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Abstract: The study uses 30 years of the third generation of Advanced Very-High-Resolution Ra-
diometer (AVHRR) NDVI3g monthly data from 1982 to 2012 to identify the natural clusters and
important driving factors of the upstream watersheds in Taiwan through hierarchical cluster analysis
(HCA) and redundancy analysis (RDA), respectively. Subsequently, as a result of HCA, six clusters
were identified based on the 30 years of monthly NDVI data, delineating unique NDVI character-
istics of the upstream watersheds. Additionally, based on the RDA results, environmental factors,
including precipitation, temperature, slope, and aspect, can explain approximately 52% of the NDVI
variance over the entire time series. Among environmental factors, nine factors were identified
significantly through RDA analysis for explaining NDVI variance: average slope, temperature, flat
slope, northeast-facing slope, rainfall, east-facing slope, southeast-facing slope, west-facing slope,
and northwest-facing slope, which reflect an intimate connection between climatic and orthographic
factors with vegetation. Furthermore, the rainfall and temperature represent different variations in
all scenarios and seasons. With consideration of the characteristics of the clusters and significant envi-
ronmental factors, corresponding climate change adaptation strategies are proposed for each cluster
under climate change scenarios. Thus, the results provide insight to assess the natural clustering of
the upstream watersheds in Taiwan, benefitting future sustainable watershed management.

Keywords: normalized difference vegetation index (NDVI); cluster; upstream watersheds; climate
change; adaptation strategy

1. Introduction

Upstream watersheds play a critical role in the regional hydrologic system and are
sensitive to climate change [1]. For instance, the upstream watersheds usually comprise
high mountains containing the headwater zone in a river system [2]. The headwater
zone is vital for understanding and protecting downstream ecosystems because they are
intimately linked based on interactions among hydrologic, geomorphic, and biological
processes [3]. Thus, a hydrological event in an upstream watershed may directly influence
downstream areas many hundreds of kilometers away, highlighting the crucial ecological
role of the upstream watersheds [2]. Additionally, compared with downstream areas,
upstream watersheds generally comprise high mountains, steep gradients, and high ridges,
thus resulting in low accessibilities and less human interventions. As upstream watersheds
are relatively unaffected by human interventions, the changes observed in upstream
watersheds indicate effects of climate change [4].

The effects of climate change in the upstream watersheds are studied extensively
worldwide. Some scholars focus on runoff variations [5,6], while others study river flow
regimes [7], streamflows [8,9], and reservoir flood control [10], and so on. Among the stud-
ies of climate change effects, several authors have investigated the response of vegetation
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in the upstream watersheds [11,12]. Further studies of future climate variability impacts
on hydrological processes can also be assessed through vegetation responses [13,14].

The roles of vegetation cover in the upstream watershed can be discussed from
many relevant aspects, such as evapotranspiration, infiltration, soil erosion, and runoff,
etc. [2]. First of all, forests in the upstream watershed ordinarily influence local hydrology
through evapotranspiration. Additionally, forests in the upstream watershed also affect
infiltration processes into underlying soil and ground cover through their root systems
and organic humus layer, controlling soil erosion dynamics, runoff mechanisms, and
landslides on sloping land [15–17]. In short, vegetation plays an important role in the energy
exchanges, biogeochemical cycles, and hydrological cycles at the land surface [11,18]. Thus,
the phenological response of vegetation in the upstream watershed is an environmental
indicator because vegetation constitutes the foundation of the terrestrial ecosystem and
denotes a natural connection among the atmosphere, water, and soil.

In the West Pacific, Taiwan is a unique island with over 60% of its land covered by
high mountains with maximum altitudes of 4000 m. East Asian monsoon systems and
typhoons play a major domination role on the precipitation patterns in Taiwan. Coupled
with the Central Mountain Range (CMR), Taiwan’s precipitation patterns are complex, with
extensive local variations [19]. In addition, Taiwan is characterized by geological weakness
with frequent seismic activities resulting in the high vulnerability of Taiwan [20]. In recent
years, Taiwan has encountered increasing pressure from various extreme climate events
due to global climate change, such as severe drought [21–23], intensive typhoons [24],
and associated natural disasters [25]. Almost all extreme climate occasions are related to
water-based situations. For instance, heavy rainfall events have become more frequent and
concentrated, leading to disasters such as landslides and debris flow in many watersheds
locating at the upstream area, which have seriously affected the safety of the people [26–28].
In August 2009, Typhoon Morakot brought record-breaking heavy rainfall to the upstream
watershed in southwestern and southeastern Taiwan. Numerous landslides and debris
flow were triggered by the heavy rainfall of nearly 2000 mm within five days, which makes
the number of life losses ranks second in the history of Taiwan’s natural disasters behind
the Chi-Chi earthquake in 1999 [29]. The increases in climatic abnormalities and potential
impacts, relevant national policies, and further environmental studies were employed and
emerged for enhancing hazard remediation, mitigation, prediction, prevention plans for
Taiwan’s upstream watershed [30–36].

Remote sensing techniques have been used for large-scale environmental studies due
to their broad spatial coverage and regular revisit capacities. The normalized difference
vegetation index (NDVI) is the most widely used remote sensing-derived satellite-based
vegetation index. Numerous studies utilize continuous NDVI time-series data to analyze
the relationship between vegetation and climatic factors such as rainfall, temperature,
sunshine duration, and cloud amount [37–41]. Tsai et al. [42] analyze Taiwan’s spatial
vegetation trends with controlling environmental variables, including temperature, precip-
itation, slope, aspects, and population density, based on the three-decades-long Advanced
Very-High-Resolution Radiometer (AVHRR) NDVI3g data from 1982 to 2012 derived from
19 selected weather stations. Additionally, many scholars use NDVI to investigate natural
disaster responses such as landslides in Taiwan [43–45]. Nevertheless, most studies focus
on a specific time frame/area or use data from selected weather stations. A long-term holis-
tic assessment of the vegetation and climatic characteristics in the upstream watersheds is
of great importance for discerning the effect of climate change in the upstream watersheds
in Taiwan.

Therefore, the present study assesses the long-term vegetation and environmental
characteristics in the upstream watersheds of Taiwan from a broader watershed scale using
long-term remote sensed vegetation index NDVI, climatic factors temperature and precipi-
tation, and orographic factors aspect and slope. Specifically, the hierarchical cluster (HCA)
and redundancy (RDA) analyses discern natural clusters based on monthly NDVI data
and important driving factors of long-term changes in vegetation greenness, respectively.
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Moreover, in future climate change scenarios, corresponding comprehensive adaptation
strategies are proposed for the upstream watershed clusters. Consequently, the results of
this study may benefit disaster prevention and watershed management by a holistically
understanding of upstream watersheds and their possible future impacts under different
climate scenarios.

2. Materials and Methods
2.1. Study Area

The definition of upstream watersheds is not well-defined in Taiwan’s Soil and Water
Conservation Act. In general, a large river basin comprises several secondary watersheds,
with the area being much smaller. As the spatial resolution of the remote sensed vegetation
data used in this study is 8 × 8 km; therefore, this study uses the secondary watersheds
(from now on referred to as the “watershed”). Additionally, the river boundary points
(Figure A1) announced by Taiwan’s Soil and Water Conservation Bureau to determine the
central government administration area are used to determine Taiwan’s upstream water-
shed. Given the distribution of the river boundary points, the outermost river boundary
points are linked to depict a conceptual outermost river boundary area (Figure A1). Then,
the upstream watersheds are determined as the central point of the watershed to be within
this conceptual outermost river boundary area. At present, 70 watersheds, encompassing
approximately 67.3% of Taiwan, were selected as the upstream watersheds for subsequent
analysis. The upstream watersheds are demonstrated in Figure A1 in the Appendix B, and
the detailed information is shown in Table A1 in the Appendix A.

2.2. Research Procedure

The research procedure of this study is shown in Figure 1. Firstly, the upstream water-
sheds were determined based on the river boundary information. The terrain information
slope and aspect were then collected. Next, the monthly NDVI, temperature, and rainfall
data from 1982 to 2012 were collected. Subsequently, the cluster analysis for the upstream
watershed and identifying the driving factors (slope, aspect, temperature, and rainfall) was
conducted based on the collected data. The important driving factors then investigated the
variation of the clustered upstream watersheds under the four climate change scenarios.
Finally, the adaption strategies for the climate change of each cluster were proposed.

2.3. Data Acquisition
2.3.1. Normalized Difference Vegetation Index

The present study utilized a high temporal resolution (15 days) of NDVI dataset,
which is the third generation of Advanced Very-High-Resolution Radiometer (AVHRR)
NDVI3g exploited by the Global Inventory Modeling and Mapping Studies (GIMMS)
group [46]. The dataset’s spatial resolution is 1/12 degree (approximately 8 km), and the
period spans from January 1982 to December 2012. A series of AVHRR sensors produce the
AVHRR NDVI3g dataset in the GIMMS project framework at the National Aeronautics and
Space Administration (NASA) Goddard Space Flight Center. The AVHRR NDVI3g dataset
has been corrected for atmospheric scattering, volcanic eruptions, and the effects of cloud
cover [47–49]. Furthermore, by using the maximum value composition method [49,50],
the 15-day NDVI3g data are combined from the daily data to reduce cloud and aerosol
contamination [51]. Currently, the AVHRR NDVI3g dataset is the NDVI dataset that is
available for providing vegetation cover globally with the most prolonged period. This
situation offers an extraordinary opportunity to analyze long-term vegetation configuration.
In this study, the maximum NDVI values from January 1982 to December 2012 were
obtained from the NDVI3g dataset for each watershed’s NDVI time series material.

2.3.2. Temperature and Rainfall

Precipitation and temperature data from 1982 to 2012 were obtained from the Taiwan
Climate Change Projection and Information Platform (TCCIP) at a monthly time scale
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in a raster format. The TCCIP datasets were produced based on observations derived
from more than 1152 weather station data since 1960. Using the inverse distance weighted
interpolation and weighted average methods suggested in [52], the TCCIP datasets were
produced at 5 × 5 km2 spatial resolution.
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2.3.3. Slope and Aspect

Slope and aspect data were produced from the 40 m × 40 m digital terrain model
(DTM) made by the Taiwan Ministry of the Interior. The aspects included flat aspect (Flat),
north aspect (N), northeast aspect (NE), east aspect (E), southeast aspect (SE), south aspect
(S), southwest aspect (SW), west aspect (W), and northwest aspect (NW). Detailed slope
and aspect data were extracted for the watershed area in Taiwan using ArcGIS software
(Version 10.6.1 Redlands, CA, USA: Environmental Systems Research Institute, Inc., 2019).

2.3.4. Potential Debris Streams and Affected Area

The potential debris streams and affected area information were collected from Tai-
wan’s Soil and Water Conservation Bureau. The total number of potential debris streams
in Taiwan is 1726, while 1863 sites were recognized as the area affected by potential debris
streams. The cluster results were overlapped with the potential debris streams and affected
areas for further discussion.

2.3.5. Climate Change Scenarios

This study obtains the simulated monthly temperature and rain change rate from
the TCCIP [53] from 2021 to 2100. The data represent near to distant future under the
evaluation of the Representative Concentration Pathways (RCPs), describe the 21st-century
pathways of greenhouse gas emissions and atmospheric concentrations, air pollutant
emissions, and land use driven by human activities [54]. Four different climate change
scenarios, RCP2.6, RCP4.5, RCP6.0, and RCP8.5, representing the global temperature rising
level from 2 ◦C to severe warming, have been reported in the fifth assessment report (AR5)
of the Intergovernmental Panel on Climate Change (IPCC).
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Among various atmosphere-ocean general circulation models, Lin and Tung [55]
suggested using the Hadley Global Environment Model 2 (HadGEM2-AO) developed by
the National Institute of Meteorological Research, Seoul, South Korea. Indeed, it is suitable
to estimate the rainfall variation ratio (%) and temperature variation value (◦C) in Taiwan.
Hence, the HadGEM2-AO is chosen to discuss climate change scenarios, focusing on the
temperature and rainfall variations of the watersheds from 2021 to 2100 in Section 3.5.

