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Abstract: The temperature of river water (TRW) is an important factor in river ecosystem predictions.
This study aims to compare two different types of numerical model for predicting daily TRW in the
Warta River basin in Poland. The implemented models were of the stochastic type—Autoregressive
(AR), Moving Average (MA), Autoregressive Moving Average (ARMA) and Autoregressive In-
tegrated Moving Average (ARIMA)—and the artificial intelligence (AI) type—Adaptive Neuro
Fuzzy Inference System (ANFIS), Radial Basis Function (RBF) and Group Method of Data Han-
dling (GMDH). The ANFIS and RBF models had the most fitted outputs and the AR, ARMA and
ARIMA patterns were the most accurate ones. The results showed that both of the model types
can significantly present suitable predictions. The stochastic models have somewhat less error with
respect to both the highest and lowest TRW deciles than the AIs and were found to be better for
prediction studies, with the GMDH complex model in some cases reaching Root Mean Square Error
(RMSE) = 0.619 ◦C and Nash-Sutcliff coefficient (NS) = 0.992, while the AR(2) simple linear model
with just two inputs was partially able to achieve better results (RMSE = 0.606 ◦C and NS = 0.994).
Due to these promising outcomes, it is suggested that this work be extended to other catchment areas
to extend and generalize the results.

Keywords: river water temperature; neural network; stochastic modeling; group method of data
handling; time series prediction; polish river basin

1. Introduction

For the monitoring of ecological status and proper functioning of the water ecosystem,
it is important to have information about a river’s thermal conditions [1]. The TRW is a
good indicator of the control of hydrological and environmental pollution processes in
water ecosystems [2].

Due to the influence of many factors which shape the features of the thermal regime of
waters, predictions of changes and forecasts of TRW are a complex process [3]. Predictive
and prognostic models of TRW changes take into account relationships with meteorological
and hydrological factors, as well as morphological parameters [4–7]. Brosofske et al. [8],
conducting research in western Washington, showed that significant changes in the ref-
erence characteristics of RWT are also caused by the features of the microclimate in the
riparian zones of streams, which are often transformed by various forms of anthropogenic
activity. In their opinion, a buffer 45 m wide (on each side of the stream) is necessary to
maintain a natural riparian microclimatic environment along the streams. Air temperature
is an important predictor of changes in TRW, and its relationships have been confirmed
taking into account the nature of short-term to long-term fluctuations [9–12]. In TRW pre-
diction, regression models and artificial intelligence models (AIs) are most often based on
air temperature data [13–19]. Zhu and Piotrowski [3] presented a comprehensive review of

Atmosphere 2021, 12, 1154. https://doi.org/10.3390/atmos12091154 https://www.mdpi.com/journal/atmosphere

https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0003-1518-4773
https://orcid.org/0000-0002-5640-865X
https://doi.org/10.3390/atmos12091154
https://doi.org/10.3390/atmos12091154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atmos12091154
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos12091154?type=check_update&version=2


Atmosphere 2021, 12, 1154 2 of 22

research and methods for forecasting TRW using AI models. The high efficiency of artificial
neural networks in TRW forecasting has been confirmed in various regions [20–23].

Many studies show that Multi-Layer Perceptron (MLP) and ANFIS models are gaining
importance in hydrological applications [24–27]. In TRW modeling, the most commonly
used type of artificial neural network (ANN) is the so-called multilayer perceptron neural
network (MLPNN). Daigle et al. [28] used MLPNNs to estimate the start date of the
seasonal temperature cycle in various streams located in Canada and the northern United
States, and demonstrated that they compare favorably with simple regression methods.
Faruk [29] combined MLPNNs with ARIMA models for autoregressive jet temperature
modeling, while Tao et al. [30] used MLPNNs for autoregressive stream water temperature
modeling with exogenous inputs. Additionally, hybrid models are used that combine
wavelet transform (WT) and Ais, e.g., WTMLP (WTMLPNN), which, however, have
not been widely used in forecasting the TRW. Hybrid WT-ANN models have been used
by [22,31,32]. The neural network model types, such as the Radial Basis Function (RBF)
or Group Method of Data Handling (GMDH), are rarely used to predict hydrological
variables, especially in TRW forecasting research. They are, however, already used in many
other areas of data mining for prognosis and modeling, as well as optimization and data
pattern recognition.

The literature describes the use of stochastic models to simulate and forecast the daily
stream water temperature. In stochastic models, the TRW is modeled as a function of time
consisting of two different components: a short- and a long-term component [33,34]. These
models typically use water temperature lag, residual air temperature and flow rates as
exogenous variables. Stochastic models that take into account the relationship between
TRW and air temperature have been successfully developed in Canadian rivers, e.g., in
the Catamaran Brook stream in New Brunswick [33] and in the Moisie River [35], in the
Drava River in Croatia [36,37], the Missouri River in the USA [34], and in Poland the Noteć
River [11]. Various stochastic approaches are used to model residual TRW representing
short-term fluctuations, e.g., multiple regression, the second-order autoregressive model,
and the Box and Jenkins model [35]. In the present case, the second-order autoregressive
model gave the best results. The TRW model in the Box–Jenkins time series was successfully
applied by Benyahya et al. [38], who conducted a comparison of non-parametric and
parametric models of Nivelle River in France.

The time series model has been widely used as a statistical model in hydrological and
meteorological prediction studies [39–42]. The assumptions of these types of models were
developed by Box and Jenkins [43] within the general concept of stochastic hydrological
models, as some of the most effective methods of forecasting. The ARIMA model has
the advantages of fast modeling and prediction, and also uses only the time lags of the
target variable as inputs [44]. For example, in forecasting TRW, ARIMA uses just the time
lags of TRW itself and does not need other hydro-meteorological variables, such as air
temperature, flow discharge, etc. The ARIMA model is widely used in the prediction of
time series data: discharge patterns [45–51], river water characteristics [52–54], and water
consumption [55,56]. However, in the literature, there are few studies that use Box–Jenkins
stochastic models for forecasting TRW time series.

