate gale 13.9–17.1
5 8 Fresh gale 17.2–20.7
6 9 Strong gale 20.8–24.4
7 10 Whole gale 24.5–28.4
8 11 Storm 28.5–32.6
9 12 Typhoon 32.6–37.0
10 13 Hurricane ≥37.0

3. Results
3.1. Evaluation of Downscaling Effect of Maximum Wind Speed

The downscaled annual maximum wind speed (Vmax_WM) was calculated using ERA-
Interim data and Equation (1) in the study area from 1980 to 2017, and it was used to
evaluate the similarity of Vmax_OBS in comparison with Vmax_ERA (Figure 4). The scatterplot
of wind speed shows that the majority of the Vmax_OBS (7.58–15.44 m/s) and Vmax_ERA
(2.76–7.88 m/s) comparisons are perpendicular to the 45◦ line in the upstream area, with
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Vmax_ERA being underestimated compared with the observation value at most stations; the
majority of the Vmax_OBS and Vmax_WM (7.1–13.12 m/s) comparisons are closer to the 45◦ line
with underestimation at a few stations. The majority of the Vmax_OBS (7.11–12.75 m/s) and
Vmax_ERA (4.99–10.19 m/s) comparisons are closer to the 45◦ line in the midstream area than
the upstream area, and Vmax_ERA values still show underestimations; the majority of the
Vmax_OBS and Vmax_WM (6.22–10.83 m/s) comparisons are closer to the 45◦ line with smaller
underestimation. Difference in the regression line slope between Vmax_ERA (4.49–17.04 m/s)
and Vmax_OBS (6.61–14.7 m/s) are at a greater angles to the 45◦ line in the downstream
area, and the Vmax_ERA values are higher than the Vmax_OBS values at most stations; the
linear regression line of Vmax_WM (5.9–17.55 m/s) and Vmax_OBS is close to the 45◦ line,
and only a few stations still have overestimations (e.g., 17.55 m/s at Anqing station and
16.7 m/s at Lushan station). The linear regression line of Vmax_ERA (2.76–17.04 m/s) and
Vmax_OBS (6.61–15.44 m/s) is close to the 45◦ line at major stations in the Yangtze River
inland waterway, and the Vmax_OBS values are >10 m/s, corresponding to Vmax_ERA values
of <5 m/s at most stations. The linear regression line of Vmax_WM (5.9–17.55 m/s) and
Vmax_OBS has a small angle to the 45◦ line, and Vmax_WM values are overestimated at a few
stations. Figure 4 shows that the Vmax_WM values are closer to the Vmax_OBS values at most
stations, with a good performance from 5 to 10 m/s, indicating that the accuracy of the
downscaled data is significantly improved.
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Boxplots of the three statistics show comparisons of maximum wind speed between
Vmax_OBS and Vmax_ERA and between Vmax_OBS and Vmax_WM (Figure 5): the downscaled
D-statistic value decreases from 0.941 to 0.294 in the upstream, from 0.471 to 0.294 in
the midstream, and from 0.235 to 0.412 in the downstream, indicating that the difference
between the upstream and midstream samples is small and the performance is optimal in
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high-altitude upstream areas where the terrain is more complex; the difference between
the downstream data increases and the effect is averaged. The D-statistic value of the
Yangtze River inland waterway decreased from 0.49 to 0.27, indicating that the accuracy
of the downscaled product is generally better than that of Vmax_ERA. The MAE value
after downscaling decreased from 2.34 to 1.73 in the upstream, from 0.91 to 0.82 in the
midstream, and from 1.34 to 1.00 in the downstream; the MAE value of the Yangtze River
inland waterway changed from 2.34 to 0.745, although the change was not obvious in the
downstream. The downscaled data scales tend to be concentrated, with only individual
stations susceptible to extreme values. The downscaled R2 values increased from 0.199 to
0.905 in the upper reaches, from 0.082 to 0.494 in the middle reaches, and from −0.009 to
0.898 in the lower reaches (the most significant increase); the overall R2 value of the Yangtze
River inland waterway changed from 0.026 to 0.72, indicating a significant improvement in
the goodness of fit of Vmax_WM after downscaling.
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The above statistical analysis shows that the upstream downscaled data have the
smallest differences compared to the observed values and the best fit, but there are extreme
values resulting in large differences and low concentration; the midstream downscaled
data have small differences compared to the observed values and the highest concentration,
but the fit is average; the downstream data have good concentration and fit, but the
individual data are substantially different, resulting in lower sample quality. Despite the
local variability and bias in the indicator analysis, the products obtained by the wind
multiplier downscaling method are more suitable for characterizing the spatiotemporal
variability of maximum wind speeds in the study area as compared with the ERA-Interim
reanalysis data.