2.4. Statistics Models
2.4.1. Hierarchical Cluster Analysis

Hierarchical cluster analysis (HCA) is based on a framework of hierarchy to divide
or agglomerate the data from different layers repeatedly and generate a dendrogram.
This study uses agglomerative hierarchical cluster analysis [56,57] by taking each of the
70 watersheds’ monthly NDVI time-series data as an individual cluster in the first stage and
combining any two clusters identifying the clusters have the closest distance in between
them. This procedure was carried out repeatedly until the number of clusters reaches
an optimal number of this study. The optical number of this study remains unknown a
priori and will be examined with further consideration of the spatial feature of vegetation
and geographical environment in Taiwan. The present study applies the Ward linkage
method considering the cluster with priority, which is based on the value of the total
variance of the cluster to identify the distance between two clusters. When a group has
the smallest variance, it is given priority to be grouped as a cluster. The earlier the stations
to be grouped, the higher the similarity within the stations. The similarity measurement
of Ward’s minimum variance method is based on squared Euclidean distance [58–61], the
calculation is as follows:

dA,B = nA‖xA −
=
x‖

2
+ nB‖xB −

=
x‖

2
, (1)

where dA,B represents the distance between cluster A and cluster B, nA and nB represent the
number of the points in cluster A and cluster B, respectively. (xA) and (xB) represent the
central point of cluster A and cluster B, respectively, while

=
x represents the central point of

the combined 2 clusters.

2.4.2. Redundancy Analysis

Redundancy analysis (RDA) is applied to explore the relationship between NDVI and
environmental variables. Specifically, RDA also evaluates the explanatory power of each
environmental variable, including climatic variables temperature and precipitation, and
orographic variables aspect and slope, to the variations of NDVI across the entire study
period. Rao [62] proposed the RDA in 1964, and the RDA was later explored again by
Van DenWollenberg [63] in 1977. Redundancy is often identical to explained variance [64].
As an extension of multiple linear regression (MLR), RDA is allowed to have multiple
explanatory variables (EVs) and a set of response variables (RVs) [65,66]. Furthermore, an
RDA may also be considered an extension of principal component analysis (PCA) because
the canonical ordination vectors are linear combinations of the RVs.

In general, the foundation of RDA is canonical multivariate analyses and assumes
the relationship between variables is in a linear relationship [67]. The assumed linear
relationship among the variables can be expressed by the Eigen analysis equation is
as follows: (

SYXS−1
XXS′YX − λk I

)
uk = 0, (2)

where SYX is covariance matrix of variables and explained variables, S−1
XX represents the

inverse covariance matrix of normalized explained variables, I represents a unit matrix,
λK is the Eigen value of axis k, and uK denotes normalized canonical eigenvectors [65].
Detailed calculations and explanations can be found in Similauer and Leps [68].

In the present study, the NDVI values from each month represent the RVs, the en-
vironmental variables are the EVs, and the watersheds are the cases. The explanatory
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variables (EVs) refer to the environmental variables, including climatic variables, tempera-
ture and precipitation, and orographic variables aspect and slope. The aspects included
flat aspect (Flat), north aspect (N), northeast aspect (NE), east aspect (E), southeast aspect
(SE), south aspect (S), southwest aspect (SW), west aspect (W), and northwest aspect (NW).
Consequently, a total of 12 EVs in the RDA analysis. This study verified the qualification
of an RDA by applying a detrended correspondence analysis with a surveyed length of
turnover units smaller than three. As the score scaling type was set with the focus on RV
correlations, the output ordination diagrams of RDA can be interpreted from its biplot and
triplot diagrams.

According to Similauer and Leps [68], the fundamental explanation rules for RDA
biplots and triplots are summarized here. The symbols indicate cases, and the arrows
indicate RVs and EVs. The concept of relative relationships has been the focus of all
interpretations of ordination diagrams, for instance, the relative distances of symbols, the
relative directions of arrows, and the relative ordering of projection points. Summarized
interpretation guidelines are listed below:

• For the arrows, the pointed direction represents the maximum increase in the variable’s
value across the diagram, and its length is proportional to the maximum rate of change.

• Project the case points perpendicular to the RV or EV arrow to obtain an approximate
ordering of the value of one RV or EV across cases.

• Predict a case point projecting onto the origin of the coordinate system (perpendicular
to an RV or EV arrow) to gain an average value of the corresponding variable. To
obtain above and below-average values, the cases projecting further from zero in the
direction of the arrow and opposite direction are predicted, respectively.

• The relative directions of arrows approximate the linear correlation coefficients among
the variables. In other words, the value of an RV can be predicted to have a positive
correlation with an EV value if that EV arrow points in an analogous direction to an
RV arrow.

• The individual relationship of any two arrows is indicated by the cosine of the angles
between the arrows. Any two variables will be predicted to have a weak correlation if
the arrows intersect at a right angle (near to zero).

3. Results
3.1. Time Series Data for NDVI, Rainfall, Temperature for Upstream Watershed

Figure A2 in Appendix B shows the 31-year average time series data of NDVI, rain-
fall, and temperature extracted from the selected 70 watersheds, having average values
between 0.37-0.97, 0.37-33.49 mm, and 10.27-24.36 ◦C, respectively. Additionally, linear
trend analysis was employed with the data’s standard deviation calculated to assess the
time series data.

As seen in Figure A2a, the NDVI values between 1993 and 1995 are lower, which
may be attributed to the drought lasting for nine months in Taiwan during this period, as
reported by Hsu et al. [69] and Tsai et al. [45]. As seen in the time series data for rainfall in
Figure A2b, the higher values above two standard deviations were associated with past
typhoon events. Apart from the drought between 1993 and 1995, another severe drought
occurred in Taiwan during 2002 and 2004, as Hsu et al. [69] reported. Lower values of
rainfall data, therefore, can also be seen during these periods. On the other hand, the
result of rainfall peak values after 2004 occurred more frequently than before 2004. It
will be worthy of discussing the relationship between this increased frequency and the
effect of climate change. In addition, as shown in Figure A2c, the temporal variation of
the temperature showed a steady undulation pattern of hot summer and cold winter. The
oscillation of the value was approximately steady, and no noticeable change was observed
during the drought and typhoon seasons.
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3.2. Cluster Analysis for Upstream Watershed NDVI

This study applied the agglomerative hierarchical cluster analysis (HCA) with Ward’s
minimum variance method to judge the distance between clusters based on the monthly
time series NDVI data. The highest variation ratio (99.7%) occurred at the 68th to the
69th stage from the preliminary result. According to the agglomeration definition of
HCA, the optimal grouping stage is the 68th stage, and the optimal number of clusters
is deduced to be two (see Figure A14). By considering the spatial feature of vegetation
and geographical environment in Taiwan, however, the grouping stage was examined one
by one for obtaining the optimal number of clusters. This is suggested to be six at the
64th stage, that this spatial pattern of vegetation clustering can reflect the spatial variation
feature of vegetation in Taiwan.

The spatial distribution result of the cluster analysis is shown in Figure 2. The number
of watersheds for each cluster is shown in Table 1. Most of the watersheds in Cluster #1
are located at the east of the central mountain range. Cluster #2 is located at the western
plains, and Cluster #3 is located at the higher elevation of the central mountain range. For
Cluster #4, #5, and #6, most of the watersheds are located at southwest of Taiwan, the Dajia
River, and east of Taiwan.
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Table 1. Number of watersheds, average slope, and percentage of aspect for each cluster.

Cluster Number of
Watersheds

Slope
(Degree)

Aspect (%)

Flat North North East East South East South South West West North West

1 22 26.7 1 12 14 14 14 12 11 11 12
2 15 15.6 5 12 10 12 12 12 11 12 12
3 19 27.9 1 13 11 11 12 12 13 14 14
4 8 21.2 0 14 10 9 9 10 13 16 17
5 1 4.5 2 14 8 6 5 11 16 19 19
6 5 17.9 1 9 13 19 19 11 9 10 9
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3.3. Identifying Important Driving Factors

The RDA analysis was applied to identify the environmental variables dominating the
spatial characteristics of the NDVI signature of each cluster, including climatic variables
temperature and precipitation, and orographic variables aspect and slope. Again, the
monthly NDVI was the response variable (RVs), while the temperature, rainfall, slope, and
aspect factors were the explanatory variables (EVs) in this analysis. Finally, the 70 selected
watersheds were the cases.

As shown in Table 2, on average, the environmental EVs can explain approximately
52% of the monthly NDVI variance over the entire time series. In terms of temporal
perspective, the NDVI signature of January to March, July to August, and November to
December, revealed cumulative explained variance exceeded 50%. Additionally, the ex-
planatory ability and the statistical significance level of the EVs for analyzing the variability
of NDVI are shown in Table 3. The relationship between the NDVI value of watersheds
and most of the EVs was significantly related at different significance levels. According to
the result of statistical significance level, nine important driving factors which relate to the
watershed are slope, temperature, flat aspect (Flat), northeast aspect (NE), rainfall (Rain),
east aspect (E), southeast aspect (SE), west aspect (W), and northwest aspect (NW). Among
these factors, the slope has the highest value of explanatory ability (35.2%, p < 0.001), as
shown in Table 3.

Table 2. Cumulative fraction of variation in individual monthly NDVI explained by the first, the first
two, and all RDA axes.

Monthly NDVI Axis 1 (%) Axis 1 and 2 (%) Total (%)

January 46.72 58.22 58.52
February 57.39 63.80 64.51

March 60.83 63.97 66.20
April 42.00 43.74 47.60
May 5.10 5.96 35.22
June 19.31 26.68 33.46
July 48.56 61.10 63.76

August 41.80 58.96 60.19
September 27.30 38.39 45.12

October 39.20 41.31 46.42
November 49.65 50.72 52.08
December 51.05 55.93 56.70

Average 40.74 47.40 52.48

Table 3. Explanatory ability and statistical significance level of variables to the NDVI variations.
Significant variables are marked with stars.

Name of Variable Explains (%)

Slope 35.2 ****
Temperature 27.8 ****

Flat 17.2 ****
North East 11.2 ****

Rain 10.6 ****
East 5.9 **

South East 5.7 **
West 5.2 **

North West 3.6 *
South West 2.7

North 2.5
South 0.3

**** p < 0.001; ** p < 0.05; * p < 0.10.
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The RDA results of the biplot showing NDVI and watersheds are shown in the biplot
of Figure 3a. The quadrants of the biplot are numbered in an anti-clockwise direction,
showing Quadrant I on the upper-right corner of the plot. Based on the principles of
RDA, the length of the NDVI arrows (RVs, shown in blue arrows) shows how much the
NDVI variability of each month can be explained by all explanatory variables (EVs, shown
in red arrows). Additionally, an approximate ordering of the NDVI value (RV) across
watersheds can be discerned by projecting the watershed point perpendicular to the RV
arrow to obtain.
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Figure 3. RDA results with the quadrants numbering in an anti-clockwise direction starting from the upper-right corner.
(a) RDA biplot showing NDVI and watersheds; (b) RDA biplot showing explanatory variables with watersheds; (c) RDA
triplot showing NDVI, explanatory variables, and watersheds; (d) HCA clusters incorporate with RDA triplot (dotted circles
denote the HCA clusters). The cases circles denote watersheds while the blue and red arrows represent NDVI (RVs) and
explanatory variables (EVs), respectively.

As a result, the length of the arrows for the period of January to March, July to August,
and November to December is relatively longer than other periods. The results indicate
that the NDVI variability can be explained by the RVs efficiently. The results also respond
to the cumulative variation in individual monthly NDVI explained by RDA axes shown in
Table 2. The cumulative explanatory variance of those months exceeds 50%.

Furthermore, the included angle between two arrows indicates the relevance of the
arrows, where the smaller the included angle, the higher the correlation is. As seen in
the biplot of Figure 3a, the angles between each month’s NDVI were less than 90 degrees,
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indicating a positive correlation (95% CI) between each month’s NDVI. Moreover, the
arrows of June to September in Quadrant III and the arrows of November to next May
in Quadrant II were closer to each other. It may imply a changing seasonality pattern or
seasonality diminishment revealing climate change influences.