Most TRW prediction models use meteorological variables, mainly air temperature, as
input for the models. Similarly, artificial intelligence models are most often based on air
temperature data. The most common are MLP, ANFIS and WTMLP, while the RBF and
GMDH models have not been used for this purpose.

The aim of the article is to present the results of research into the use of stochastic
models and artificial intelligence (AI) in TRW predictions. We predicted the daily TRW
using only the time lags of the variable itself. Other parameters (e.g., hydrological or
meteorological) were not taken into account. With respect to the current research, we
present a new investigation in the field of TRW testing, consisting of the application,
in addition to the commonly used ANFIS from the AI group, of the RBF and GMDH
models. Another novelty of our study consists in the comparison of the results of the
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stochastic models with the AI models in terms of their performance by applying evaluation
measurements and indicating the most accurate prediction models.

2. Methodology
2.1. Study Area and Source Material

The TRW modeling was carried out for the Warta River (Figure 1), the third longest
river in Poland (length = 808.2 km). The Warta River is a tributary of the Odra River
that carries water from the western part of Poland to the Baltic Sea. The basin area
is characterized by its considerable size (54,529 km2), and also by the large variety of
environmental conditions. The sources of the river are located at an altitude of 380 m
above sea level, while it flows into the Odra at an altitude of 12 m above sea level. From
the middle section the Warta River is a Ist and IInd shipping class waterway, while in the
metropolitan area (21 municipalities including Poznań) it flows through a water intake
protection zone (Mosina-Krajkowo Intake), which supplies a large part of the metropolitan
population with drinking water. On the river, just below Sieradz, is the Jeziorsko Reservoir,
with an area of 42.3 km2 and a dam in Skęczniew, which was built mainly to protect
against floods. The Warta River is of great ecological importance, being a habitat for many
species of fish and other organisms for which TRW is an important abiotic factor, shaping
the conditions of their existence and evolution. It flows through lands of high natural
value, including protected areas such as the Wielkopolski National Park (middle course)
and the Warta Estuary National Park (lower course), and many locations of importance
for the protection of habitats and birds, which were created under the European Natura
2000 project.

Figure 1. Map of the Warta River basin with the locations of hydrometric stations.

Due to the large latitudinal and longitudinal extent of the Warta River catchment area,
regional differences in climatic conditions are visible within its range. The area belongs to
nine climatic regions [57]. The average annual temperature in the river basin ranges from
7.5 ◦C in the north to 8.5 ◦C in the west. Annual precipitation totals range from 520 mm in
the northeast to 675 mm in the south.
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In Poland, TRW measurements are conducted using the standard measurement and
observation network of the Institute of Meteorology and Water Management—National
Research Institute (IMWM-NRI, Warsaw, Poland). Measurements are performed daily at
7:00 a.m. (GMT + 1) at water gauge stations using automatic station probes. Research
made use of daily TRW values for four gauge stations located on the Warta River (Figure 1,
Table 1): Bobry, Sieradz, Poznań and Gorzow Wielkopolski. The data were obtained from
the database of the IMWM-NRI and covered a period of 20 hydrological years (1990–2009,
specifically from 1 November 1989 to 31 October 2009).

Table 1. The stations’ coordinate data and the specifications of the data under study.

Gauge Station
Coordinates

Phase *
Mean
(◦C)

St. Dev. **
(◦C)

C.V.
(%)

Min.
(◦C)

Max.
(◦C)

Skew.
(−)

Kurt.
(−)Latitude

(◦Northern)
Longitude
(◦Eeastern)

Elevation
(m)

Bobry 51.02 19.40 205.0
Training 9.7 6.1 62.3 0.00 27.0 0.07 −1.30
Testing 9.9 6.0 61.1 0.00 22.0 0.05 −1.30

Sieradz 51.60 18.73 130.5
Training 9.9 6.7 68.2 0.10 24.8 0.10 −1.33
Testing 10.3 6.6 63.7 0.10 23.8 0.09 −1.26

Poznań 52.38 16.93 54.5
Training 10.7 7.5 69.7 0.00 26.2 0.11 −1.44
Testing 11.1 7.8 70.1 0.00 26.2 0.08 −1.41

Gorzow
Wielkopolski 52.72 15.23 25.0

Training 10.7 7.5 70.1 0.10 26.1 0.10 −1.41
Testing 11.1 7.6 68.2 0.20 26.1 0.06 −1.41

* Phase: The first 15 years (1990-2004 hydrological years) belong to the training phase and the last 5 years (2005–2009 hydrological
years) belong to the testing phase, ** Abbreviations: St. Dev. = standard deviation; C. V. = coefficient of variation; Min. = minimum;
Max. = maximum; Skew. = skewness; Kurt. = kurtosis.

2.2. Stochastic Models (Time Series Model)

A time series model is commonly used to simulate the data sorted by time. The
time series of TRW can be considered as the result of a stochastic process. In this study,
Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA)
and Autoregressive Integrated Moving Average (ARIMA) time series models were used
for TRW modeling. The ARMA and ARIMA models combine two basic models: the
autoregressive and the moving-average. The construction of models is based on the
autocorrelation phenomenon, i.e., on the correlation of the value of the forecasting variable
with the time lags of the same variable [43].

The AR model is based on the assumption that there is an autocorrelation between
the values of the predictable variable (target variable) and its values lagged in time. The
form of the AR model is as follows:

yt = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + . . . + ϕpyt−p + et (1)

where {yt, yt−1, yt−2, . . . , yt−p} are the values of the predictable variable at the time steps
{t, t− 1, t− 2, . . . , t− p}, respectively, {ϕ0, ϕ1, ϕ2, . . . , ϕp

}
are the model parameters, et is

model error (remainder) for time t, p is the amount of the time lag. The AR model is shown
by its autoregressive degree (p) as AR(p).

