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Abstract: High resolution air quality models combining emissions, chemical processes, dispersion
and dynamical treatments are necessary to develop effective policies for clean air in urban environ-
ments, but can have high computational demand. We demonstrate the application of task farming
to reduce runtime for ADMS-Urban, a quasi-Gaussian plume air dispersion model. The model
represents the full range of source types (point, road and grid sources) occurring in an urban area
at high resolution. Here, we implement and evaluate the option to automatically split up a large
model domain into smaller sub-regions, each of which can then be executed concurrently on multiple
cores of a HPC or across a PC network, a technique known as task farming. The approach has been
tested for a large model domain covering the West Midlands, UK (902 km2), as part of modelling
work in the WM-Air (West Midlands Air Quality Improvement Programme) project. Compared
to the measurement data, overall, the model performs well. Air quality maps for annual/subset
averages and percentiles are generated. For this air quality modelling application of task farming, the
optimisation process has reduced weeks of model execution time to approximately 35 h for a single
model configuration of annual calculations.

Keywords: air pollution; air quality modelling; ADMS-Urban; high performance computing; HPC;
West Midlands

1. Introduction

Air pollution has become the biggest environmental risk for public health both globally
and locally [1–4]. Air pollution can cause adverse health effects, e.g., diseases associated
with respiratory, circulatory, nervous, digestive and urinary systems [5]. In 2016, the World
Health Organisation (WHO) estimated [6,7] premature deaths attributed to ambient air
pollution as about 4.2 million per year and that about 91% of the world’s population
dwelt in areas with air pollution levels higher than WHO guidelines [8]. The mortality
burden associated with ambient air pollution is about 28–36,000 per year in the UK [9]. The
availability of air quality information is of vital importance to improve the understanding
of the associated health effects [10,11], and to develop effective and equitable air pollution
control policies.

Air quality measurements can provide direct information about the levels of air
pollutants in the atmosphere. The UK Automatic Urban and Rural Network (AURN) [12]
is the largest automatic air quality monitoring network across the UK. The quality-assured
stationary sites in AURN can normally provide continuous measurements of air pollution
concentrations at high temporal resolution (e.g., hourly air quality data), but with coarse
spatial resolution due to the limited number of sites [12], and at significant capital and
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operational cost. Owing to the advanced development of Internet of Things, low-cost
sensors [13] are also increasingly used for air quality measurements, as indicative measures.
These techniques can enable the dense network of air quality monitoring required for
building smart cities. Other monitoring approaches, such as mobile measurements using
bicycles [14,15] and vehicles [16], generate air quality information at both high temporal
and spatial resolutions within relatively small domains, while satellite measurements can
provide a globally consistent air quality monitoring service at a coarse spatial resolution [17].
However, these measurement approaches are unable to provide the high-resolution spatial
and temporal air pollutant concentration data required for some detailed population
exposure calculations, or to evaluate potential policy options.

To complement the information obtainable from air quality monitoring services, the
use of air quality modelling has rapidly increased over recent decades. These tools play a
key role in environmental science because of their capability to quantify the deterministic
relationships between emission sources, dispersion, mixing, concentrations, advection and
deposition over different distance and time scales [18]. Their use has been promoted by the
2008 European Directive on Ambient Air Quality and Cleaner Air for Europe that explicitly
encourages the adoption of modelling for air quality management such as forecasting
and emission reduction plans [19]. Air quality models use mathematical equations to
simulate physical and chemical processes affecting air pollution in the atmosphere using
different approaches depending on the degree of meteorological and chemical detail re-
quired for a given application [20,21]. Dispersion, transport and chemical processes are
modelled from local to regional scales using different types of models. Local-scale models
can represent explicit source properties, such as geometry and efflux conditions, incorpo-
rating a simplified chemical scheme and using representative meteorological and emission
data [22,23]. Regional-scale models use diffusion equations (e.g., Eulerian models) [24,25]
or instantaneous flow approaches (e.g., Lagrangian models) [26,27] to simulate full chem-
istry and physical mechanisms acting in the atmosphere, accounting for the interaction of
the emissions, homogeneously mixed on each grid, with meteorology. Other models adopt
a simpler and less data-demanding approach to estimate air pollutant concentrations using
a statistical or empirical approach [28–31]. The simplification of these models is achieved by
ignoring the time-varying processes affecting air pollutant concentrations connected with
variations in emissions, processing and meteorological conditions. Models that represent
physical and chemical processes are the most suitable for air quality assessment planning
for a number of reasons including: the capability to simulate at different spatial scales
(from hemispheric simulations to regional and local scale) [32] and temporal scales (from
short time period or event analysis to annual and inter-annual simulations) and the possi-
bility to conduct several types of analysis, from the dispersion processes of inert and/or
trace pollutants at a particular ground-level receptor influenced by an emission source, to
simulations of the full chemistry acting in the atmosphere on pollutants from all available
emission sources, and their interactions with meteorology. This also allows the models to
be used to assess the likely changes in air pollutant concentrations resulting from differing
scenarios of emissions reductions and/or forecasts of future climatic conditions [33].