Figure 3b shows the relationships between the watersheds, the EVs, and the explana-
tory ability of each EV as a biplot. For example, the angle between temperature (Temp)
in Quadrant 1 and slope (Slope) in Quadrant III was larger than 90 degrees, indicating a
negative correlation between these two variables. In other words, the higher the slope,
the lower the temperature, reflecting the lapse rate common sense. Likewise, the angle
between rain (Rain) and slope (Slope) is smaller than 90 degrees, representing a positive
correlation between rain and slope. Thus, the higher the slope, the more considerable
amount of rain that occurs.

The length of the arrow in the triplot Figure 3c indicates the explanatory ability of
the variable, in which the longer the arrow, the better the explanatory ability is. Figure 3c
and Table 3 show that the slope (Slope) variable has the highest explanatory ability. The
temperature (Temp) and the flat (Flat) rank the second and the third one of the explanatory
ability. Additionally, the rain, NE, E, SE, W, and NW variables have different explanatory
abilities for NDVI.

The correlation between the RVs (NDVI) and EVs (the environmental variables) is
shown in Figure 3c. The direction of the arrows and the included cosine of the angles
between any two arrows indicate their correlation. The arrows of the slope, rain, NE, E,
and SE (see Quadrant II and III) have the same direction as the arrows of NDVI for every
month; thus, these EVs correlate positively with NDVI. Furthermore, the included angles
for the NDVI values from November to next March are similar to the included angle of
rain in Quadrant II, showing that the NDVI values positively correlate with rain from
November to next March. On the other hand, the direction of the arrows of Temp and Flat
is different from the arrows of NDVI, thus leading to Temp and Flat having a negative
correlation with NDVI. With the higher accessibility of flat land, it is reasonable to have
higher accessibility, thus a higher level of human settlements. Accordingly, the decrease
in NDVI can be attributed to excessive human activity, such as urban development in the
flat area.

Figure 3d shows the combined RDA and HCA results. The spatial distribution of the
watersheds HCA results demonstrate the spatial feature of the clusters. Cluster #1 (circled
in light blue) is located at the middle and slightly left from the middle of the figure, as most
of the watersheds appear in Quadrant III. The spatial presence with RVs and EVs indicates
that the watersheds in Cluster #1 have higher monthly NDVI value, higher average slope
value, and more rainfall. The watersheds of Cluster #2 (circled in dark blue) are located at
Quadrant I and IV, indicating the watersheds of this cluster having lower NDVI value, less
rainfall, lower average slope, higher temperature, and have more flat areas. For Cluster #3
(circle in indigo), the watersheds are located next to Cluster #1, demonstrating that both
clusters have similar features.

The watersheds of Cluster #4 (circled in dark green) are located at Quadrant I and II
in Figure 3d. It shows that the W and N aspects are the main aspect, and the value of the
average slope is close to the mean value of the selected 70 watersheds. Cluster #5 (circled
in light green) is located at the lower right of Quadrant IV in the figure, indicating the
watersheds’ high temperature and flat slope features. Finally, Cluster #6 (circled in green)
is located at the lower side of Quadrant IV close to Quadrant III in the figure. Again, it
demonstrates temperature values, and the slope of the watersheds in this cluster is close to
the mean value of the selected 70 watersheds.

3.4. Climate Change Scenarios for Each Cluster

The temporal variations of the rain change rate and temperature data of watershed
clusters under climate change scenarios are discussed in this section. The climate change
scenarios are referred to the results indicated in IPCC’s fifth assessment report (AR5).
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The monthly values of simulation from the scenarios are averaged and discussed in four
seasons, including winter (from December to next February), spring(from March to May),
summer(from June to August), and fall (from September to November).

3.4.1. Rainfall Change Rate for Each Cluster

Figure A3 in the Appendix B illustrates each cluster’s seasonal rainfall change rate
under climate change scenarios from 2021 to 2100. Generally, the rainfall change rates are
negative in winter, spring, and summer but positive in fall. The value of the rates increases
as the RCP level increases.

In the near future period of 2021 to 2040, rainfall change rates are predicted to decrease
approximately 40% in winter in Clusters #2, #4, and #5 in the worst scenario RCP 8.5.
However, scenario RCP 6.0 shows a 24% increased rainfall prediction in winter in Cluster #5.
From 2041 to 2060, negative change rates are observed in winter, spring, and summer,
except under scenario RCP 2.6 in summer. In winter, the largest decrease is observed in
Cluster #4, around 37%, while the largest increase was observed in the fall in Cluster #5
at 29%. The decreased rainfall pattern in winter, spring, and summer with an increase in
fall is evident in 2061–2080 and 2081–2100. The most significant decrease in winter rainfall
occurs in Cluster #4 by 56% (in RCP 4.5) and 58% (in RCP 8.5) in 2061–2080 and 2081–2100,
respectively.

3.4.2. Temperature Change for Each Cluster

Figure A4 in the Appendix B shows each cluster’s seasonal temperature changes
under climate change scenarios from 2021 to 2100. In general, the temperature increase for
all clusters in all scenarios from 2021 to 2100, showing the smallest increase of 0.1 ◦C under
the RCP 6.0 scenario and the largest increase of 3.5 ◦C under the RCP 8.5 scenario.

From 2021 to 2040 and from 2041 to 2060, the largest temperature increase is observed
in spring, by approximately 1.2 ◦C and 1.5 ◦C in all clusters in the RCP 4.5 scenario.
In 2061–2080, Cluster #3 displays a unique pattern by the most significant temperature
increase in spring by 2.4 ◦C under the RCP 2.6 and RCP 8.5 scenarios. Other clusters show
a similar pattern with the smallest increase in summer (0.4–0.5 ◦C, in the RCP2.6 scenario)
and the largest increase in spring (2.4–2.5 ◦C, in the RCP8.5 scenario). Finally, from 2081 to
the end of the century, the largest increase by 3.5 ◦C in Cluster #5 is expected under the
RCP 8.5 scenario.

3.4.3. Temporal Variation of Rain Change Rate and Temperature Data

The average values of the rain change rate and temperature data for four scenar-
ios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) during 2021–2040, 2041–2060, 2061–2080, and
2081–2100 were calculated and presented in Figure 4 to enhance comprehension under-
standing of climate change from near to distant future in each cluster for different seasons.
Figure 4 shows that during fall, the rainfall has an approximately 10% of increment. In
particular, during 2081–2100, the fourth and fifth clusters’ rainfall was predicted to have an
increment higher than 10%. On the other hand, the rain change rate shows negative during
winter, spring, and summer, which means the rainfall decreases during these seasons.
Particularly in spring has a higher rain change rate than in winter; additionally, there is an
evident decrement during 2061–2080 and 2081–2100 in winter.

It is shown that the variation of temperature has a general trend of increase, and
the increased range is around 0.5 ◦C to 2 ◦C. The increment of the temperature during
spring and winter is higher than that during summer and fall. Except for the third cluster’s
temperature reached the peak value from 2061 to 2080, the trend continues to stay flat and
mitigate from 2080 to 2100; the rest of the clusters have an increase in temperature from
2021 to 2100.
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8.5) during 2021–2040, 2041–2060, 2061–2080, and 2081–2100.

3.5. Potential Debris Streams and Affected Areas

Table 4 and Figure 5 show the spatial relationship between watershed clusters with
potential debris streams and affected areas. In particular, the potential debris streams and
affected areas in Cluster #1 are distributed in the northern part, approximately 20% of the
ratio to the total number of that in Taiwan. The potential debris streams and affected area
in Cluster #2 is limited to around 12.7% of Taiwan’s total sites. Most of the potential debris
streams locate in the eastern part and close to the central mountain range.

Table 4. The number of potential debris streams and affected areas in each cluster.

Cluster

(A) Number of
Sites of

Potential
Debris Stream
Affected Area

Ratio of (A) to
the Total

Number of
Sites

(B) Number of
Potential

Debris Streams

Ratio of (B) to
the Total

Number of
Streams

1 370 19.9 337 19.5
2 237 12.7 199 11.5
3 614 33.0 531 30.8
4 219 11.8 155 9.0
5 4 0.2 6 0.3
6 166 8.9 139 8.1

Sum 1610 86.4 1367 79.2

Total number of
sites/streams 1863 1726

Cluster #3 has the most magnified number of potential debris streams, around 30% of
Taiwan’s total potential debris streams. Additionally, Cluster #3 has the highest ratio of 33%
of the number of potential debris streams affected areas, 614. On the other hand, Cluster #4
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has around 9–12% of potential debris streams and affected areas. Furthermore, there is less
than 1% potential debris streams and the affected area in Cluster #5 with only six potential
debris streams. Finally, Cluster #6 has around 9% of the potential debris streams affected
areas and 139 potential debris streams.
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Therefore, in each cluster’s ratio, the potential debris stream-affected areas of Clus-
ters #3 and #1 have higher ratios, which are 33% and 19.9%, respectively. Overall, the
upstream watersheds contain 86.4% of the total potential debris stream-affected area and
79.2% of the debris streams in Taiwan.

4. Discussion

The present study has identified six clusters of the upstream watersheds in Taiwan
based on their long-term NDVI signatures. Additionally, the NDVI signatures reveal a
changing seasonality pattern or diminishment based on the RDA results, implying potential
climate change influences. Moreover, increasing temperature and rainfall variations are
expected for upstream watersheds under the climate change scenarios. Therefore, the
seasonality diminishment, increasing temperature, and rainfall variations are discussed
below, followed by climate change adaptation and mitigation strategies for each cluster.

Seasonality diminishment is observed in many northern high latitude areas in the
world. For instance, Xu et al. [70] reported that the temperature difference between
summer and winter temperatures is diminishing over time in the Arctic (boreal) region.
As the diminishment trends continued, vegetation seasonality could be modified due to
the alterations of termination and performance of vegetation photosynthetic activity tied
to temperatures. Hence, Bhatt et al. [71] further investigated the changing seasonality
of panarctic tundra vegetation related to climatic variables. The authors also used the
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same dataset as the present study, GIMMS NDVI3g, to study the vegetation response
to temperature from 1982 to 2015. In addition, they obtained sea ice data together to
demonstrate the influence of change temperature. Based on their results, they have found
a significant NDVI decline in spring. Many possible drivers explained the early growing
season NDVI decline, such as increased standing water, delayed spring snowmelt, winter
thaw events, and early snowmelt followed by freezing temperatures. In the present study,
a possible seasonality changing pattern has been observed based on the RDA results. The
upstream watersheds contain high mountains with vegetation species sensitive to changing
temperature influences, raising precautions for climate adaptation preparations.

Additionally, the predicted temperature change across all clusters is in good agreement
with many scholars. Hsu and Chen [72] examined Taiwan’s climate change characteristics
over the past 100 years. They concluded that the rainfall tends to increase in northern
Taiwan and decrease in southern Taiwan with a complicated spatial pattern. The author
also found the changes in rainfall occur mainly in either the dry or rainy season, resulting
in an enhanced seasonal cycle. Finally, they observed the island-wide warming trend at the
rate of 1.0–1.4 ◦C/100 years. Lin et al. [73] examined the climate variability of heatwaves
according to air temperature and relative humidity to determine trends of variation and
stress threshold in three major cities of Taiwan, Taipei, Taichung, and Kaohsiung. Based on
the data from 2003 to 2012, they simulated future warming scenarios for 2075 to 2099. They
concluded the heatwave stress would either exceed or approach the danger level by the
end of this century.