The MA model expresses the value of the variable as a function of the delayed values
of the (stationary) random component. The equation form of MA model is as follows:

yt = θ0 + et − θ1et−1 − θ2et−2 − . . .− θqet−q (2)

where yt is the value of the target variable predicted in time t, {et, et−1, et−2, . . . , et−q} are
errors (residuals) of the model at times {t, t− 1, t− 2, . . . , t− q}, {θ0, θ1, θ2, . . . , θq} are the
model parameters, and q is the amount of the time lag. The model is assigned moving
average degree (q) as MA (q).
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Combining the autoregressive and moving average model leads to ARMA, while
adding the Integrated component to this model gives the ARIMA model; these have been
shown below as equations [58]:

yt = ϕ1yt−1 + ϕ2yt−2 + . . . + ϕpyt−p + et + θ0 − θ1 + et−1 − θ2et−2 − . . .− θqet−q (3)

yt = ϕ1yt−1 + ϕ2yt−2 + . . . + ϕpyt−p + et + θ0 − θ1 + et−1 − θ2et−2 − . . .− θqet−q − yt−d (4)

where d is the differencing degree, which is related to the Integrated component. This
ARMA is shown by its AR and MA degrees (p and q) as ARMA(p,q), while ARIMA
additionally has an Integrated degree (d), making it ARIMA(p,d,q).

2.3. Artificial Intelligence Models

In this study, use was made of the Adaptive Neuro–Fuzzy Inference System (ANFIS),
the Radial Basis Function (RBF) neural network, and the Group Method of Data Handling
(GMDH) from the Artificial Intelligence models group.

2.3.1. Adaptive Neuro–Fuzzy Inference System (ANFIS)

The Adaptive Neuro–Fuzzy Inference System (ANFIS) is used primarily in automation
and robotics related to control, decision making, and in the monitoring and diagnostics of
hardly measurable processes and parameters. Uncertainty modeling is performed using
the description of fuzzy variables based on so-called fuzzy logic. ANFIS is an alternative
to systems based on models and traditional numerical algorithms in situations where
information about a given field is uncertain and ambiguously formalized [59]. The system
is a kind of artificial neural network (ANN) based on the fuzzy inference system (FIS).
As part of this model, FIS provides an inference scheme, i.e., a method of constructing
logical rules that are learned according to an algorithm taken from the theory of neural
networks [60,61]. The learning rule of ANFIS, which determines its parameters, is a
combination of methods, back-propagation, and least squares [62,63]. Inference in the
neural-fuzzy system proceeds according to specific stages, each of which is carried out
by an appropriate layer of the neural structure or similar. The first layer of the structure
recreates the membership functions of fuzzy sets included in the premises of the rules.
The second layer performs the operations of intersecting fuzzy sets using the algebraic
product. The third and fourth layers perform operations related to sharpening the resulting
membership function.

A linear combination of the consequent parameters is the result of the ANFIS model.
The final output fout can be written as [64]:

c fout = ω1 f1 + ω2 f2 =
ω1

ω1 + ω2
f1 +

ω2

ω1 + ω2
f2 = (ω1x)p1 + (ω1y)q1 + (ω1)r1 + (ω2x)p2 + (ω2y)q2 + (ω2)r2 (5)

where ωi (output) represents the firing strength of a rule, f1 and f2 are the fuzzy rules, x and y
are the input nodes of ANFIS, and pi, qi and ri are the parameters set (consequent parameters).

The FIS usually uses two methods of inference: The Mamdani method [65] and the
Sugeno method [66]. In the present modeling, the latter method was employed. Figure 2
shows a schematic diagram of ANFIS modeling processes.

2.3.2. Radial Basis Function (RBFNN) Neural Network

Radial Basis Functions (RBF) are used in approximation functions for timing and
control sequences. In artificial neural networks, radial basis functions are used as activation
functions. Neural networks with radial basis functions have found application in solving
classification problems, approximating tasks of multivariable functions, and in prediction
problems [67–70].
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Figure 2. Schematic structure of ANFIS model with two inputs.

The idea of the RBF network is based on the solutions of statistical methods of approx-
imating the function of a numeric variable. A typical RBNFN is a structure containing: an
input layer on which signals described by the input vector x are applied, a hidden layer
with radial neurons (weights correspond to cluster center, usually the Gaussian function),
and an output layer normally composed of one neuron (linear weighted sum), whose role is
the weight summation of signals from hidden neurons [71]. Figure 3 presents the topology
of the RBF model as a multi-input–single-output network composition.

Figure 3. A simple structure of a multi-input RBF model.

The RBFNN Gaussian function (ϕ) takes the form of:

ϕ(x) = exp

(
−‖x− µi‖2

2σ2
i

)
i = 1, 2, N (6)

where σ is the widths (or spread) of the hidden neuron.
The output layer (yi) in RBF can be written as:

yi =
N

∑
j=1

wij ϕj(x) + B (7)

where wij represents a weighted connection between the radial basis function neuron
and output neuron; and N is the number of hidden-layer neurons. The constant term B
represents a bias.
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2.3.3. Group Method of Data Handling (GMDH) Neural Network

The GMDH network is a fast-learning machine based on the principle of heuristic
self-organization [72,73]. It is a polynomial theory of complex systems that is applied in a
wide variety of areas in data mining and knowledge discovery, forecasting and systems
modeling, and optimization and pattern recognition [74].

The Group Method of Data Handling (GMDH) is a self-organizing methodology, with
the choice of input variables being made automatically. This is a combinatorial multi-layer
algorithm in which a network of layers and nodes is generated using several inputs from
the data stream being evaluated. The architecture of a polynomial network is formed
during the training process, and the node activation function is based on elementary
polynomials of arbitrary order [75,76].

A model which uses the GMDH algorithm creates a network of neurons. Through
the connections par neurons via of quadratic and triquadratic polynomials, in each layer,
new neurons are spawned. The formal assumption is to find a function, f̂ , that can be
approximately used instead of an actual function, f , in order to predict the output, ŷ, for a
given input vector, X = (x1, x2, x3 . . . , xn), as close as possible to its actual output, y [74].