Different mesoscale meteorological and chemistry-transport models (CTMs) (e.g.,
WRF [34], CMAQ [35] or WRF-Chem [36]) are commonly used worldwide by governments
and researchers to study air pollution exposure [37,38], plan emissions reductions [39] and
create scenarios [40] to reduce air pollution in urban areas. These systems require exten-
sive computational time and resources in comparison to statistical and empirical models.
This is due to the necessity to account for atmospheric dynamics and complex chemical
dispersion and deposition processes of potentially thousands of primary and secondary
pollutants over urban areas at different spatial resolution (from a few hundreds of meters
to several km) [28]. Parallel HPC (High Performance Computer) clusters are generally
used to supply the computational resources for this type of dispersion modelling. HPC
clusters are able to run calculations from simulations of three-dimensional domains with
different cell dimensions and sizes in parallel with a reasonable computational time [41].
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In contrast, for most applications, local-scale dispersion models execute sequentially in
terms of spatial and temporal calculations, leading to extended runtimes for the simulation
of large urban areas.

Computer models representing physical or chemical processes such as pollutant dis-
persion are commonly initially written in a sequential form, as this is simple to develop
and it is easily portable across different types of computational architecture. However,
the computational burden associated with modelling complex atmospheric processes of-
ten requires runtime optimisation, such as code parallelisation whereby calculations are
distributed over multiple cores on HPC clusters [42]. Sequential code can be converted
into parallel code using parallelisation algorithms such as OpenMP [43], Parallel Virtual
Machine (PVM) [44] and Message Passing Interface (MPI) [45], but a simpler approach,
not requiring changes to code architecture, is to use task farming. Task farming involves
running the same, possibly sequential, code on multiple processors using differing model
configuration parameters and data inputs [46]. The application of task farming to mod-
elling of physical processes with differing configurations relating to different spatial areas
is sometimes known as spatial parallelisation. For some applications, task farming may
be wasteful in terms of computational resources compared to full code parallelisation; for
instance, the same code will be executed separately on each core and, for spatial paralleli-
sation, there may be a need for additional calculations at the edge of each computational
sub-domain. However, spatial parallelisation is relatively simple to implement from a code
development perspective and can lead to runtime optimisations that broadly scale with the
number of processors available. A task farming approach has previously been applied to
the AERMOD Gaussian plume dispersion model with preliminary testing [47], alongside a
qualitative assessment of the possibility of code parallelisation, which concluded that it
would require significant development effort.

ADMS-Urban [48,49] is a quasi-Gaussian plume air dispersion model that represents
the structure of the atmospheric boundary layer using two governing parameters: the
boundary layer depth and the Monin–Obukhov length. It uses a physics-based approach,
so it requires a range of data inputs (meteorological, emissions and long-range pollutant
transport data). ADMS-Urban explicitly represents the full range of source types occurring
in an urban area at high resolution (industry, transport and diffuse sources); the model is
able to account for the influence of complex urban morphology (building density, street
canyons [50,51]) on dispersion and generates street-scale resolution maps that highlight
both pollution hotspots and areas of better air quality. The model has been used to quantify
urban air pollution levels in many cities worldwide [49,52], but model run times can be
extensive when run sequentially, with city-scale calculations taking weeks to execute on
standard Windows PCs. Multiple model runs can be required in order to assess different
policy or emissions scenarios, and to perform sensitivity analyses, so improving model run
times is a key requirement for enabling the analysis of a broad range of scenarios.

This paper presents the results of a novel approach to running ADMS-Urban, where
task farming has been used to spatially parallelise the model configuration, and each run
component has been executed on an HPC—Bluebear at the University of Birmingham.
The approach has been tested for a large model domain covering the West Midlands
(WM), UK (902 km2), as part of modelling work in the WM-Air (the West Midlands Air
Quality Improvement Programme) project [53]. WM-Air is a five-year impact-focussed
programme to support the improvement of air quality and associated health, environmental
and economic benefits in the West Midlands. Section 2 describes the methodology of task
farming in the ADMS-Urban model and presents the modelling configuration for the WM
case study. Section 3 reports the model evaluation from the receptor run and several types
of air quality maps from the contour run. Section 4 discusses the results and Section 5 gives
a summary.
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2. Methodology
2.1. ADMS-Urban Model

ADMS-Urban can model pollution sources with explicit point, line, area or volume
geometry, using quasi-Gaussian plume dispersion expressions, with skewed vertical pro-
files used in convective conditions [54]. Road sources are modelled as a special case of
line sources, where traffic-induced turbulence effects are included based on user-defined
emission rates and/or traffic flow and speed data [55]. Point sources are modelled as
elevated sources for large industry sources and stack parameters (e.g., stack height and
diameter, efflux temperature and exit velocity) are needed. A regular grid of volume
sources with uniform source depth is also used to represent total emissions of both the
explicit sources and other sources where less detailed source characteristics are available,
such as domestic heating or minor industrial processes.