Moreover, for Central Taiwan, Shou and Yang [32] performed a predictive analysis of
landslide susceptibility under climate change. They have found that the mid-to-upstream
and upstream areas of the Chingshui river were highly susceptible to landslides. In addi-
tion to landslides, the midstream and the upstream landslides may generate debris flow
hazards during a heavy rainfall event. For Northern Taiwan, Chen et al. [74] assess future
landslide characteristics using ensemble climate change scenarios for two catchments in
northern Taiwan. Their ensemble results indicated that the landslide magnitude triggered
by medium- and high-level typhoons would increase by 24–29% and 125–200% under
climate change. Finally, for Southern Taiwan, Shou et al. [35] employed rainfall frequency
analysis and the atmospheric general circulation model downscaling estimation to un-
derstand the temporal precipitation trends, distributions, and intensities in the Ai-Liao
watershed located in southern Taiwan. The results reveal a highly susceptible landslide
chance in the mid-upstream and upstream areas of the Ai-Liao watershed.

Based on the six clusters analyzed in Section 3 and future climate change scenarios, this
study proposes adaptation strategies for each cluster. Most of the watersheds in Cluster #1
are located at the east of the central mountain range. While the average slope of Cluster #1
is 26.7 degrees, the second-highest of all clusters, the average temperature is the second
lowest (16.8 ◦C). The ratio of NE (14%), SE (14%), and E (14%) aspects is high (the total ratio
is >40%). In this cluster, the predicted results under four scenarios are similar: the rainfall
decreases 14–37% during winter, and the temperature increases 0.5–2 ◦C. Specifically,
during spring, the rainfall decreases 13–19%, and the temperature increases 0.6–2 ◦C.
During summer, the rainfall decreases 6–10%, and the temperature increases 0.5–1.8 ◦C.
Moreover, during fall, the rainfall increases 0.3–9%, and temperature increases 0.5–2 ◦C.
The predicted decreased winter rainfall coincides with a study conducted by Hung and Kao
(2010) [75]. The authors reveal the circulation of the East Asian Winter Monsoon (EAWM)
in recent decades, resulting in decreased winter rainfall on the hills in northern Taiwan.
Since this cluster includes the eastern side of the Central Mountain Range, special attention
must be paid to the changes in high-altitude species’ living environment due to the decrease
in rainfall and the increase in temperature. Furthermore, the possible influences on the
distribution of forest vegetation and compositions should be considered in association with
the hydrologic process, such as rainfall-runoff dynamics, sediment response, and stream
stability may change accordingly [76–78]. Moreover, due to the warmer and drier condition,
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critical conservation attention is needed to prevent competition from alien species and the
overall forest ecosystem functions [79,80].

Cluster #2 is located on the western side of Taiwan. The topography and temperature
are relatively flat and high, and the decreased amplitude in rainfall is higher than the
first cluster. The rainfall decreases 13–45% in winter, 15–22% in spring, and 5–7% in
summer, yet increases 0.4–12% in fall. The temperature increases in all seasons, which
is 0.6–2.0 ◦C in winter, 0.6–2.0 ◦C in spring, 0.5–1.8 ◦C in summer, and 0.5–1.9 ◦C in fall.
Considering that about 20% of its land is occupied by agricultural activities, about 15%
of irrigated agricultural land, and about 13% of dryland agricultural land (Figure A13),
special attention should be paid to rising temperature and reduced rainfall on agricultural
practices. This outcome can lead to conduct farmland vulnerability surveys and analysis,
hotspot/vulnerability discussion, and guidance at different levels. In the meantime, the
farming and rotation system can be adjusted to promote drought-tolerant crops, water
resources deployment, facility agriculture development, and the cultivation of diverse
crops. In addition, comprehensive integration and adjustments in agricultural, natural-
disaster subsidy policies, or agricultural insurance can also be introduced.

Cluster #3 is located at the western side of the Central Mountain Range, with the
steepest slope. According to the model’s result, the rainfall in this cluster decreases 13–45%
in winter, 12–19% in spring, 5–7% in summer, but increases 0.4–12% in fall. Thus, the
temperature increment is 0.6–2.0 ◦C during winter and spring, 0.4–1.8 ◦C during summer
and fall. The mixed forest (76%) ratio in this cluster is similar to the first cluster. However,
the broadleaf forest ratio is higher than the ratio in the first cluster (5%), and the ratio of the
agricultural land in this cluster is 5%. As the third cluster contains the western side of the
Central Mountain Range, where the area is the focal point of green band protection, it is
crucial to pay attention to the connection between the north–south and east–west directions
green band for the climate change adaption strategies.

Additionally, Chen et al. [28] analyzed the influence of climate change on sediment
yield variation, sediment transport, and erosion deposition distribution in the Gaoping
river basin, a southern watershed of Taiwan. They concluded that future climate change
variability would influence the watershed through increased sediment yields, even wors-
ening the impacts of natural disasters. In this cluster, landslide hazards should also be
considered with the fragile geology due to the earthquake history. Furthermore, Chen
et al. [81] investigated the characteristics of rainfall-induced landslides of the Shenmu
watershed in Central Taiwan. The authors argued that the frequent landslides in the
Shenmu watershed located in Central Taiwan could be attributed to seismic forcing caused
by the 1999 Chichi earthquake. Coupling with the increasing amount of heavy rainfall and
flooding events, steep hillslopes, fractured strata revealing a high fault density, and the
large-scale sediment input are affecting the rivers. They concluded that the considerable
sediment yield produced by the large landslides in the upstream area of the watershed is a
major driver of the morphological evolution of the downstream watershed.

Simultaneously, the number of potential debris stream affected areas in this cluster is
the largest (see Table 4). Its rainfall during summer has the highest value among all clusters
(see Figure 2). According to Pearson’s correlation analysis (see Figure A15 in Appendix C),
August’s rainfall has negatively impacted the NDVI value. It should be noted that the slope
area is affected by the land scouring and debris flow during rain. Therefore, it is crucial to
enhance disaster prevention and mitigation work, strengthen the ability to respond to the
crisis of large-scale landslides, and at the same time strengthen forest land management
to avoid forest land damage and loss caused by improper development. Furthermore,
high-altitude species’ ability to adapt to decreasing rainfall and rising temperatures, the
variation of biodiversity due to environmental conditions changes, the health maintenance
and management planning of forests must be considered.

Cluster #4 locates in the southwest area, the proportion of N, W, and NW aspects is
the highest, and the average value of the slope is 21◦. This cluster has 71% mixed forest
and around 16% agricultural area (see Figure A13). The highest decrement rate appears
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in winter in the rainfall variation rate, around 17–51%. The rainfall decreases 19–23%
in spring, 4–6% in summer but increases 2–15% in fall. Additionally, the temperature
increases 0.6–1.9 ◦C in winter and spring, 0.5–1.8 ◦C in summer and fall. As this cluster
contains shallow hills and agricultural areas, the adaption strategies are recommended
to pay attention to the shallow hills area’s suitability occupied by agricultural activities
and assess the impact. The purpose is to avoid soil erosion and environmental pollution
caused by improper development activities. Moreover, the increasingly frequent extreme
events, such as typhoons and short-term heavy rainfall, may bring about slope disasters
and erosion (Wu and Lin, 2021) [82]. Therefore, it is necessary to prepare appropriate water
and soil conservation facilities, and develop early warning models and other adjustment
strategies.

Cluster #5 is the Dajia River watershed, the land is flat (average slope value is 4.5◦),
and the average temperature value is high. This cluster includes 28% of irrigated agri-
cultural land and 22% of agricultural and pastoral land. In the rainfall aspect, the value
decreases 11–40% in winter, 10–19% in spring, 2–5% in summer, but increases 2–23% in
fall. For the temperature, it increases 0.7–2.3 ◦C in winter, 0.7–2.2 ◦C in spring, 0.5–1.8 ◦C
in summer, and 0.4–1.8 ◦C in fall. The cluster only consists of one watershed; therefore,
the adaption strategies are recommended to evaluate if the rainfall variation influences
irrigated agricultural usage. In the meantime, the increasing temperature might increase
water loss and affect irrigated agricultural soil, and plants’ growth is also worthy of atten-
tion. Therefore, the contingency plan for water resource allocation is also recommended as
the focus of the adjustment strategy (Li et al., 2021) [83]. Moreover, the rainfall variation
could also impact the stormwater runoff distribution (Chang and Su, 2021) [84]. Moreover,
the fluvial geomorphic response to dam removal is also a concern for the Dajia River water-
shed. Wang et al. (2020) [85] evaluated dam removal on river morphology and revealed
that the area most geomorphically sensitive to the removal of the dam lies 1200–3600 m
downstream of the dam site.

Cluster #6 locates in the east of Taiwan, which has more E and SE aspects. The mixed
forest has a ratio of 53%, and the broadleaf forest has a ratio of 14%. The rainfall decreases
13–36% in winter, 16–21% in spring, 6–10% in summer, but increases 0.3–9% in fall. The
temperature increases 0.6–1.9 ◦C in winter and spring, 0.5–1.8 ◦C in summer, and 0.5–1.5 ◦C
in fall. The finding is in good agreement with Peng et al. [86]. The number of potential
debris stream affected area sites accounts for approximately 9% of the total number of sites
(Table 4). Therefore, it is necessary to enhance the disaster prevention and mitigation work,
especially for slopes with E and SE aspects, to strengthen the crisis response ability.

Last but not least, watershed conservation and management can provide valuable
ecological functions and societal benefits. Lin et al. [87] evaluated the environmental
benefits in watershed conservation and restoration in Taiwan. They have evaluated 95 wa-
tersheds across Taiwan based on the environmental benefits. The results showed that the
greatest environmental benefits resulted from water quality improvement (49%), followed
by ensuring a steady water supply (20%) and hydropower supply (16%). In addition,
environmental benefits from water quantity improvement (8%), forest restoration (5%),
and carbon reduction (2%) totaled USD 2 million in 2018. Their results also indicate a
great emphasis on minimizing the effects of natural disasters (USD 115.6 million) can be
achieved by watershed conservation and restoration.

5. Conclusions

In the present study, the upstream watersheds in Taiwan are investigated by assessing
30 years of long-term NDVI data. As a result, six clusters of the upstream watersheds
in Taiwan are recognized by HCA analysis with specific characteristics. In addition,
nine significant driving factors were identified with varied explanatory abilities to NDVI
variation. Significant rainfall variations were expected with warmer temperatures under
future climate change scenarios across clusters. Thus, we have proposed climate change
adaptation strategies based on the characteristics of each cluster for each cluster.
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The study applied a novel cluster approach that can be further used as a conceptual
operation unit to implement upstream watershed management. As the characteristics of
each cluster are unique, the corresponding adaptation strategies should be implemented
accordingly to enhance future sustainable watershed management in Taiwan.
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Appendix A

Table A1. List of selected watershed.

# Serial Number of
Watershed City/County Name of River

Basin Name of Watershed Area of Watershed
(km2)

1 1002 Taichung City Dajia River Guguan adjustment
pool 196.12

2 1204 Nantou County Zhuoshui River Shuili river 58.03
3 1504 Chiayi County Bazhang River Luliao reservoir 8.48
4 1704 Tainan County Zengwen River Jingmian reservoir 16.24
5 2505 Hualien County Xiuguluan River Xiuguluan river 200.54
6 2607 Hualien County Hualien River Ji-an river 35.02
7 0101 Yilan County Lanyang River Lanyang river 932.65
8 0102 Yilan County Lanyang River Yilan river 187.72
9 0401 Hsinchu County Tamsui River Shimen reservoir 835.90

10 0402 New Taipei City Tamsui River Feitsui reservoir 328.80
11 0403 Taoyuan City Tamsui River Dahan river 451.85
12 0404 New Taipei City Tamsui River Hsindian river 541.30
13 0501 Hsinchu County Fengshan River Fengshan river 277.73
14 0601 Hsinchu County Touchian River Touchian river 626.72
15 0701 Miaoli County Zhonggang River Zhonggang river 375.61
16 0702 Hsinchu County Zhonggang River Dapu reservoir 121.51
17 0801 Miaoli County Houlong River Houlong river 526.84
18 0802 Miaoli County Houlong River Mingde reservoir 88.74
19 0901 Miaoli County Daan River Daan river 765.56
20 0902 Miaoli County Daan River Liyutan reservoir 81.97
21 1001 Taichung City Dajia River Deji reservoir 574.86

22 1003 Taichung City Dajia River Tianlun adjustment
pool 93.30

23 1004 Taichung City Dajia River Shigang reservoir 344.74
24 1005 Taichung City Dajia River Dajia river 163.71
25 1101 Taichung City Wu River Beigang river 565.48
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Table A1. Cont.