In this case:
yi = f (xi1, xi2, xi3 . . . , xin); (i = 1, 2, . . . , M) (8)

It is now possible to train a GMDH network to predict the output values, ŷi, for any
given input vector, X = (xi1, xi2, xi3 . . . , xin):

ŷi = f̂ (xi1, xi2, xi3 . . . , xin); (i = 1, 2, . . . , M) (9)

To minimize the square of the difference between actual and predicted output, it is
necessary to determine a GMDH network, that is:

M

∑
i=1

[
f̂ (xi1, xi2, xi3 . . . , xin)− yi

]2
→ min (10)

A connection between inputs and outputs can be expressed by the series functions of
Volterra, which is the discrete analogous of the polynomial of Kolmogorov-Gabor [77,78].

y = a + ∑m
1=1 bi xi + ∑m

i=1 ∑m
j=1 cijxixj + ∑m

i=1 ∑m
j=1 ∑m

k=1 dijkxixjxk + . . . (11)

where {x1, x2, x3 . . . }: inputs; {a, b, c . . . }: polynomial coefficients; and y: the node output.
Figure 4 shows a schematic diagram of a GMDH model with three layers and M numbers
of input variables.

2.4. Evaluation Criteria

Several evaluation criteria were used to assess the accuracy of the modeling process
and evaluate the correlation between observed-predicted samples: Root Mean Square Error
(RMSE), Normalized Root Mean Square Error (NRMSE), Mean Absolute Error (MAE),
coefficient of determination R2, and the Nash–Sutcliffe efficiency criterion (NS). The RMSE
and MAE show the difference between predictions and actual values, while the NRMSE is
a non-dimensional form of the RMSE. The R2 criterion is used to evaluate the correlation
between predictions and actual values. The Nash–Sutcliffe efficiency criterion (NS) normal-
izes the variance of the errors with the variance of the measurements [79]. These criteria
are defined by the following equations:

RMSE =

√
1
n

n

∑
i=1

(yi − fi)
2 (12)

NRMSE =

√
1
n ∑n

i=1(yi − fi)
2

ymax − ymin
(13)
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MAE =
1
n ∑n

i=1|yi − fi| (14)

R2 =

 ∑N
i=1(yi − y)( fi − f )√

∑N
i=1(yi − y)

2 ∗
√

∑N
i=1( fi − f )

2

2

(15)

NS = 1− ∑n
i=1(yi − fi)

2

∑n
i=1(yi − y)2 (16)

where yi and y—observed data and mean of the observed data (respectively); fi and f —
forecast data and mean of the forecast data (respectively); n—number of forecast data; and
ymax and ymin—extreme values. When the RMSE, MAE and NRMSE are closer to zero, and
R2 and NS are approaching 1, then the performance of the models is more favorable. When
an NRMSE value is greater than 0.3 then the model is poor. High performance is achieved
with values below 0.1 [50].

Figure 4. Schematic structure for a three-layered GMDH model.

The general process of modeling and predicting the time series of TRW is shown as a
flowchart in Figure 5.

In the current study, Minitab software was used for time series analysis and the
implementation of stochastic models (AR, MA, ARMA and ARIMA), while MATLAB
software was employed to implement the machine learning models (ANFIS, RBF and
GMDH). Graphs of the results were prepared using Minitab, Excel and R software.
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Figure 5. Flowchart of the modeling and prediction steps.

3. Results
3.1. Modeling and Predicting TRW

To predict TRW, an input variable was determined in an initial step. To make a
reasonable comparison between several models, they must use the same input variables.
As the stochastic models can only use the main variable’s previous amounts (time lags)
as inputs, it is logical to use the time lags of TW for neural network models too. In this
study, therefore, the daily time lags of TRW for each hydrometric station were investigated
through Autocorrelation (ACF) and Partial Autocorrelation (PACF) functions. The graphs
of these two functions are presented in Figure 6.

The ACF and PACF graphs are drawn for time lags of 130 days (Figure 6). ACF plots
for all stations indicate that there is no seasonal degree in the daily TRW time series, and
we must therefore use non-seasonal patterns for the stochastic models. Furthermore, the
ACFs show a decreasing trend of correlation as time lags increase. The autocorrelations are
significant for daily time lags up to the 77th day, but using all of them as inputs increases
model complexity and violates the principle of parsimony [57]. Finally, when correlations
decrease, usage of the less correlated lags increases the prediction error. Thus, it is better to
use the most correlated time lags. In these ACF graphs, the time lags 1, 2, 3, 4 and 5 have
the largest correlation amounts and have therefore been selected as input variables. In the
PACF graphs, too, there are some significantly correlated time lags, i.e., the time lags of 1, 2,
3, 4, 5, 6, 7 and 8 days for the Bobry station, of 1, 2, 3, 4 and 5 days for the Sieradz station, of
1, 2 and 3 days for the Poznań station, and of 1, 2 and 3 days for the Gorzow Wielkopolski
station. However, among them, the one-day time lag is specifically the most correlated, so
the PACF graphs only suggest the 1st time lag of TRW as their predictor input.
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Figure 6. Graphs of Autocorrelation (ACF) and Partial Autocorrelation (ACF) for the TRW time series. The alphabets refer
to the hydrometric stations: (a) Bobry, (b) Sieradz, (c) Poznań and (d) Gorzow Wielkopolski.

After preparing the input-target samples, the data are divided into two parts of
training and testing (as per Table 1). The best stochastic models are identified by trial
and error of the Autoregressive, Moving Average and Integrated degrees, up to five non-
seasonal degrees. This includes five models for the patterns AR and MA, 25 models for
ARMA, and 125 models for ARIMA. The artificial intelligence models were each optimized
by the trial and error of their own parameters: the ANFIS model was developed based on
the fuzzy c-means (FCM) clustering method, with its optimization parameter being the
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number of clusters; the RBF’s parameters are the spread and the maximum neurons; and
the GMDH’s parameters are the number of layers and the number of neurons in each layer.
The modeling and prediction results are shown in Table 2.

Table 2. Evaluating the implemented models for TRW prediction.