3.2. Spatiotemporal Characteristics of Maximum Wind Speed

The maximum wind speed values for the 14 stations in the Yangtze River channel,
including Vmax_OBS, Vmax_ERA, and Vmax_WM, were extracted from downscaled wind-speed
products. Temporal trend analysis shows (Figure 6) that Vmax_WM (10.01 m/s) is closer
to the interannual mean value of Vmax_OBS (10.45 m/s) than Vmax_ERA (8.78 m/s) for the
Yangtze River inland waterway; the interannual mean of Vmax_WM in the upper–middle
section (8.15–11.8 m/s) is also closer to the interannual mean of Vmax_OBS (8.58–11.64 m/s),
while downstream the interannual means of Vmax_WM (10.74 m/s) and Vmax_OBS (11.34 m/s)
are both lower than those of Vmax_ERA (12.24 m/s).
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From the interannual variation tendency rate of the Yangtze River inland waterway,
Vmax_WM was −0.1 m·s−1·10a−1, Vmax_OBS was −0.14 m·s−1·10a−1, and Vmax_ERA was
−0.27 m·s−1·10a−1, all with a weakly decreasing trend and three phases of significant
change from 1980 to 2017: Vmax_WM (0.91 m·s−1·10a−1) and Vmax_OBS (0.44 m·s−1·10a−1)
both showed an increasing trend, and Vmax_ERA (−0.89 m·s−1·10a−1) showed a decreasing
trend during 1980–1990; Vmax_WM (−0.30 m·s−1·10a−1), Vmax_ERA (−0.32 m·s−1·10a−1), and
Vmax_OBS (−0.13 m·s−1·10a−1) all showed a weakly decreasing trend during 1990–2010;
subsequently Vmax_WM (−0.71 m·s−1·10a−1) and Vmax_OBS (−1.07 m·s−1·10a−1) showed a
significant decrease and Vmax_ERA (0.92 m·s−1·10a−1) showed an increasing trend. Over-
all, Vmax_WM was closer to the interannual variation pattern of Vmax_OBS than Vmax_ERA.
In terms of the upper–middle–downstream of the Yangtze River: Vmax_WM had a weak
upward trend (0.15 m·s−1·10a−1), opposite to the trend to the Vmax_OBS (−0.2 m·s−1·10a−1)
and Vmax_ERA (−0.22 m·s−1·10a−1) in the upstream; Vmax_WM (−0.12 m·s−1·10a−1) and
Vmax_ERA (−0.17 m·s−1·10a−1) both showed weak downward trends, slightly different
from the weak upward trend of Vmax_OBS (0.11 m·s−1·10a−1) in the midstream; the inter-
annual variabilities of Vmax_WM, Vmax_OBS, and Vmax_ERA all showed weakly decreasing
trends (−0.44 m·s−1·10a−1, −0.73 m·s−1·10a−1, and −0.45 m·s−1·10a−1, respectively) in
the downstream. The difference in the tendency rate between the downscaled wind speed
values and the observed values is less than 0.5 m·s−1·10a−1, indicating that interannual
variation in maximum wind speed along the Yangtze mainline and along different sections
of the river is not significant.