Dispersion calculations for each explicit source and a single volume source (forming
one cell of the uniform regular grid) are initially carried out along an “internal grid” of
calculation locations following the downwind plume centreline, with along-wind inter-
polation, lateral and vertical profile factors used to obtain concentrations at the required
output locations. The internal calculation grid resolution is finest at the source location
and increases in geometric sequence with increasing distance from the source, as plume
properties are expected to vary more slowly further from the source. The single volume
source grid cell dispersion patterns are spatially translated to the location of each cell,
scaled by the individual cell emissions and applied to the final output locations.

For pollutants which are considered inert on local scales, concentrations from all
included sources are summed at each output location to form the total output concentration.
For pollutants where local chemistry processes are significant, such as NOx and NO2, a
concentration-weighted average of dispersion time is also calculated at each output location
and used in an implementation of the Generic Reaction Set (GRS) chemistry scheme [56,57].

2.2. Run-Time Optimisation Using Task Farming

ADMS-Urban is a serial program designed to run on a single processor. However, the
latest version of the model includes the ability to split up a large modelling region into
smaller sub-regions, each of which can then be executed concurrently on multiple cores of
a HPC or across a PC network, a technique known as task farming.

Only those output points that fall within a given sub-region are included in that
sub-region run. Conversely, since the concentration at any output point can be affected by
any upwind source within the modelling region, it is important that all source emissions
are included in each sub-region run. A study of agricultural non-point source dispersion
modelling, for sources with a maximum horizontal dimension of 60–80 m, showed that
the exact geometry of neutrally buoyant non-point source types made little difference to
predicted downwind concentrations beyond approximately 100 m [58]. Large efficiency
gains can therefore be achieved, for appropriate source types, by only explicitly modelling
those sources that fall within the sub-region (plus an additional “buffer” zone), while
the emissions from more distant sources can be modelled via the (computationally much
cheaper) grid source. This also provides justification for regional-scale chemical transport
models typically only requiring gridded input emissions.

In ADMS-Urban, road sources are modelled as neutrally buoyant sources (with an
initial mixing depth to account for vertical spread in the wake of vehicles) and can therefore
be spatially truncated to sub-regions in this way. Figure 1 below shows an example of
which road sources are explicitly modelled for a particular sub-region run. Run times can
be optimised by ensuring a similar number of explicitly modelled sources and associated
output points are included within each sub-region, hence, smaller sub-regions are used in
areas with a higher density of explicit road sources.
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Figure 1. Example of explicit road source truncation for a particular sub-region. A buffer zone of
750 m has been used. Note that spatial sub-regions outside the WM boundary are run in the model
but not included in contour output, and thus are not shown here.

Conversely, point sources with high pollutant emission rates are always modelled
explicitly due to their non-negligible buoyancy and elevated source height, which affect
their dispersion over a long distance. Point sources are generally selected for explicit
modelling if they have annual average emissions greater than 1 g/s of a pollutant of
interest, or are subject to specific national regulation (“‘Part A” sources). The number of
point sources of this type is often much smaller than the number of modelled road sources
and so the run-time cost of including all point sources in each sub-region run, with extents
normally of the order of 1 km, is comparatively small.

2.3. Case Study

The West Midlands Combined Authority (WMCA) in the UK covers seven constituent
local authorities (Birmingham, Coventry, Dudley, Sandwell, Solihull, Walsall and Wolver-
hampton). Geographically, the West Midlands (WM) is an area of around 902 km2 roughly
centred on Birmingham. Air quality modelling is an important tool for the investiga-
tion of air quality within the WM region and for the assessment of the impact of specific
intervention scenarios on air quality within the region.

2.3.1. Emissions

Emission sources in the model included explicit point sources, explicit road sources
and 1 km × 1 km horizontal resolution grid sources for the baseline year of 2016 (shown
as Figure 2). The EMIT Atmospheric Emissions Inventory Toolkit (developed by CERC)
was used to pre-process the emission data before import into the ADMS-Urban model.
Table 1 shows an overview of total emissions for different source types over WM computa-
tional domain.