Station Model
Training Testing

RMSE (◦C) MAE (◦C) RMSE (◦C) MAE (◦C)

Bobry

AR (4) 1.027 0.769 0.924 0.692
MA (5) 1.462 1.160 1.342 1.084

ARMA (3,1) * 1.021 0.765 0.920 0.690
ARIMA (2,1,1) 1.022 0.764 0.921 0.691
ANFIS-ACF 1.014 0.763 0.916 0.694
ANFIS-PACF 1.024 0.773 0.924 0.697

RBF-ACF 1.010 0.763 0.922 0.698
RBF-PACF 1.024 0.773 0.924 0.697

GMDH-ACF 1.023 0.768 0.925 0.694
GMDH-PACF 1.033 0.773 0.931 0.694

Sieradz

AR (3) 0.869 0.619 0.896 0.669
MA (5) 1.323 1.075 1.333 1.071

ARMA (3,1) 0.864 0.620 0.890 0.666
ARIMA (4,1,4) 0.861 0.614 0.885 0.662

ANFIS-ACF 0.861 0.614 0.889 0.665
ANFIS-PACF 0.880 0.632 0.908 0.690

RBF-ACF 0.858 0.614 0.891 0.667
RBF-PACF 0.880 0.632 0.908 0.690

GMDH-ACF 0.865 0.614 0.892 0.664
GMDH-PACF 0.885 0.633 0.913 0.688

Poznań

AR (3) 0.446 0.306 0.621 0.416
MA (5) 0.966 0.809 1.180 0.943

ARMA (2,1) 0.446 0.306 0.621 0.416
ARIMA (1,1,1) 0.447 0.305 0.622 0.415

ANFIS-ACF 0.442 0.305 0.621 0.418
ANFIS-PACF 0.447 0.308 0.623 0.418

RBF-ACF 0.444 0.305 0.620 0.414
RBF-PACF 0.440 0.304 0.625 0.423

GMDH-ACF 0.445 0.306 0.630 0.417
GMDH-PACF 0.483 0.324 0.636 0.435

Gorzow
Wielkopolski

AR (2) 0.636 0.426 0.606 0.396
MA (5) 1.182 0.944 1.155 0.942

ARMA (1,3) 0.634 0.425 0.606 0.396
ARIMA (2,1,0) 0.635 0.423 0.607 0.393

ANFIS-ACF 0.631 0.426 0.606 0.397
ANFIS-PACF 0.632 0.428 0.604 0.399

RBF-ACF 0.627 0.426 0.607 0.397
RBF-PACF 0.616 0.424 0.598 0.396

GMDH-ACF 0.626 0.424 0.648 0.398
GMDH-PACF 0.643 0.433 0.620 0.404

* The bold rows illustrate the best fitted model of each model type, at each station.

The evaluation in this step is performed using the RMSE and MAE criteria (Table 2).
Since the validity of the numerical models is specified during their test periods, in this table
we discuss the test phase for the stations. At first glance, we can see partial differences
between the AI and the stochastics. Among the stochastic methods, the MA had the
highest prediction errors, but the others—including AR, ARMA and ARIMA—had better
performance. Among the AI methods, the best performance was displayed by the ANFIS
and RBF models, with the GMDH was the weakest AI model. For the Bobry station,
ARMA was the best stochastic model, with RMSE = 0.920 ◦C and MAE = 0.690 ◦C, while
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ANFIS with inputs of ACF had the highest accuracy among AIs (RMSE = 0.916 ◦C and
MAE = 0.694 ◦C). In a similar scenario for the Sieradz station, the ANFIS was reported
as the best AI, and the ARIMA as the best stochastic model. For the Poznań and Gorzow
Wielkopolski stations, the criteria values were less than for the previous stations (RMSE
values of about 0.6 ◦C and MAE of about 0.4 ◦C), and the AR and RBF models were the best
among the stochastic and AI models, respectively. Furthermore, there was no significant
reported superiority when comparing ACF and PACF input selectors. Scatter plots were
drawn to make a graphical comparison between the prediction results of the stochastics
and the AIs (Figure 7).

Figure 7. Scatter plots comparing the predictions of stochastic and artificial intelligence models, with their observation
values (left side—the best model among stochastics; right side—the best model among artificial intelligences): (a) Bobry,
(b) Sieradz, (c) Poznań and (d) Gorzow Wielkopolski.
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Figure 7 shows the scatter plots for predicted TRW and its actual observations. In
Figure 7, the best-performing stochastic models are shown on the left, and the best AIs
on the right. These graphs demonstrate that predictions are correlate significantly with
observed TRW at all stations. The R2 values are above 97%, and the dots come together
well around the fitted regression line. In all cases, the R2 values of the stochastics and AIs
are too close, and the differences are partial (in the 1st or even 2nd decimal place of R2). In
this comparison, therefore, the linear stochastic models can be considered more suitable
due to their simplicity. The best R2 value is 99.381%, and was obtained for the RBF model
at the Gorzow Wielkopolski stations. The weakest R2 value—97.687%—was determined
for the ARMA model at the Bobry station.

3.2. Investigating the Models in Extreme TRW Deciles

To investigate the prediction abilities of the used models in extreme events, the highest
and lowest TRW deciles were separated in the test period. Next, their error distributions
were determined, and are shown as violin plots (Figure 8).

Figure 8. Violin plots to evaluate the error distributions in the lower (a) and upper deciles (b) of TRW.

Figure 8 presents a selection of the best stochastic and AI models (according to the
bold rows of Table 2), with violin plots drawn separately for the highest and lowest deciles,
by station. On the basis of the vicinity of the violins’ main curvature to the Error = 0 ◦C
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line, it is demonstrated that all the models are suitable for both of the extreme deciles. A
comparison of the models makes it obvious that the violins’ main curvatures in stochastic
models are somewhat closer to the Error = 0 line than in AI models. The clearest examples
of this are the Bobry and Sieradz stations in the lowest decile, and the Bobry and Gorzow
Wielkopolski stations in the highest decile. When comparing the two studied deciles, we
see clearly that the violins are wider in the highest decile and more acute in the lowest. This
demonstrates that the lowest TRW decile has less errors and can achieve better predictions
through numerical models than the highest decile. If looked at from another perspective,
the plots (Figure 8) generally show that the curvatures are sharper for Poznań and Gorzow
Wielkopolski stations, which indicates that the TRW at these two stations offers better
predictions than at Bobry and Sieradz.