# Serial Number of
Watershed City/County Name of River

Basin Name of Watershed Area of Watershed
(km2)

26 1102 Nantou County Wu River Nangang river 473.49
27 1104 Taichung City Wu River Dali river 433.64
28 1105 Changhua County Wu River Maoluo river 407.12
29 1106 Changhua County Wu River Wu river 229.14
30 1201 Nantou County Zhuoshui River Wushe reservoir 245.89
31 1202 Nantou County Zhuoshui River Wujie adjustment pool 368.04

32 1203 Nantou County Zhuoshui River Sun Moon Lake
reservoir 33.75

33 1205 Yunlin County Zhuoshui River Zhuoshui river 771.10
34 1206 Nantou County Zhuoshui River Danda river 294.12
35 1207 Nantou County Zhuoshui River Junda river 455.64
36 1208 Nantou County Zhuoshui River Chenyoulan river 490.91
37 1209 Chiayi County Zhuoshui River Qingshui river 462.69
38 1210 Nantou County Zhuoshui River Kashe river 183.99
39 1211 Nantou County Zhuoshui River Dongpuna river 109.24
40 1301 Yunlin County Beigang River Huwei river 332.03
41 1302 Yunlin County Beigang River Sandie river 209.73
42 1501 Chiayi County Bazhang River Bazhang river 460.98
43 1601 Chiayi County Jishui river Baihe reservoir 38.69
44 1701 Kaoshiung City Zengwen River Zengwen reservoir 519.83
45 1702 Tainan City Zengwen River Wushantou reservoir 70.29
46 1703 Tainan City Zengwen River Nanhua reservoir 138.94
47 1705 Tainan City Zengwen River Zengwen river 624.05
48 2101 Kaoshiung City Kaoping River Qishan river 819.68
49 2102 Kaoshiung City Kaoping River Laonong river 1537.71
50 2103 Pingtung County Kaoping River Ailiao river 678.61
51 2401 Taitung County Beinan River Beinan river 1017.08
52 2402 Taitung County Beinan River Hsinwulue river 733.84
53 2501 Hualien County Hsiuguluan River Hsiuguluan river 765.36
54 2502 Hualien County Hsiuguluan River Hsiuguluan river 190.30
55 2503 Hualien County Hsiuguluan River Hsiuguluan river 494.19
56 2504 Hualien County Hsiuguluan River Hsiuguluan river 313.83

57 2601 Hualien County Hualien River Hualien river coastal
area 503.83

58 2602 Hualien County Hualien River Maan river 173.83
59 2603 Hualien County Hualien River Wanli river 267.11
60 2604 Hualien County Hualien River Shoufeng river 236.08
61 2605 Hualien County Hualien River Mugua river 486.47
62 2606 Hualien County Hualien River Meilun river 101.20
63 2701 Hualien County Heping River Heping river 629.64
64 2703 Yilan County Heping River Nanao river 361.65

65 4301 Taitung County
River system of
Taitung coastal

area
Taiping river 120.61

66 4302 Taitung County
River system of
Taitung coastal

area
Lichia river 194.73

67 4403 Taitung County
Rivers on the east
side of the Coastal

Mountains
Mawu river 163.43

68 4601 Hualien County River system of
Taroko coastal area Kanaan coastal area 98.88

69 4602 Hualien County River system of
Taroko coastal area Liwu river 693.63

70 4603 Hualien County River system of
Taroko coastal area Shanzhan river 149.79



Atmosphere 2021, 12, 1206 19 of 34

Appendix B

Atmosphere 2021, 12, x FOR PEER REVIEW 20 of 36 
 

 

66 4302 Taitung County 
River system of Taitung 

coastal area Lichia river 194.73 

67 4403 Taitung County Rivers on the east side of 
the Coastal Mountains 

Mawu river 163.43 

68 4601 Hualien County River system of Taroko 
coastal area Kanaan coastal area 98.88 

69 4602 Hualien County 
River system of Taroko 

coastal area Liwu river 693.63 

70 4603 Hualien County River system of Taroko 
coastal area 

Shanzhan river 149.79 

Appendix B 

 
Figure A1. Spatial distribution of the upstream watersheds. Figure A1. Spatial distribution of the upstream watersheds.

Atmosphere 2021, 12, x FOR PEER REVIEW 21 of 36 
 

 

 

Figure A2. Average time series data of (a) NDVI, (b) rainfall, and (c) temperature extracted from selected 70 watersheds. 
The solid line represents the time series, the dotted line represents the linear trend, and the dashed line represents the two 
standard deviation bounds. 

Cluster 2021–2040 2041–2060 2061–2080 2081–2100 

#1 

 

#2 

   

#3 

  

Figure A2. Average time series data of (a) NDVI, (b) rainfall, and (c) temperature extracted from selected 70 watersheds.
The solid line represents the time series, the dotted line represents the linear trend, and the dashed line represents the two
standard deviation bounds.



Atmosphere 2021, 12, 1206 20 of 34

Atmosphere 2021, 12, x FOR PEER REVIEW 21 of 36 
 

 

 

Figure A2. Average time series data of (a) NDVI, (b) rainfall, and (c) temperature extracted from selected 70 watersheds. 
The solid line represents the time series, the dotted line represents the linear trend, and the dashed line represents the two 
standard deviation bounds. 

Cluster 2021–2040 2041–2060 2061–2080 2081–2100 

#1 

 

#2 

   

#3 

  

Atmosphere 2021, 12, x FOR PEER REVIEW 22 of 36 
 

 

#4 

   

#5 

   

#6 

   
     

Figure A3. Seasonal rain change rate for each cluster under four RCP levels from 2021 to 2100. 

Cluster 2021–2040 2041–2060 2061–2080 2081–2100 

#1 

  

#2 

  

#3 

   

#4 

   

Figure A3. Seasonal rain change rate for each cluster under four RCP levels from 2021 to 2100.



Atmosphere 2021, 12, 1206 21 of 34

Atmosphere 2021, 12, x FOR PEER REVIEW 22 of 36 
 

 

#4 

   

#5 

   

#6 

   
     

Figure A3. Seasonal rain change rate for each cluster under four RCP levels from 2021 to 2100. 

Cluster 2021–2040 2041–2060 2061–2080 2081–2100 

#1 

  

#2 

  

#3 

   

#4 

   

Atmosphere 2021, 12, x FOR PEER REVIEW 23 of 36 
 

 

#5 

   

#6 

   
 

Figure A4. Seasonal temperature changes for each cluster under four RCP levels from 2021 to 2100. 

Figure A5 shows the spatial distribution of the rain change rate from 2021 to 2040 for 
four seasons under four climate change scenarios. During 2021–2040 under scenario 
RCP2.6, the rainfall in winter increases in Clusters #2, #4, and #5 but decreases in Clusters 
#1, #3, and #6. The rainfall generally decreases in spring, mainly decreases in Clusters #2 
and #4. These indicate that the rainfall has a drastic variation in the winter and spring. The 
rainfall generally decreases in summer, especially in Cluster #1, and increases moderately 
in fall. Under scenario RCP4.5, the rainfall decreases in the four seasons and decreases the 
most in winter and spring by 36%. The decrease mainly happens in the south part of Clus-
ters #2, #3, and #4. In summer, the rainfall decreases in Cluster #4 and the east part of 
Cluster #2, while in fall, the highest decreasing rate is in the north part of cluster #3. 

Additionally, under scenario RCP6.0, the spatial distribution of the rainfall variation 
in winter and spring is similar. The rainfall increases in the middle north part of Taiwan 
for Clusters #1 and #3, but it decreases in the middle south part for Clusters #2, #4, and #6. 
The increased amplitude in winter is more extensive than in spring. In summer, the rain-
fall decreases for every cluster, where Cluster #1 (northeast area) and Clusters #2 and #4 
(southwest area) have the most decrement. Moreover, under scenario RCP8.5, the rainfall 
decreases in winter, spring, and summer. The highest decrease in rain change rate among 
the seasons is in winter, mainly in Clusters #2, #3, and #4. In summer, the decrease in 
rainfall concentrates in Clusters #1 and #6. For fall, the rainfall increases slightly in Taiwan, 
except for the north area of cluster #1 and the south area of Cluster #3. 

Figure A4. Seasonal temperature changes for each cluster under four RCP levels from 2021 to 2100.

Figure A5 shows the spatial distribution of the rain change rate from 2021 to 2040
for four seasons under four climate change scenarios. During 2021–2040 under scenario
RCP2.6, the rainfall in winter increases in Clusters #2, #4, and #5 but decreases in Clusters #1,
#3, and #6. The rainfall generally decreases in spring, mainly decreases in Clusters #2 and
#4. These indicate that the rainfall has a drastic variation in the winter and spring. The
rainfall generally decreases in summer, especially in Cluster #1, and increases moderately
in fall. Under scenario RCP4.5, the rainfall decreases in the four seasons and decreases
the most in winter and spring by 36%. The decrease mainly happens in the south part of
Clusters #2, #3, and #4. In summer, the rainfall decreases in Cluster #4 and the east part of
Cluster #2, while in fall, the highest decreasing rate is in the north part of Cluster #3.
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Additionally, under scenario RCP6.0, the spatial distribution of the rainfall variation
in winter and spring is similar. The rainfall increases in the middle north part of Taiwan
for Clusters #1 and #3, but it decreases in the middle south part for Clusters #2, #4, and
#6. The increased amplitude in winter is more extensive than in spring. In summer, the
rainfall decreases for every cluster, where Cluster #1 (northeast area) and Clusters #2 and #4
(southwest area) have the most decrement. Moreover, under scenario RCP8.5, the rainfall
decreases in winter, spring, and summer. The highest decrease in rain change rate among
the seasons is in winter, mainly in Clusters #2, #3, and #4. In summer, the decrease in
rainfall concentrates in Clusters #1 and #6. For fall, the rainfall increases slightly in Taiwan,
except for the north area of Cluster #1 and the south area of Cluster #3.
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Figure A6 shows the spatial distribution of the rain change rate from 2041 to 2060
for four seasons under four climate change scenarios. Under scenario RCP2.6, the spatial
distribution of the rainfall variation rate in winter and spring is similar. However, the
decreasing rate is more significant in the middle south area (Clusters #2, #3, and #4), and
the variation amplitude in spring is immense than in winter. On the other hand, the
rainfall increases in summer generally. In fall, the area with an increment of rainfall has
been limited to Cluster #1 and the north area of Cluster #3. Moreover, there is a slight
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decrease in the rainfall in the east of Taiwan (the east area of Clusters #1 and #6) in fall.
For scenario RCP4.5, the spatial distribution of the rainfall variation rate in winter and
spring has a similar trend. The decreased amplitude of the rainfall in the middle south of
Taiwan (Clusters #2, #3, and #4) is more extensive than in the other area, yet, the variation
amplitude in winter is more extensive than in spring.