The spatial distribution of Vmax_WM from 1980 to 2017 reflects the spatial characteristics
of large nearshore, small inland, and undulating topographical areas (Figure 7). For exam-
ple, the Vmax_WM values in the upstream Yibin-Chongqing section are clearly distributed
in a continuous dense mountainous and hilly pattern (14–37 m/s) with topographic vari-
ation, while the Yichang Three Gorges reservoir section is a low-value wind speed zone
(<10 m/s). The midstream Yueyang and Jiujiang sections both have high-value wind speed
centers (11–20 m/s), and the Wuhan and Anqing sections show a sparse hill-like wind
speed distribution pattern (14–26 m/s). The downstream sections of Shanghai and Nanjing
have a wide range of high-value wind speed zones (11–20 m/s). In comparison with
Vmax_ERA, Vmax_WM increased significantly after downscaling in the hilly sections (Yibin,
Chongqing, Wuhan, and Anqing), with the range extending westward and showing wind
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speeds of >37 m/s; the range of high-value centers narrows and decreases in the Yueyang
and Jiujiang sections, and the range of high-value centers in the offshore sections (Nanjing
and Shanghai) narrows toward the northeast.
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The spatial distribution range of wind speeds on the Yangtze River inland waterway
from 1980 to 1990 increased significantly, with Vmax_WM reaching over 20 m/s in the
northeast direction in the Shanghai section and wind speed variation on a downscale
significantly higher than the corresponding ERA-Interim data. The spatial maximum
wind speed decreased by less than 16 m/s m/s downstream of the Yangtze River inland
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waterway from 1990 to 2000, but the spatial variation was not significant in the mid-
upper stream.

3.3. Nexus Relationship between Downscaling Wind Speed and Land Use

Changes in area by land use type were found (Figure 8): the proportion of cropland
area has been decreasing year by year, accelerating from 43.39% before 2010 to 33.28% in
2017, a significant decrease of ~10.11% in 8 years. Forestland increased steadily from 31.86%
in 1980 to 33.28% in 2017; the proportions of grassland, shrubland, wetland, and water
area remained largely unchanged. The proportion of impervious surfaces has increased
annually from 1980 and accelerated after 2010, from 2.75% in 1980 to 12.18% in 2017, an
increase of approximately 9.43%, indicating continued urbanization and an accelerating
trend in recent years. The proportion of tundra and snow area is approximately 0, but a
very small amount of glacier is present in the study area, and its effect on local wind speed
variation remains to be studied.
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Figure 8. Percentage changes in land use area in the study area from 1980 to 2017.

Nexus relationship analysis shows (Figure 9) that arable Ak values increase with wind
speed and then decrease; the proportion of grade 4 wind speed is 0.18–0.28, the proportion
of grade 5 wind speed is the largest (0.36–0.52), the proportion of grade 6 wind speed is
0.21–0.24, the proportion of grade 7 wind speed is 0.04–0.11, the proportion of grade 8 wind
speed is 0.01–0.04, the proportion of grade 9 wind speed is 0–0.02. Wind speed of grade
10 or above accounts for 0.02–0.24, grade 7 for 0.04–0.11, grade 8 for 0.01–0.04, grade 9 for
0–0.02, and grade 10 or above for <0.02. The rate of change for 2010–2017 was significantly
higher than that for 1980–2010; for example, the wind speed of grade 4 accelerated from
0.29 to 0.18, the wind speed of grade 5 accelerated from 0.37 to 0.52, the wind speed of grade
6 increased from 0.21 to 0.24, and the wind speed of grade 7 and above decreased year by
year. The pattern of change for forestland is similar to that of cropland, with the proportion
of grade 4 wind speeds ranging from 0.13 to 0.22, grade 5 wind speed ranging from 0.22 to
0.30, and grade 6 wind speed ranging from 0.18 to 0.31. From 2010 to 2017 grade 6 wind
speed accelerated down from 0.20 to 0.13, grade 5 wind speed accelerated up from 0.23
to 0.30, and grade 6 wind speed accelerated down from 0.19 to 0.31; the proportion of
grade 5–7 wind speed increased year by year, of which the proportion of grade 6–7 wind
speed increased significantly. The proportion of wind speeds for the remaining land use
types (especially above grade 8) declined significantly from 2010 to 2017, even reaching a
value of 0. The proportion of grade 7 wind speed and above for grassland, shrubland, and
wetland was higher than that for cropland and woodland, and the proportion of grade 5–7
wind speed increased slightly, while the proportion of wind speed in the remaining types
(especially gale force 9 and above) decreased significantly, or even to 0. The proportion
of grade 4–6 wind speed in the bare land decreased year by year, but the proportion
of grade 7–10 wind speed increased more significantly, by approximately one order of
magnitude. The proportion of wind speed above grade 11 decreased significantly, even
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to 0, indicating that the areas where these land types exist are prone to gale force weather.
The proportion of grade 4–8 wind speed in water areas was the opposite of and does not
change significantly from land, with the remaining classes increasing slightly, especially
the proportion of grade 9–10 wind speeds appearing from 0 to 0.01 from 2010 to 2017.
The proportion of force 4–5 gales increased on construction land and decreased for the
remaining types, while the proportion of force 8 gales and above declined significantly.
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4. Discussion
4.1. Main Findings