A Spearman non-parametric correlation test was also implemented between the
observations and the predictions. This test was applied seamlessly for all of the stations.
The consequent correlation matrix is shown in Table 3.

Table 3. Spearman non-parametric correlation test between the outputs and observations in the upper and lower
TRW deciles.

Decile Variables Observed TRW AR MA ARMA ARIMA ANFIS RBF GMDH

Lower
decile

Observed TRW 1 0.780 ** 0.607 ** 0.779 ** 0.780 ** 0.773 ** 0.760 ** 0.783 **
AR 1 0.759 ** 0.992 ** 0.977 ** 0.989 ** 0.976 ** 0.987 **
MA 1 0.764 ** 0.743 ** 0.781 ** 0.794 ** 0.735 **

ARMA 1 0.986 ** 0.986 ** 0.977 ** 0.976 **
ARIMA 1 0.969 ** 0.951 ** 0.965 **
ANFIS 1 0.988 ** 0.979 **

RBF 1 0.954 **
GMDH 1

Upper
decile

Observed TRW 1 0.833 ** 0.759 ** 0.836 ** 0.835 ** 0.835 ** 0.837 ** 0.834 **
AR 1 0.890 ** 0.999 ** 0.999 ** 0.997 ** 0.992 ** 0.997 **
MA 1 0.890 ** 0.889 ** 0.890 ** 0.902 ** 0.878 **

ARMA 1 0.999 ** 0.998 ** 0.994 ** 0.997 **
ARIMA 1 0.996 ** 0.991 ** 0.996 **
ANFIS 1 0.997 ** 0.997 **

RBF 1 0.993 **
GMDH 1

** Correlation is significant at the 0.01 level.

This non-parametric statistical test (Table 3) says that the predictions are significantly
correlated at the 0.01 level. In the upper decile, the correlations are stronger than in the
lower decile. In both deciles, the predictions of MA are reported to be the weakest correlated
outputs (0.607 and 0.759) against the observations. Additionally, the greatest difference
between the models is established as being between MA and GMDH, leading to correlation
coefficients of 0.735 and 0.878 for the lower and upper deciles, respectively. However, in
general, the correlations are high, and this indicates that there are no significant differences
between the models’ predictions with respect to extreme events of water temperature.

3.3. Comparing Prediction Performance between Stations

The ranges of TRW differ at the four stations (Table 1). The NRMSE is a normalized
form of the RMSE, and considers the range of the observation dataset and is a good
measurement for making a comparison between different ranged datasets. In this step, the
prediction accuracies were investigated using NRMSE and NS criteria. For this purpose, the
combined line-bar chart was used for the test period of all seven studied models (Figure 9).
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Figure 9. Comparing the TRW prediction accuracies between the hydrometric stations.

At first glance, it is obvious that in all seven models, the NRMSE values have a
decreasing trend, and NS values have an increasing trend at the stations. This indicates
that the Bobry and Sieradz stations have lower prediction accuracies than the Poznań
and Gorzow Wielkopolski stations. As a matter of fact, predictions offered by the models
improve as we proceed downstream along the catchment area.

In the case of the Warta River, which constitutes the object of study, better prediction
results for TRW were obtained for the middle and lower sections of its course (for the
Poznań and Gorzow Wielkopolski water gauges), and slightly worse results were obtained
for the water gauges located along the upper course (Bobry and Sieradz). Differences in
the effectiveness of the prediction models may result from the influence of local factors
modifying the features of both the thermal regime and the runoff regime, influencing, for
example, an increase in the variability and irregularity of flow. Figure 10 shows the time
series plots of best predicted values and their observations in both training and testing
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periods of the stations. As can be seen, in downstream stations (Bobry and Sieradz), there
are more significant overlaps than in upstream ones (Poznań and Gorzow Wielkopolski).

Figure 10. Time series plots of the best predicted outputs of each station, beside its observed TRW.

Research on the trend of changes in TRW in Poland, carried out by Graf and Wrze-
siński [80], identified water gauges on the Warta River in which the observation series of
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TRW showed an opposite trend of changes compared to the rest of the country. In most
cases, these are located along sections of the river that are subjected to anthropopressure,
such as a retention reservoir, municipal wastewater discharges, or modifications of the way
in which the valley is used. The Bobry and Sieradz water gauges (upper section of the river
course) are located on the river above the Jeziorsko Reservoir, which was built to regulate
flows on the river. In its upper reaches, the river shows greater flow variability and greater
irregularity, which may affect the modification of TRW distribution and, consequently,
void the prediction results. The impact of anthropogenic influences on the structure of
the Warta River TRW measurement series has been confirmed in research performed by,
among others, [80–83].

4. Discussion

In the prediction made for daily TRW in the Warta River, different results were ob-
tained when using the stochastic and AI models. As emphasized by Zhu and Piotrowski [3],
comparisons of the results of models used to forecast the TRW have not been entirely con-
clusive. This problem is also indicated by the results of studies assessing the possibilities
of predicting the characteristics of the thermal regime of rivers using various statistical
models and artificial intelligence [3,22,34,84,85]. This is the result of various assumptions
and limitations in the use of methods, input data for modeling, the level of data resolution,
and the length of the observation series [54].

According to Qiu et al. [86], machine learning models perform well in TRW modeling,
offering a very accurate empirical basis for its prediction. Zhu et al. [21,34] used different
versions of methods to predict daily TRW: the Forward Neural Network (FFNN), Gaussian
Process Regression (GPR) and the Decision Tree (DT), demonstrating that these models
had similar performance when only air temperature was used as a predictor. Additionally,
when the day of the year was included as an input, the performance of the three machine
learning models improved significantly. As Graf [54] emphasized, TRW as a forecast
variable also depends on its values in previous periods, which is related to the long
memory of the system.