On the contrary, the decreased amplitude of the rainfall in the north of Taiwan (Clus-
ter #1 and the east area of Cluster #2) is larger in summer. For fall, the rainfall decreases
slightly in the northwest of Taiwan (the north area of Clusters #3 and #5), whereas the
rainfall increases in the southeast of Taiwan. Under the scenario of RCP6.0, significant
differences are shown within the four seasons for the spatial distribution of the rainfall vari-
ation rate. In winter, the rainfall increases in the northeast but decreases in the southwest of
Taiwan. In spring, the rainfall decreases generally, and the southwest has the largest trend.
In summer, the rainfall decreases more obviously in the east, whereas the rainfall generally
increases in fall. Under scenario RCP8.5, the rainfall variation rate’s spatial distribution is
similar for winter and spring, and the rainfall decreases significantly in the middle south
for both seasons. Nevertheless, the variation amplitude in spring is more considerable than
in winter. In summer, the rainfall decreases in the northeast of Taiwan, and there is a slight
decrease in the east of Taiwan in fall.
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Figure A7 shows the spatial distribution of the rain change rate from 2061 to 2080 for
four seasons under four climate change scenarios. Under RCP 2.6, the spatial distribution
of the rainfall variation rate in winter and spring is similar. However, the middle south area
has a higher decrease rate, and the variation rate during spring is higher than winter. In
summer, it turns out that the rainfall decreases in the northeast, while in fall, the rainfall in
the middle-east area of the first cluster variates slightly. Under the scenario of RCP 4.5, the
spatial distribution of the rainfall variation rate in winter and spring is similar. However,
the variation extent in winter is more significant than in spring. In summer, the rainfall
decreases in the northeast area, while the rainfall increases from east to southwest in fall.
Under the scenario of 6.0, the spatial distribution of variation rate in winter and spring is
similar. However, the middle south area has a bigger declination, and the variation extent
in spring is greater than in winter. In summer, the rainfall decreases in the northeast area,
while in fall, the rainfall increases in the west but decreases in the east. Finally, under
the scenario of RCP8.5, the rainfall in winter, spring, and summer decreases; especially
in winter, it has more declination. In summer, the rainfall decreases from northeast to
southwest. In fall, the rainfall increases in the southwest but decreases in the north and
east areas.
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Figure A8 shows the spatial distribution of the rain change rate from 2081 to 2100 for
four seasons under four climate change scenarios. Under the scenarios of RCP 2.6, RCP 4.5,
and RCP 8.5, the spatial distribution of rainfall is similar for winter and spring, where the
middle south area has a more significant extent of declination. The rainfall variation during
summer and fall is similar under the scenarios of RCP 4.5, RCP 6.0, and RCP 8.5. The
rainfall increases in the southwest area and decreases in east and northeast areas. However,
under the scenario of RCP 2.6, the rainfall increases in most of the area during fall.
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Figures A9–A12 demonstrate the spatial temperature distribution for four seasons
from 2021–2040, 2041–2060, 2061—2080, and 2081–2100, respectively. Due to similar
patterns observed for all temperature predictions; therefore, a general description has been
provided for Figure A9 for illustration.

Figure A9 shows the spatial distribution of temperature for four seasons from 2021–2040.
During winter (Feb.–Dec.), the temperature decreases from northwest to southeast. The
areas with a noticeable increase in temperature are the northwest of Cluster #1, northwest
of Cluster #3, and #5. During spring (March–May), the increase in temperature is more
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evident than in winter, along with the temperature decrease from northwest to southeast.
However, the area of the increased temperature has extended. During summer (June–Aug.),
the temperature increases less in the central. The result can be related to the cover of the
vegetation on the central mountain range. Finally, during fall (Sept.–Nov.), the central
area has less increase in temperature same as during summer; however, the temperature
increases more in fall than in summer.
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Appendix C

Correlation between NDVI and Explanatory Factors

According to the RDA analysis results in Section 3.4, there are nine factors can explain
the variability of NDVI, of which five are extremely significant (p < 0.001), namely slope,
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temperature, flat slope, northeast slope, and rainfall. In addition, the eastward, south-
eastward, and westward slope factors have high significance (p < 0.01), respectively. The
northwestward slope factor has a significance of p < 0.05. The Pearson correlation analysis
further evaluates the five highly significant factors.

Figure A15 shows the results of Pearson correlation analysis between NDVI and
five factors (slope, temperature, flat slope (Flat), northeast slope (NE), and rainfall) with
extremely high significance (p < 0.001) in each month. Except for May, the slope factor is
highly significant and positively correlated with NDVI (p < 0.01); the higher the slope, the
higher the NDVI. On the other hand, except for May, temperature, and flat slope negatively
correlate with NDVI (p < 0.01). The higher the temperature and the higher the proportion
of flat slopes, the lower the NDVI. The situation corresponds well with flat areas were
attractive areas for human settlement. Thus, NDVI is low in flat areas related to a relatively
higher development level of human settlement.

Additionally, the rainfall factor presents a significant positive correlation from Febru-
ary to May, with the highest significant level in February (p < 0.01). However, a significant
negative correlation (p < 0.05) is observed between rainfall and NDVI in August. In other
words, the rainfall factor is supportive to NDVI from February to May but unhelpful to
NDVI in August, which could be reasonably related to negative impacts from summer
tropical depressions and typhoons. The NE factor is the proportion of northeast slope
in the region, which is positively correlated with NDVI in July–October (p < 0.01) and
March, April, and November (p < 0.05). The relationship between NE and NDVI could be
associated with the topographic effects on the windward and leeward slopes.

Atmosphere 2021, 12, x FOR PEER REVIEW 33 of 36 
 

 

Figure A15 shows the results of Pearson correlation analysis between NDVI and five 
factors (slope, temperature, flat slope (Flat), northeast slope (NE), and rainfall) with ex-
tremely high significance (p < 0.001) in each month. Except for May, the slope factor is 
highly significant and positively correlated with NDVI (p < 0.01); the higher the slope, the 
higher the NDVI. On the other hand, except for May, temperature, and flat slope nega-
tively correlate with NDVI (p < 0.01). The higher the temperature and the higher the pro-
portion of flat slopes, the lower the NDVI. The situation corresponds well with flat areas 
were attractive areas for human settlement. Thus, NDVI is low in flat areas related to a 
relatively higher development level of human settlement. 

Additionally, the rainfall factor presents a significant positive correlation from Feb-
ruary to May, with the highest significant level in February (p < 0.01). However, a signifi-
cant negative correlation (p < 0.05) is observed between rainfall and NDVI in August. In 
other words, the rainfall factor is supportive to NDVI from February to May but unhelpful 
to NDVI in August, which could be reasonably related to negative impacts from summer 
tropical depressions and typhoons. The NE factor is the proportion of northeast slope in 
the region, which is positively correlated with NDVI in July–October (p < 0.01) and March, 
April, and November (p < 0.05). The relationship between NE and NDVI could be associ-
ated with the topographic effects on the windward and leeward slopes. 

 
Figure A15. Results of Pearson’s correlation analysis for NDVI and explanatory factors of each 
month. 

References 
1. Li, C.; Wang, L.; Wang, W.; Qi, J.; Yang, L.; Zhang, Y.; Wu, L.; Cui, X.; Wang, P. An analytical approach to separate climate and 

human contributions to basin streamflow variability. J. Hydrol. 2018, 559, 30–42, https://doi.org/10.1016/j.jhydrol.2018.02.019. 
2. Nepal, S.; Flügel, W.-A.; Shrestha, A.B. Upstream-downstream linkages of hydrological processes in the Himalayan region. Ecol. 

Process. 2014, 3, 1–16, https://doi.org/10.1186/s13717-014-0019-4. 
3. Gomi, T.; Roy, C.S.; Richardson, J.S. Understanding processes and downstream linkages of headwater systems: Headwaters 

differ from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their 
need for different means of protection from land use. BioScience 2002, 52, 905–916, https://doi.org/10.1641/0006-
3568(2002)052[0905:UPADLO]2.0.CO;2. 

4. Fazel, N.; Haghighi, A.T.; Kløve, B. Analysis of land use and climate change impacts by comparing river flow records for head-
waters and lowland reaches. Glob. Planet. Chang. 2017, 158, 47–56, https://doi.org/10.1016/j.gloplacha.2017.09.014. 

5. Liang, S.; Wang, W.; Zhang, D.; Li, Y. Quantifying the Impacts of Climate Change and Human Activities on Runoff Variation: 
Case Study of the Upstream of Minjiang River, China. J. Hydrol. Eng. 2020, 25, 05020025, 
https://doi.org/10.1061/%28ASCE%29HE.1943-5584.0001980. 

6. Huang, S.; Zang, W.; Xu, M.; Li, X.; Xie, X.; Li, Z.; Zhu, J. Study on runoff simulation of the upstream of Minjiang River under 
future climate change scenarios. Nat. Hazards 2015, 75, 139–154, https://doi.org/10.1007/s11069-014-1090-y. 

Figure A15. Results of Pearson’s correlation analysis for NDVI and explanatory factors of each month.

References
1. Li, C.; Wang, L.; Wang, W.; Qi, J.; Yang, L.; Zhang, Y.; Wu, L.; Cui, X.; Wang, P. An analytical approach to separate climate and

human contributions to basin streamflow variability. J. Hydrol. 2018, 559, 30–42. [CrossRef]
2. Nepal, S.; Flügel, W.-A.; Shrestha, A.B. Upstream-downstream linkages of hydrological processes in the Himalayan region. Ecol.

Process. 2014, 3, 1–16. [CrossRef]
3. Gomi, T.; Roy, C.S.; Richardson, J.S. Understanding processes and downstream linkages of headwater systems: Headwaters differ

from downstream reaches by their close coupling to hillslope processes, more temporal and spatial variation, and their need for
different means of protection from land use. BioScience 2002, 52, 905–916. [CrossRef]

4. Fazel, N.; Haghighi, A.T.; Kløve, B. Analysis of land use and climate change impacts by comparing river flow records for
headwaters and lowland reaches. Glob. Planet. Chang. 2017, 158, 47–56. [CrossRef]

5. Liang, S.; Wang, W.; Zhang, D.; Li, Y. Quantifying the Impacts of Climate Change and Human Activities on Runoff Variation:
Case Study of the Upstream of Minjiang River, China. J. Hydrol. Eng. 2020, 25, 05020025. [CrossRef]

http://doi.org/10.1016/j.jhydrol.2018.02.019
http://doi.org/10.1186/s13717-014-0019-4
http://doi.org/10.1641/0006-3568(2002)052[0905:UPADLO]2.0.CO;2
http://doi.org/10.1016/j.gloplacha.2017.09.014
http://doi.org/10.1061/(ASCE)HE.1943-5584.0001980


Atmosphere 2021, 12, 1206 32 of 34

6. Huang, S.; Zang, W.; Xu, M.; Li, X.; Xie, X.; Li, Z.; Zhu, J. Study on runoff simulation of the upstream of Minjiang River under
future climate change scenarios. Nat. Hazards 2015, 75, 139–154. [CrossRef]

7. Daba, M.H.; You, S. Assessment of climate change impacts on river flow regimes in the upstream of Awash Basin, Ethiopia: Based
on IPCC fifth assessment report (AR5) climate change scenarios. Hydrology 2020, 7, 98. [CrossRef]

8. Shi, P.; Ma, X.; Hou, Y.; Li, Q.; Zhang, Z.; Qu, S.; Chen, C.; Cai, T.; Fang, X. Effects of land-use and climate change on hydrological
processes in the upstream of Huai River, China. Water Resour. Manag. 2013, 27, 1263–1278. [CrossRef]

9. Nauman, S.; Zulkafli, Z.; Ghazali, A.H.B.; Yusuf, B. Impact assessment of future climate change on streamflows upstream of
Khanpur Dam, Pakistan using soil and water assessment tool. Water 2019, 11, 1090. [CrossRef]

10. Wu, C.; Huang, G.; Yu, H.; Chen, Z.; Ma, J. Impact of climate change on reservoir flood control in the upstream area of the Beijiang
River Basin, South China. J. Hydrometeorol. 2014, 15, 2203–2218. [CrossRef]

11. Jia, L.; Shang, H.; Hu, G.; Menenti, M. Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time
series analysis of MODIS data. Hydrol. Earth Syst. Sci. 2011, 15, 1047–1064. [CrossRef]

12. Chen, S.; Liu, W.; Qin, X.; Liu, Y.; Zhang, T.; Chen, K.; Hu, F.; Ren, J.; Qin, D. Response characteristics of vegetation and soil
environment to permafrost degradation in the upstream regions of the Shule River Basin. Environ. Res. Lett. 2012, 7, 045406.
[CrossRef]