Large-scale spatiotemporal variations in wind speed are perturbed by hourly and
spatial-scale wind events in different underlayers, and there are pronounced regional dif-
ferences in economic development and urbanization in the areas surrounding the Yangtze
River inland waterway. For example, the rapid socio-economic development of the mid-
downstream of the Yangtze River inland waterway and offshore areas can increase the
uncertainty of wind speed frequency changes. We also found a significant underestimation
of wind speeds in upstream areas in the reanalysis data, which may be a reflection of
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errors in the reanalysis data assimilation system itself. For example, the model may not
correctly describe local topography, climate, and surface parameters; in addition, there
may be missing meteorological data and low-resolution input data. The reanalysis data
represent large-scale climate changes caused by atmospheric circulation, greenhouse gases,
etc. However, this is not sensitive to changes in land use type, and the results of this
study confirm this limitation. However, ERA-Interim reanalysis data can be significantly
improved by the wind multiplier downscaling method, and this more accurate wind speed
data can be used for refined analysis of the maximum wind speed characteristics of the
waterway. The wind multiplier downscaling method better integrates the combined effects
of land use and topography on wind speed, and the evaluation of statistical indicators
shows that the downscaling products have significantly improved accuracy and can more
accurately reflect the spatial and temporal distribution characteristics of maximum wind
speed in the study area.

Land use has a greater impact on overland winds than overwater winds in the study
area. The maximum wind speed measured by the weather stations tends to decrease with
increasing roughness of the subsurface owing to the increase in the number of buildings
along with accelerated urbanization; the roughness of the water is smaller and the increase
in the number of buildings around river banks and seawalls tends to form a river valley
effect, resulting in a continuous decrease in the wind speed difference between water and
land. Correlation analysis between land use and maximum wind speed shows that, except
for bare land, the proportions of wind speed over the different land types increase and
then decrease with rising wind speed, especially for grade 9 wind speed or above; the
proportion was smallest in 2017. Bare land shows a trend of increasing wind speed in grade
9–10 wind speed, while the proportion of wind speed over water grade 4–8 is the opposite
of that on land. The proportion is opposite to that of land, with no significant change in
trend, and the rest of the classes are slightly increased, especially grade 9–10, which showed
an increasing trend from 2010 to 2017. This study also demonstrates that although the risk
of strong winds over water has weakened, the risk of extreme wind speeds has increased,
and so the risk of damage to navigation and the region from extreme wind speeds along
the Yangtze River inland waterway under climate change continues to increase.

4.2. Limitations of Study Approach

Anthropogenic activity substantially affects surface roughness, which has become a
major cause of variation in the maximum wind speed in the study area. However, there
are uncertainties in the analysis of the effects of land use on the maximum wind speed.
For example, land use can lead to an increase in canopy resistance, which has a blocking
effect on surface maximum wind speed and can change the thermodynamic properties
of the surface, which in turn causes changes in surface maximum wind speed by altering
local circulation and turbulent fluxes. Moreover, there is a lack of reliable data methods
and assessment techniques, and the development of relevant models should be enhanced.
Many stations in the Yangtze River inland waterway area are located within the transition
zone between urban and suburban areas, and urban expansion not only increases surface
roughness, but also leads to heat island circulation and turbulent flux perturbations, which
have an important impact on the monitoring results of local wind fields.

When analyzing the impact of land use on the maximum surface wind speed based on
station observations, the above thermodynamic effects should be taken into account, and
existing reanalysis data should be corrected for cross-scale thermodynamic information
to improve the accuracy of the observations. Moreover, the spatiotemporal resolution of
wind speed products should be further strengthened, and higher resolution wind speed
downscaling techniques should be developed through integration with high precision
and long time series of geographical elements (e.g., land use, impermeable layer). Finally,
wind speed event changes are significantly influenced by climate change, and wind speed
change predictions under different climate change scenarios should be further developed
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to obtain more complete spatiotemporal characteristics of wind speed and its potential
change trends in the study area.