In the predictive TRW models developed for the Warta River, we included daily
temperature delays as an input variable. According to Santos-Fernandez et al. [87], when
the purpose of the application of the stochastic method is time interpolation and forecasting
of future TRW values at the locations of measuring points (water gauges), and there is no
need to describe unique spatial relationships on streams, thermal conditions reflect the
standard models of time series.

The most favorable TRW forecasts in the upper section of the Warta River were
obtained through the ARMA (Beaver station) and ARIMA (Sieradz) stochastic models, and
the ANFIS AI model. However, for the middle (Poznań) and lower (Gorzow Wielkopolski)
sections of the river, the best predictions were given by the AR model (among the stochastic
models) and the RBFNN model among the AI models. The weakest predictive effects were
obtained through the GMDH model, which can be associated with its optimization. The
validity of using the first-order autoregressive model AR (1) for predicting TRW has been
demonstrated, among others, by [10,88,89], while the Autoregressive Integrated Moving
Average (ARIMA) was applied by Graf [54]. According to Santos-Fernandez et al. [87],
in practice, in order to fit a model that is simple and generates precise estimates of fixed
effects in predicting TRW, the AR model should be applied.

In the literature, there is a study authored by Graf et al. [22], which predicted the
TRW of the Warta River. The researchers investigated the present four hydrometric sta-
tions, but used different machine learning approaches. Their best fitted model was the
Wavelet Multilayer Perceptron Neural Network (WTMLPNN). When comparing similar
hydrometric stations, the RMSE and MAE values show that the models implemented in
the current study have superior performance. For example, at Bobry station, Graf et al. [22]
obtained RMSE = 1.217 ◦C and MAE = 0.930 ◦C using WTMLPNN, which is less commonly
reported through ANFIS in the current study (RMSE = 0.916 ◦C and MAE = 0.694 ◦C).
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Additionally, Graf et al. [22] and the present study obtained a similar comparison result for
the Sieradz station; RMSE = 0.981 ◦C and MAE = 0.781 ◦C through WTMLPNN in [22] and
RMSE = 0.889 ◦C and MAE = 0.652 ◦C through ANFIS in the current study. Furthermore, at
the Poznań and Gorzow Wielkopolski stations, the current RBF model worked better than
the WTMLPNN employed by Graf et al. [22]. In general, the AIs (including the ANFIS and
the RBF) used in the present study achieve a superiority of 58.7% over the WTMLPNN. The
reason for this seems to be related to the nature of temperature data. The temperature time
series display a strong linear autocorrelation, and this linear relation can be better realized
by simpler models. As we see in this comparison, the WTMLPNN is an MLP model with
a large number of parameters (including the number of hidden layers, the number of
neurons in individual layers, and the type of the transfer function in each neuron) com-
bined by wavelet analysis, while the ANFIS has just one (number of clusters), and the RBF
only two parameters (spread and the maximum number of neurons). Another difference
between [22] and the current study is that the latter used stochastic methods, and in some
instances (the Sieradz station, for example), these performed better than the AIs. The
superiority of stochastic models in relation to AIs for temperature forecasting has also been
reported for the short- and long-term forecasting of air temperature. Aghelpour et al. [39]
also demonstrated that in different climates air temperature was better forecast by linear
stochastic models than the complex AI and meta-innovative models; again, this shows the
nature of linear autocorrelation in temperature time series.

Cole et al. [90] found the MLPNN to be better than a heat budget approach. Hong
and Bhamidimarri [91] determined that the DNFIS model was superior not only to the
classical ANFIS, but also to the MLPNN, at least in terms of short-term TRW forecasting.
Zhu et al. [32] compared the performance of the MLPNN and ANFIS models, indicating
that the MLPNN model provides the best overall performance, and that the choice of
identification method significantly affects the performance of the ANFIS model. The
applicability of the ANFIS model for forecasting TRW is quite restricted, although ANFIS
are of great use in other research applications [90,92,93]. In another study, Zhu et al. [21]
showed that the coupled neural network performs better than the GPR and DT models.
According to Piotrowski et al. [31], the choice of a neural network depends on the method
of comparing models.

5. Conclusions

The investigations show promising results in predicting daily TRW. The results can be
summarized in the following points:

• Both AI and stochastic model types had acceptable performance in predicting daily TRW.
• Among the stochastic methods, the AR, ARMA and ARIMA, and among the AI meth-

ods, the ANFIS and RBF, offered the best-fitted predictions of TRW. The performance
difference between these two types of models is very small, and indeed negligible.

• The stochastic models have less prediction errors in extreme TRW events.

The general results of comparisons show the superiority of the linear stochastic models,
due to simplicity and parsimony. Additionally, AI models with fewer parameters (ANFIS
and RBF) offered better results than those that were more complex and had large numbers
of parameters (GMDH). In fact, it can be stated that for the purposes of forecasting TRW, the
simpler the model, the more appropriate and logical is its use; as can be seen for the Poznań
and Gorzow Wielkopolski stations, the AR(2) model—a simple linear regression model
with just two input variables—was the best variant. The study confirms the applicability of
these numerical approaches for the current river basin, and that they have research value
for other catchment areas (among others, in order to extend the results). Furthermore, it is
suggested that future researchers use optimization algorithms, such as Genetic, Particle
swarm, dragonfly, etc., hybridized by the Ais, to improve the abilities of the AI models.
To examine the impacts of global warming and climate change on TRW, it is a possibility
to use the meteorological variables for long-term future periods, which could be another
suggestion for the long-term forecasting of the variable TRW.
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36. Hadzima-Nyarko, M.; Rabi, A.; Śperac, M. Implementation of artificial neural networks in modeling the water-air temperature
relationship of the river Drava. Water Resour. Manag. 2014, 28, 1379–1394. [CrossRef]

37. Rabi, A.; Hadzima-Nyarko, M.; Sperac, M. Modelling river temperature from air temperature in the River Drava (Croatia). Hydrol.
Sci. J. 2015, 60, 1490–1507. [CrossRef]

38. Benyahya, L.; St-Hilaire, A.; Ouarda, T.B.M.J.; Bobée, B.; Dumas, J. Comparison of nonparametric and parametric water
temperature models on the Nivelle River, France. Hydrol. Sci. J. 2008, 53, 640–655. [CrossRef]