13. Tian, F.; Lu, Y.H.; Fu, B.J.; Zhang, L.; Zang, C.F.; Yang, Y.H.; Qiu, G.Y. Challenge of vegetation greening on water resources
sustainability: Insights from a modeling-based analysis in Northwest China. Hydrol. Process. 2017, 31, 1469–1478. [CrossRef]

14. Pokhrel, P.; Ohgushi, K.; Fujita, M. Impacts of future climate variability on hydrological processes in the upstream catchment of
Kase River basin, Japan. Appl. Water Sci. 2019, 9, 18. [CrossRef]

15. Xiao, H.; Huang, J.; Ma, Q.; Wan, J.; Li, L.; Peng, Q.; Rezaeimalek, S. Experimental study on the soil mixture to promote vegetation
for slope protection and landslide prevention. Landslides 2017, 14, 287–297. [CrossRef]

16. Guerra, C.A.; Maes, J.; Geijzendorffer, I.; Metzger, M.J. An assessment of soil erosion prevention by vegetation in Mediterranean
Europe: Current trends of ecosystem service provision. Ecol. Indic. 2016, 60, 213–222. [CrossRef]

17. Bronstert, A.; Niehoff, D.; Bürger, G. Effects of climate and land-use change on storm runoff generation: Present knowledge and
modelling capabilities. Hydrol. Process. 2002, 16, 509–529. [CrossRef]

18. Piao, S.; Fang, J.; Zhou, L.; Guo, Q.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. Interannual variations of monthly and seasonal normalized
difference vegetation index (NDVI) in China from 1982 to 1999. J. Geophys. Res. Atmos. 2003, 108. [CrossRef]

19. Kuo, Y.-C.; Lee, M.-A.; Lu, M.-M. Association of Taiwan’s rainfall patterns with large-scale oceanic and atmospheric phenomena.
Adv. Meteorol. 2016, 2016. [CrossRef]

20. Tseng, C.-W.; Song, C.-E.; Wang, S.-F.; Chen, Y.-C.; Tu, J.-Y.; Yang, C.-J.; Chuang, C.-W. Application of High-Resolution Radar Rain
Data to the Predictive Analysis of Landslide Susceptibility under Climate Change in the Laonong Watershed, Taiwan. Remote
Sens. 2020, 12, 3855. [CrossRef]

21. Yeh, H.F. Spatiotemporal Variation of the Meteorological and Groundwater Droughts in Central Taiwan. Front. Water 2021, 3,
1–14. [CrossRef]

22. Hung, C.W.; Shih, M.F. Analysis of Severe Droughts in Taiwan and its Related Atmospheric and Oceanic Environments.
Atmosphere 2019, 10, 159. [CrossRef]

23. Lin, Y.C.; Kuo, E.D.; Chi, W.J. Analysis of Meteorological Drought Resilience and Risk Assessment of Groundwater Using Signal
Analysis Method. Water Resour. Manag. 2021, 35, 179–197. [CrossRef]

24. Hung, C.W.; Shih, M.F.; Lin, T.Y. The Climatological Analysis of Typhoon Tracks, Steering Flow, and the Pacific Subtropical High
in the Vicinity of Taiwan and the Western North Pacific. Atmosphere 2020, 11, 543. [CrossRef]

25. Chen, C.W.; Tung, Y.S.; Liou, J.J.; Li, H.C.; Cheng, C.T.; Chen, Y.M.; Oguchi, T. Assessing landslide characteristics in a changing
climate in northern Taiwan. Catena 2019, 175, 263–277. [CrossRef]

26. Wu, C. Landslide Susceptibility Based on Extreme Rainfall-Induced Landslide Inventories and the Following Landslide Evolution.
Water 2019, 11, 2609. [CrossRef]

27. Lin, M.-L.; Lin, S.-C.; Lin, Y.-C. Review of landslide occurrence and climate change in Taiwan. In Slope Safety Preparedness for
Impact of Climate Change; CRC Press: Boca Raton, FL, USA, 2017; pp. 409–436.

28. Chen, C.-N.; Tfwala, S.S.; Tsai, C.-H. Climate Change Impacts on Soil Erosion and Sediment Yield in a Watershed. Water 2020, 12,
2247. [CrossRef]

29. Wu, C.-H.; Chen, S.-C.; Chou, H.-T. Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the
Kaoping Watershed, Taiwan. Eng. Geol. 2011, 123, 13–21. [CrossRef]

30. Lin, Y.-J.; Chang, Y.-H.; Lee, H.-Y.; Chiu, Y.-J. National policy of watershed management and flood mitigation after the 921 Chi-Chi
earthquake in Taiwan. Nat. Hazards 2011, 56, 709–731. [CrossRef]

31. Chiang, S.-H.; Chang, K.-T. The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010–2099.
Geomorphology 2011, 133, 143–151. [CrossRef]

32. Shou, K.-J.; Yang, C.-M. Predictive analysis of landslide susceptibility under climate change conditions—A study on the Chingshui
River Watershed of Taiwan. Eng. Geol. 2015, 192, 46–62. [CrossRef]

33. Wu, T.; Li, H.-C.; Wei, S.-P.; Chen, W.-B.; Chen, Y.-M.; Su, Y.-F.; Liu, J.-J.; Shih, H.-J. A comprehensive disaster impact assessment
of extreme rainfall events under climate change: A case study in Zheng-wen river basin, Taiwan. Environ. Earth Sci. 2016, 75, 597.
[CrossRef]

http://doi.org/10.1007/s11069-014-1090-y
http://doi.org/10.3390/hydrology7040098
http://doi.org/10.1007/s11269-012-0237-4
http://doi.org/10.3390/w11051090
http://doi.org/10.1175/JHM-D-13-0181.1
http://doi.org/10.5194/hess-15-1047-2011
http://doi.org/10.1088/1748-9326/7/4/045406
http://doi.org/10.1002/hyp.11118
http://doi.org/10.1007/s13201-019-0896-x
http://doi.org/10.1007/s10346-015-0634-x
http://doi.org/10.1016/j.ecolind.2015.06.043
http://doi.org/10.1002/hyp.326
http://doi.org/10.1029/2002JD002848
http://doi.org/10.1155/2016/3102895
http://doi.org/10.3390/rs12233855
http://doi.org/10.3389/frwa.2021.636792
http://doi.org/10.3390/atmos10030159
http://doi.org/10.1007/s11269-020-02718-x
http://doi.org/10.3390/atmos11050543
http://doi.org/10.1016/j.catena.2018.12.023
http://doi.org/10.3390/w11122609
http://doi.org/10.3390/w12082247
http://doi.org/10.1016/j.enggeo.2011.04.018
http://doi.org/10.1007/s11069-010-9584-8
http://doi.org/10.1016/j.geomorph.2010.12.028
http://doi.org/10.1016/j.enggeo.2015.03.012
http://doi.org/10.1007/s12665-016-5370-6


Atmosphere 2021, 12, 1206 33 of 34

34. Wei, S.-C.; Li, H.-C.; Shih, H.-J.; Liu, K.-F. Potential impact of climate change and extreme events on slope land hazard–a case
study of Xindian watershed in Taiwan. Nat. Hazards Earth Syst. Sci. 2018, 18, 3283–3296. [CrossRef]

35. Shou, K.-J.; Wu, C.-C.; Lin, J.-F. Predictive analysis of landslide susceptibility under climate change conditions—A study on the
Ai-Liao watershed in Southern Taiwan. J. Geoengin. 2018, 13, 13–27.

36. Su, Q. Long-term flood risk assessment of watersheds under climate change based on the game cross-efficiency DEA. Nat. Hazards
2020, 104, 2213–2237. [CrossRef]

37. Mallick, J.; AlMesfer, M.K.; Singh, V.P.; Falqi, I.I.; Singh, C.K.; Alsubih, M.; Kahla, N.B. Evaluating the NDVI–Rainfall Relationship
in Bisha Watershed, Saudi Arabia Using Non-Stationary Modeling Technique. Atmosphere 2021, 12, 593. [CrossRef]

38. Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate changes at Amur-
Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [CrossRef] [PubMed]

39. Chang, C.T.; Wang, S.F.; Vadeboncoeur, M.; Lin, T.C. Relating vegetation dynamics to temperature and precipitation at monthly
and annual timescales in Taiwan using MODIS vegetation indices. Int. J. Remote Sens. 2014, 35, 598–620. [CrossRef]

40. Tsai, H.P.; Yang, M.D. Relating vegetation dynamics to climate variables in Taiwan using 1982–2012 NDVI3g data. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2016, 9, 1624–1639. [CrossRef]

41. Ichii, K.; Kawabata, A.; Yamaguchi, Y. Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990.
Int. J. Remote Sens. 2002, 23, 3873–3878. [CrossRef]

42. Tsai, H.P.; Lin, Y.; Yang, M. Exploring Long Term Spatial Vegetation Trends in Taiwan from AVHRR NDVI3g Dataset using RDA
and HCA Analyses. Remote Sens. 2016, 8, 290. [CrossRef]

43. Shou, K.J.; Chen, J. On the rainfall induced deep-seated and shallow landslide hazard in Taiwan. Eng. Geol. 2021, 288, 106156.
[CrossRef]

44. Yang, M.D.; Chen, S.C.; Tsai, H.P. A long-term vegetation recovery estimation for Mt. Jou-Jou using multi-date SPOT 1, 2, and 4
images. Remote Sens. 2017, 9, 893. [CrossRef]

45. Yang, M.D.; Tsai, H.P. Post-earthquake spatio-temporal landslide analysis of Huisun Experimental Forest Station. Terr. Atmos.
Ocean. Sci. 2019, 30, 493–508. [CrossRef]

46. Zeng, F.; Collatz, G.J.; Pinzon, J.E.; Ivanoff, A. Evaluating and quantifying the climate-driven interannual variability in global
inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) at global scales. Remote
Sens. 2013, 5, 3918–3950. [CrossRef]

47. Vermote, E.; Kaufman, Y. Absolute calibration of AVHRR visible and near-infrared channels using ocean and cloud views. Int. J.
Remote Sens. 1995, 16, 2317–2340. [CrossRef]

48. Pinzon, J.; Brown, M.E.; Tucker, C.J. EMD correction of orbital drift artifacts in satellite data stream. In Hilbert-Huang Transform
and Its Applications; World Scientific: Singapore, 2005; pp. 167–186. [CrossRef]

49. Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [CrossRef]
50. Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7,

1417–1434. [CrossRef]
51. Bi, J.; Xu, L.; Samanta, A.; Zhu, Z.; Myneni, R. Divergent arcticboreal vegetation changes between North America and Eurasia

over the past 30 years. Remote Sens. 2013, 5, 2093–2112. [CrossRef]
52. Watson, D.F. Contouring: A Guide to the Analysis and Display of Spatial Data; Pergamon Press: New York, NY, USA, 1992.
53. Taiwan Climate Change Projection Information and Adaption Knowledge Platform. Available online: https://tccip.ncdr.nat.gov.

tw/ds_02_03.aspx (accessed on 30 April 2021).
54. Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Lamarque, J.-F.; Masui,

T.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [CrossRef]
55. Lin, C.; Tung, C. Procedure for Selecting GCM Datasets for Climate Risk Assessment. Terr. Atmos. Ocean. Sci. 2017, 28, 43–55.

[CrossRef]
56. Gauch, H.G., Jr.; Whittaker, R.H. Hierarchical classification of community data. J. Ecol. 1981, 69, 537–557. [CrossRef]
57. Huang, W.; Chen, W.; Chuang, Y.; Lin, Y.; Chen, H. Biological toxicity of groundwater in a seashore area: Causal analysis and its

spatial pollutant pattern. Chemosphere 2014, 100, 8–15. [CrossRef]
58. Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [CrossRef]
59. Punj, G.; Stewart, D.W. Cluster analysis in marketing research: Review and suggestions for application. J. Market. Res. 1983, 20,

134–148. [CrossRef]
60. Fraley, C.; Raftery, A.E. How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J.