5. Conclusions

This study proposes an integrated analysis method for wind multiplier downscaling
and accuracy assessment, and a comprehensive assessment of the acquired downscaled
maximum wind speed spatiotemporal characteristics. The modeling approach is generally
applicable to the study area, with good accuracy and spatiotemporal representation of
downscaled products, and the main conclusions obtained are as follows. (1) The trends of
the site downscaled Vmax_WM (5.9–17.55 m/s) and observed Vmax_OBS (6.61–15.44 m/s) are
better fitted (especially 5–10 m/s), and the downscaled accuracy is significantly improved;
the upstream statistic D drops from 0.941 to 0.294 and R2 rises to 0.905, but there are extreme
values leading to large differences in maximum wind speed and low concentration (MAE
decreasing from 2.34 to 1.73); midstream D drops from 0.471 to 0.294 and has the highest
concentration (MAE decreasing from 0.91 to 0.82), but the fit is average (R2 rises to 0.494);
downstream data concentration (MAE decreasing to 1) and fit (R2 from −0.009 to 0.898) are
better, but individual data are too different resulting in lower sample quality (D increasing
to 0.412). (2) Downscaled products and interannual rates of variability at the stations (−0.01
and −0.014 m·s−1·10a−1) are much closer, with both showing increasing trends from 1980
to 1990 (0.91 and 0.44 m·s−1·10a−1), weakening by 2010 (−0.30 and −0.13 m·s−1·10a−1),
followed by significant decreases (−0.71 and−1.07 m·s−1·10a−1). Wind speeds at both mid-
and down-stream stations increased significantly from 1980 to 1990 and decreased signifi-
cantly from 2010 to 2017. (3) Vmax_WM shows spatial characteristics of large nearshore wind
speed (14–37 m/s), small inland wind speed (11–20 m/s), and wind speed over undulating
topography. The Vmax_WM value in the hilly terrain section (Yibin and Chongqing) increases
significantly and expands westward, the center of high-value region of the Yueyang and
Jiujiang section narrows and decreases, and the center of the high-value region in the
Nanjing and Shanghai section narrows to the northeast. The spatial distribution range of
wind speed increased from 1980 to 1990, with Vmax_WM values reaching >20 m/s in the
Shanghai section. The maximum wind speed in the downstream region decreased below
16 m/s from 1990 to 2000, with insignificant changes in the middle and upstream regions
from 2000 to 2010. The overall changes were insignificant from 2010 to 2017. The most
significant differences were found in the upstream region in 2017, with Vmax_WM values
reaching 20 m/s or more, and a significant decrease in the mid and downstream regions.
This suggests that the wind multiplier downscaling method effectively integrates the effects
of surface processes on wind speed, which is missing in the reanalysis data, resulting in
better interannual variability characteristics.

Research on extreme weather and climate events such as maximum wind speed
can improve disaster prevention and management, and the design of shipping on the
Yangtze River inland waterway. For the navigable environment of the Yangtze River
inland waterway, the basin environment is complex, and the Yangtze River crosses three
major geomorphic terrains with large topographic drop-offs and significant differences
in climatic and meteorological conditions, with an increasing trend in the frequency of
extreme events [37,38]. The natural rate of climate variability in the monsoon region
has a significant impact on the Yangtze River inland waterway, such as the large-scale
atmospheric circulation changes caused by the East Asian monsoon fluctuations, The El
Niño-Southern Oscillation (ENSO) and the Pacific Ocean interdecadal oscillation [39]. It
is worth noting that the wind speed changes in the Yangtze River may be a sensitive
indicator of global climate change. It should also be noted that the Yangtze River inland
waterway is highly exposed and vulnerable and is also affected by transport policy, and
socio-economic and technological developments. Our study provides valuable data and
knowledge support for navigational risk management, identification of local areas at high
wind speed risk, and wind emergency management in the Yangtze River. Research on
the trends of extreme weather events on the Yangtze River inland waterway under the
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combined influence of climate change and human activities should be strengthened in the
future, and high-precision regional model data and spatial analysis methods should be
used to clarify the different influencing factors of disaster-causing risks in each section of
Yangtze River inland waterway.