39. Aghelpour, P.; Mohammadi, B.; Biazar, S.M. Long-term monthly average temperature forecasting in some climate types of Iran,
using the models SARIMA, SVR, and SVR-FA. Theor. Appl. Climatol. 2019, 138, 1471–1480. [CrossRef]

40. Ashrafzadeh, A.; Kişi, O.; Aghelpour, P.; Biazar, S.M.; Masouleh, M.A. Comparative study of time series models, support vector
machines, and GMDH in forecasting long-term evapotranspiration rates in northern Iran. J. Irrig. Drain. Eng. 2020, 146, 04020010.
[CrossRef]

41. Aghelpour, P.; Bahrami-Pichaghchi, H.; Varshavian, V. Hydrological drought forecasting using multi-scalar streamflow drought
index, stochastic models and machine learning approaches, in northern Iran. Stoch. Environ. Res. Risk Assess. 2021, 35, 1615–1635.
[CrossRef]

42. Aghelpour, P.; Singh, V.P.; Varshavian, V. Time series prediction of seasonal precipitation in Iran, using data-driven models: A
comparison under different climatic conditions. Arab. J. Geosci. 2021, 14, 551. [CrossRef]

43. Box, G.E.P.; Jenkins, G. Time Series Analysis: Forecasting and Control, 2nd ed.; Holden-Day Publishments: San Fransisco, CA,
USA, 1976.

44. Du, H.; Zhao, Z.; Xue, H. ARIMA-M: A New Model for Daily Water Consumption Prediction Based on the Autoregressive
Integrated Moving Average Model and the Markov Chain Error Correction. Water 2020, 12, 760. [CrossRef]

45. Jothiprakash, V.; Kote, A.S. Improving the performance of data-driven techniques through data pre-processing for modelling
daily reservoir inflow. Hydrol. Sci. J. 2011, 56, 168–186. [CrossRef]

46. Modarres, R.; Ouarda, T.B. Modelling heteroscedasticty of streamflow times series. Hydrol. Sci. J. 2013, 58, 54–64. [CrossRef]
47. Lippi, M.; Bertini, M.; Frasconi, P. Short-term traffic flow forecasting: An experimental comparison of time-series analysis and

supervised learning. IEEE Trans. Intell. Transp. Syst. 2013, 14, 871–882. [CrossRef]

http://doi.org/10.7717/peerj.7065
http://www.ncbi.nlm.nih.gov/pubmed/31198649
http://doi.org/10.1016/j.jhydrol.2019.124115
http://doi.org/10.1002/hyp.10913
http://doi.org/10.2166/wqrj.2019.053
http://doi.org/10.1007/s11356-018-3650-2
http://doi.org/10.1016/j.earscirev.2019.103076
http://doi.org/10.1016/j.jhydrol.2009.02.042
http://doi.org/10.1016/j.engappai.2009.09.015
http://doi.org/10.1061/(ASCE)1084-0699(2008)13:9(811)
http://doi.org/10.1016/j.jhydrol.2015.07.044
http://doi.org/10.1007/s11356-019-04716-y
http://www.ncbi.nlm.nih.gov/pubmed/30895536
http://doi.org/10.1139/l97-091
http://doi.org/10.7717/peerj.4894
http://doi.org/10.1002/hyp.6353
http://doi.org/10.1007/s11269-014-0557-7
http://doi.org/10.1080/02626667.2014.914215
http://doi.org/10.1623/hysj.53.3.640
http://doi.org/10.1007/s00704-019-02905-w
http://doi.org/10.1061/(ASCE)IR.1943-4774.0001471
http://doi.org/10.1007/s00477-020-01949-z
http://doi.org/10.1007/s12517-021-06910-0
http://doi.org/10.3390/w12030760
http://doi.org/10.1080/02626667.2010.546358
http://doi.org/10.1080/02626667.2012.743662
http://doi.org/10.1109/TITS.2013.2247040


Atmosphere 2021, 12, 1154 21 of 22

48. Abudu, S.; Cui, C.; King, J.P.; Abudukadeer, K. Comparison of performance of statistical models in forecasting monthly streamflow
of Kizil River, China. Water Sci. Eng. 2010, 3, 269–281.

49. Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural
network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2013, 476, 433–441. [CrossRef]

50. Aghelpour, P.; Varshavian, V. Evaluation of stochastic and artificial intelligence models in modeling and predicting of river daily
flow time series. Stoch. Environ. Res. Risk Assess. 2020, 34, 33–50. [CrossRef]

51. Khosravi, K.; Golkarian, A.; Booij, M.J.; Barzegar, R.; Sun, W.; Yaseen, Z.M.; Mosavi, A. Improving daily stochastic streamflow
prediction: Comparison of novel hybrid data mining algorithms. Hydrol. Sci. J. 2021, 66, 1457–1474. [CrossRef]

52. Bari, M.F.; Islam, K.M.S. Stochastic model of flow duration curves for selected rivers in Bangladesh. In Climate Variability and
Change–Hydrological Impacts, Proceedings of the Fifth FRIEND World Conference, Havana, Cuba, 27 November–1 December 2006; IAHS
Publ.: Wallingford, UK, 2006; Volume 308, pp. 99–104.

53. Papalaskaris, T.; Kampas, G. Time series analysis of water characteristics of streams in Eastern Macedonia—Thrace, Greece. Eur.
Water 2017, 57, 93–100.

54. Graf, R. Distribution properties of a measurement series of river water temperature at different time resolution levels (based on
the example of the Lowland River Notec, Poland). Water 2018, 10, 203. [CrossRef]

55. Shvartser, L.; Shamir, U.; Feldman, M. Forecasting hourly water demands by pattern recognition approach. J. Water Resour. Plan.
Manag. 1993, 119, 611–627. [CrossRef]

56. Mombeni, H.A.; Rezaei, S.; Nadarajah, S.; Emami, M. Estimation of water demand in Iran based on sarima models. Environ.
Model. Assess. 2013, 18, 559–565. [CrossRef]
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