1998, 41, 578–588. [CrossRef]
61. Yim, O.; Ramdeen, K.T. Hierarchical cluster analysis: Comparison of three linkage measures and application to psychological

data. Quant. Methods Psychol. 2015, 11, 8–24. [CrossRef]
62. Rao, C.R. The use and interpretation of principal component analysis in applied research. Sankhya Ser. A 1964, 26, 329–358.
63. Van den Wollenberg, A.L. Redundancy analysis an alternative for canonical correlation analysis. Psychometrika 1977, 42, 207–219.

[CrossRef]
64. Gittins, R. Canonical Analysis; Springer: Heidelberg, Germany, 1985.
65. Legendre, P.; Legendre, L.F. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012.

http://doi.org/10.5194/nhess-18-3283-2018
http://doi.org/10.1007/s11069-020-04269-1
http://doi.org/10.3390/atmos12050593
http://doi.org/10.1016/j.scitotenv.2018.09.115
http://www.ncbi.nlm.nih.gov/pubmed/30290347
http://doi.org/10.1080/01431161.2013.871593
http://doi.org/10.1109/JSTARS.2015.2511742
http://doi.org/10.1080/01431160110119416
http://doi.org/10.3390/rs8040290
http://doi.org/10.1016/j.enggeo.2021.106156
http://doi.org/10.3390/rs9090893
http://doi.org/10.3319/TAO.2019.03.03.01
http://doi.org/10.3390/rs5083918
http://doi.org/10.1080/01431169508954561
http://doi.org/10.1142/9789812703347_0008
http://doi.org/10.3390/rs6086929
http://doi.org/10.1080/01431168608948945
http://doi.org/10.3390/rs5052093
https://tccip.ncdr.nat.gov.tw/ds_02_03.aspx
https://tccip.ncdr.nat.gov.tw/ds_02_03.aspx
http://doi.org/10.1007/s10584-011-0148-z
http://doi.org/10.3319/TAO.2016.06.14.01(CCA)
http://doi.org/10.2307/2259682
http://doi.org/10.1016/j.chemosphere.2013.12.073
http://doi.org/10.1080/01621459.1963.10500845
http://doi.org/10.1177/002224378302000204
http://doi.org/10.1093/comjnl/41.8.578
http://doi.org/10.20982/tqmp.11.1.p008
http://doi.org/10.1007/BF02294050


Atmosphere 2021, 12, 1206 34 of 34

66. Buttigieg, P.L.; Ramette, A. A guide to statistical analysis in microbial ecology: A community-focused, living review of multivariate
data analyses. FEMS Microbiol. Ecol. 2014, 90, 543–550. [CrossRef]

67. Ter Braak, C.J.; Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community
Ordination (Version 4.5); Biometris: Wageningen, The Netherlands, 2002.

68. Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5; Cambridge University Press: Cambridge, UK, 2014.
69. Hsu, H.H.; Chen, C.T.; Lu, M.M.; Chen, Y.M.; Chou, C.; Wu, Y.C. Scientific Report of Taiwan’s Climate Change; National Science

Concil: Taipei, Taiwan, 2011. (In Chinese)
70. Xu, L.; Myneni, R.B.; Chapin, F.S., III; Callaghan, T.V.; Pinzon, J.E.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; Tommervik, H.; et al.

Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Chang. 2013, 3, 581–586. [CrossRef]
71. Bhatt, U.S.; Walker, D.A.; Raynolds, M.K.; Bieniek, P.A.; Epstein, H.E.; Comiso, J.C.; Pinzon, J.E.; Tucker, C.J.; Steele, M.; Ermold,

W. Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environ. Res. Lett. 2017, 12, 055003.
[CrossRef]

72. Hsu, H.-H.; Chen, C.-T. Observed and projected climate change in Taiwan. Meteorol. Atmos. Phys. 2002, 79, 87–104. [CrossRef]
73. Lin, C.-Y.; Chien, Y.-Y.; Su, C.-J.; Kueh, M.-T.; Lung, S.-C. Climate variability of heat wave and projection of warming scenario in

Taiwan. Clim. Chang. 2017, 145, 305–320. [CrossRef]
74. Chen, Y.-M.; Chen, C.-W.; Chao, Y.-C.; Tung, Y.-S.; Liou, J.-J.; Li, H.-C.; Cheng, C.-T. Future Landslide characteristic assessment

using ensemble climate change scenarios: A case study in Taiwan. Water 2020, 12, 564. [CrossRef]
75. Hung, C.-W.; Kao, P.-K. Weakening of the winter monsoon and abrupt increase of winter rainfalls over northern Taiwan and

southern China in the early 1980s. J. Clim. 2010, 23, 2357–2367. [CrossRef]
76. Kao, S.-J.; Huang, J.-C.; Lee, T.-Y.; Liu, C.; Walling, D. The changing rainfall–runoff dynamics and sediment response of small

mountainous rivers in Taiwan under a warming climate. In Sediment Problems and Sediment Management in Asian River Basins
(IAHS Publ 349); IAHS Press: Wallingford, UK, 2011; Available online: https://www.researchgate.net/profile/Shuh-Ji-Kao-2/
publication/286136294_The_changing_rainfall-runoff_dynamics_and_sediment_response_of_small_mountainous_rivers_in_
Taiwan_under_a_warming_climate/links/5780ee6008ae01f736e6b1c0/The-changing-rainfall-runoff-dynamics-and-sediment-
response-of-small-mountainous-rivers-in-Taiwan-under-a-warming-climate.pdf (accessed on 1 May 2021).

77. Strauch, A.M.; MacKenzie, R.A.; Giardina, C.P.; Bruland, G.L. Climate driven changes to rainfall and streamflow patterns in a
model tropical island hydrological system. J. Hydrol. 2015, 523, 160–169. [CrossRef]

78. Chiu, Y.-J.; Lee, H.-Y.; Wang, T.-L.; Yu, J.; Lin, Y.-Y.; Yuan, Y. Modeling sediment yields and stream stability due to sediment-related
disaster in Shihmen Reservoir watershed in Taiwan. Water 2019, 11, 332. [CrossRef]

79. Ramírez, A.; Gutierrez-Fonseca, P.E.; Kelly, S.P.; Engman, A.C.; Wagner, K.; Rosas, K.G.; Rodriguez, N. Drought facilitates species
invasions in an urban stream: Results from a long-term study of tropical island fish assemblage structure. Front. Ecol. Evol. 2018,
6, 115. [CrossRef]

80. Lu, M.-C.; Chang, C.-T.; Lin, T.-C.; Wang, L.-J.; Wang, C.-P.; Hsu, T.-C.; Huang, J.-C. Modeling the terrestrial N processes in a
small mountain catchment through INCA-N: A case study in Taiwan. Sci. Total. Environ. 2017, 593, 319–329. [CrossRef]

81. Chen, S.-C.; Chou, H.-T.; Chen, S.-T.; Wu, C.-H.; Lin, B.-S. Characteristics of rainfall-induced landslides in Miocene formations: A
case study of the Shenmu watershed, Central Taiwan. Eng. Geol. 2017, 169, 133–146. [CrossRef]

82. Wu, C.; Lin, C. Spatiotemporal Hotspots and Decadal Evolution of Extreme Rainfall-Induced Landslides: Case Studies in
Southern Taiwan. Water 2021, 13, 2090. [CrossRef]

83. Li, H.-C.; Hsiao, Y.-H.; Chang, C.-W.; Chen, Y.-M.; Lin, L.-Y. Agriculture Adaptation Options for Flood Impacts under Climate
Change—A Simulation Analysis in the Dajia River Basin. Sustainability 2021, 13, 7311. [CrossRef]

84. Chang, H.-S.; Su, Q. Exploring the coupling relationship of stormwater runoff distribution in watershed from the perspective of
fairness. Urban Clim. 2021, 36, 100792. [CrossRef]

85. Wang, Y.-H.; Chu, C.-C.; You, G.J.-Y.; Gupta, H.V. Evaluating Uncertainty in Fluvial Geomorphic Response to Dam Removal. J.
Hydrol. Eng. 2020, 25, 04020022. [CrossRef]

86. Peng, L.-C.; Lin, Y.-P.; Chen, G.-W.; Lien, W.-Y. Climate change impact on spatiotemporal hotspots of hydrologic ecosystem
services: A case study of Chinan catchment, Taiwan. Water 2019, 11, 867. [CrossRef]

87. Lin, J.-Y.; Chen, Y.-C.; Chang, C.-T. Costs and environmental benefits of watershed conservation and restoration in Taiwan. Ecol.
Eng. 2020, 142, 105633. [CrossRef]

http://doi.org/10.1111/1574-6941.12437
http://doi.org/10.1038/nclimate1836
http://doi.org/10.1088/1748-9326/aa6b0b
http://doi.org/10.1007/s703-002-8230-x
http://doi.org/10.1007/s10584-017-2091-0
http://doi.org/10.3390/w12020564
http://doi.org/10.1175/2009JCLI3182.1
https://www.researchgate.net/profile/Shuh-Ji-Kao-2/publication/286136294_The_changing_rainfall-runoff_dynamics_and_sediment_response_of_small_mountainous_rivers_in_Taiwan_under_a_warming_climate/links/5780ee6008ae01f736e6b1c0/The-changing-rainfall-runoff-dynamics-and-sediment-response-of-small-mountainous-rivers-in-Taiwan-under-a-warming-climate.pdf
https://www.researchgate.net/profile/Shuh-Ji-Kao-2/publication/286136294_The_changing_rainfall-runoff_dynamics_and_sediment_response_of_small_mountainous_rivers_in_Taiwan_under_a_warming_climate/links/5780ee6008ae01f736e6b1c0/The-changing-rainfall-runoff-dynamics-and-sediment-response-of-small-mountainous-rivers-in-Taiwan-under-a-warming-climate.pdf
https://www.researchgate.net/profile/Shuh-Ji-Kao-2/publication/286136294_The_changing_rainfall-runoff_dynamics_and_sediment_response_of_small_mountainous_rivers_in_Taiwan_under_a_warming_climate/links/5780ee6008ae01f736e6b1c0/The-changing-rainfall-runoff-dynamics-and-sediment-response-of-small-mountainous-rivers-in-Taiwan-under-a-warming-climate.pdf
https://www.researchgate.net/profile/Shuh-Ji-Kao-2/publication/286136294_The_changing_rainfall-runoff_dynamics_and_sediment_response_of_small_mountainous_rivers_in_Taiwan_under_a_warming_climate/links/5780ee6008ae01f736e6b1c0/The-changing-rainfall-runoff-dynamics-and-sediment-response-of-small-mountainous-rivers-in-Taiwan-under-a-warming-climate.pdf
http://doi.org/10.1016/j.jhydrol.2015.01.045
http://doi.org/10.3390/w11020332
http://doi.org/10.3389/fevo.2018.00115
http://doi.org/10.1016/j.scitotenv.2017.03.178
http://doi.org/10.1016/j.enggeo.2013.11.020
http://doi.org/10.3390/w13152090
http://doi.org/10.3390/su13137311
http://doi.org/10.1016/j.uclim.2021.100792
http://doi.org/10.1061/(ASCE)HE.1943-5584.0001917
http://doi.org/10.3390/w11040867
http://doi.org/10.1016/j.ecoleng.2019.105633

	Introduction 
	Materials and Methods 
	Study Area 
	Research Procedure 
	Data Acquisition 
	Normalized Difference Vegetation Index 
	Temperature and Rainfall 
	Slope and Aspect 
	Potential Debris Streams and Affected Area 
	Climate Change Scenarios 

	Statistics Models 
	Hierarchical Cluster Analysis 
	Redundancy Analysis 


	Results 
	Time Series Data for NDVI, Rainfall, Temperature for Upstream Watershed 
	Cluster Analysis for Upstream Watershed NDVI 
	Identifying Important Driving Factors 
	Climate Change Scenarios for Each Cluster 
	Rainfall Change Rate for Each Cluster 
	Temperature Change for Each Cluster 
	Temporal Variation of Rain Change Rate and Temperature Data 

	Potential Debris Streams and Affected Areas 

	Discussion 
	Conclusions 
	
	
	
	References