Author Contributions: Conceptualization, L.L. and F.Z. Formal analysis, L.L. Methodology, L.L.
Software, L.L. Supervision, F.Z. Validation, L.L. and F.Z. Writing—original draft, L.L. Writing—
review and editing, L.L. and F.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (grant
nos. 51709218).

Acknowledgments: The dataset of land use maps from 1980 to 2010 was provided by the National
Tibetan Plateau Data Center (http://data.tpdc.ac.cn, accessed on 13 September 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IPCC. Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the

Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, A.P., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y.,
Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021.

2. Gomez, F.J.; Ávila, H.; Gutierrez, R.R. Hydrometeorological Data-Based Methodology for Navigability Risk Analysis at Waterways:
Case Study for Magdalena River. J. Waterw. Port Coast. Ocean Eng. 2021, 147, 05021011. [CrossRef]

3. Lung, T.; Lavalle, C.; Hiederer, R.; Dosio, A.; Bouwer, L.M. A multi-hazard regional level impact assessment for Europe combining
indicators of climatic and non-climatic change. Glob. Environ. Chang. 2013, 23, 522–536. [CrossRef]

4. Suo, X.; Fu, G.; Wang, C.; Jia, Q. An Application of 24Model to Analyse Capsizing of the Eastern Star Ferry. Pol. Marit. Res.
2017, 24, 116–122. [CrossRef]

5. Zhang, R.; Zhang, S.; Luo, J.; Han, Y.; Zhang, J. Analysis of near-surface wind speed change in China during 1958–2015. Theor.
Appl. Clim. 2019, 137, 2785–2801. [CrossRef]

6. Li, Y.; Chen, Y.; Li, Z. Effects of land use and cover change on surface wind speed in China. J. Arid Land 2019, 11, 345–356.
[CrossRef]

7. Lu, Y.; Wu, B.; Yan, N.; Zhu, W.; Zeng, H.; Ma, Z.; Xu, J.; Wu, X.; Pang, B. Quantifying the Contributions of Environmental Factors
to Wind Characteristics over 2000–2019 in China. ISPRS Int. J. Geo-Inf. 2021, 10, 515. [CrossRef]

8. Zeng, Z.; Ziegler, A.D.; Searchinger, T.; Yang, L.; Chen, A.; Ju, K.; Piao, S.; Li, L.Z.X.; Ciais, P.; Chen, D.; et al. A reversal in global
terrestrial stilling and its implications for wind energy production. Nat. Clim. Chang. 2019, 9, 979–985. [CrossRef]

9. Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [CrossRef]
10. Zhou, L.; Dickinson, R.E.; Tian, Y.; Fang, J.; Li, Q.; Kaufmann, R.K.; Tucker, C.J.; Myneni, R. Evidence for a significant urbanization

effect on climate in China. Proc. Natl. Acad. Sci. USA 2004, 101, 9540–9544. [CrossRef]
11. Li, Z.; Yan, Z.; Tu, K.; Liu, W.; Wang, Y. Changes in wind speed and extremes in Beijing during 1960–2008 based on homogenized

observations. Adv. Atmos. Sci. 2011, 28, 408–420. [CrossRef]
12. Aboshosha, H.; El Damatty, A. Engineering method for estimating the reactions of transmission line conductors under downburst

winds. Eng. Struct. 2015, 99, 272–284. [CrossRef]
13. Kislov, A.; Matveeva, T. Extreme Values of Wind Speed over the Kara Sea Based on the ERA5 Dataset. Atmos. Clim. Sci. 2021, 11, 98–113.

[CrossRef]
14. Searchinger, T.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change.

Nature 2018, 564, 249–253. [CrossRef]
15. Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological

studies. Int. J. Clim. 2007, 27, 1643–1655. [CrossRef]
16. Guo, Q.; Huang, R.; Zhuang, L.; Zhang, K.; Huang, J. Assessment of China’s Offshore Wind Resources Based on the Integration of

Multiple Satellite Data and Meteorological Data. Remote Sens. 2019, 11, 2680. [CrossRef]
17. Lee, C.-Y.; Camargo, S.; Sobel, A.H.; Tippett, M.K. Statistical—Dynamical Downscaling Projections of Tropical Cyclone Activity in

a Warming Climate: Two Diverging Genesis Scenarios. J. Clim. 2020, 33, 4815–4834. [CrossRef]
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