Atmosphere 2021, 12, 983 6 of 21

1 
 

 

 
Figure 1 
 

 

© OpenStreetMap (and) contributors, CC-BY-SA

© OpenStreetMap (and) contributors, CC-
BY-SA

0 10.5 Kilometers

Spatial Splitting

Single Region

West Midlands Boundary

Local Authority Boundaries

Road Sources

0 10 205 Kilometers

© OpenStreetMap (and) contributors, CC-BY-SA

0 8 164 Kilometers

ADMS Point Source
ADMS Road Source
ADMS Grid Source
Spatial Splitting
West Midlands Boundary

Figure 2. Emission sources in the model and spatial splitting for the modelling domain over
West Midlands.

Table 1. Overview of total emissions (in tonnes/year) for different sources over the WM computa-
tional domain.

Group 1 NO2 NOx VOC PM10 PM2.5 SO2

Major Roads 3165 16,740 502 985 460 24
Point Sources 148 2951 1441 318 230 153

SNAP01 energyprod 20 400 4 6 6 106
SNAP02 domcom 150 3000 1801 1826 1775 994
SNAP03 indcom 165 3294 46 248 243 660
SNAP04 indproc 1 24 411 1773 197 20
SNAP05 offshore 0 0 1746 0 0 0
SNAP06 solvents 0 3 18,140 552 233 2

SNAP07 Minor Roads 2025 10,830 1362 586 314 50
SNAP08 othertrans 530 6620 2135 368 403 59

SNAP09 waste 3 57 251 129 119 3
SNAP10 agric 4 84 1049 194 40 0

SNAP11 nature 0 4 721 89 82 0
1 For SNAP sectors, see Section Grid Sources.

Point Sources

Point source emission rates were taken from the UK National Atmospheric Emissions
Inventory (NAEI) [59], which collected detailed emission data from large individual sources.
Other smaller emission sources in the industrial and commercial sector were included
as grid sources (Section Grid Sources). Large industrial point sources were considered
explicitly as elevated point sources in the dispersion model. The emission inventory for
these point sources combined the NAEI 2016 data (for emission rates) and Birmingham City
Council (BCC) Airviro [60] model data (for stack parameters, e.g., stack height and diameter,
efflux temperature and exit velocity). Representative typical stack characteristics by sector
were used for the point sources where the stack characteristics are not known. The emission
rates from the point sources were given for a wide range of pollutants; those of interest
are NOx as NO2, PM10, PM2.5, Non-Methane Volatile Organic Compounds (NMVOC) and
SO2. The location of the point sources was given in the British National Grid Coordinate
System (OSGB) and has been converted to the modelling coordinate system in Lambert
Conformal Conic Projection (LCC). The use of modelling coordinate was consistent with
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that in the regional Community Multiscale Air Quality (CMAQ) modelling system, to
prepare for the development of a coupling system between CMAQ and ADMS-Urban
model under WM-Air.

Road Sources

Road sources in the current baseline model combined the traffic maps from Trans-
port for West Midlands (TfWM) PRISM model [61] and BCC’s SATURN model [62]. The
SATURN model has more road links within the forthcoming Clean Air Zone of Birming-
ham [63]. The traffic map covers major roads, e.g., motorways and “A” roads. Minor roads
not represented by the current traffic map are modelled as grid sources. The traffic data for
AM peak, PM peak and inter-peak time periods have been combined and converted into
Annual Average Daily Traffic (AADT). The traffic flows were categorised into heavy and
light vehicles. These traffic model output data were evaluated against the TfWM’s traffic
count data. The light vehicle from the traffic model agrees well with traffic counts, while the
heavy vehicle is consistently underestimated compared to traffic counts and an adjustment
was made. Bus timetable data from Remix [64] were also processed and included in the
model input. Representative fleet composition data (Euro classification for each sub-type
of heavy and light vehicles) were taken from ANPR data in a recent Birmingham Clean
Air Zone (CAZ) document [62] and has been incorporated into the EMIT calculations. The
UK NAEI 2014 road traffic emission factors, with real-world adjustments following the
approach described in Hood et al. 2018 [49], were used for the calculation of emission rates.

Grid Sources

Grid sources for 2016 were defined at 1 km × 1 km resolution with a typical depth
of 10 m. The base gridded emissions were downloaded from the NAEI website [59] in
the OSGB coordinate system, and have been converted to the LCC modelling coordinates.
NAEI emissions are available for all SNAP (Selected Nomenclature for Air Pollution)
sectors, i.e.,:

• SNAP 01—Combustion in Energy Production and Transformation (energyprod);
• SNAP02—Combustion in Commercial, Industrial, Residential and Agriculture (domcom);
• SNAP03—Combustion in Industry (indcom);
• SNAP04—Production Processes (indproc);
• SNAP05—Extraction and Distribution of Fossil Fuels (offshore);
• SNAP06—Solvent Use (solvents);
• SNAP07—Road Transport (roadtrans);
• SNAP08—Other Transport and Mobile Machinery (othertrans);
• SNAP09—Waste Treatment and Disposal (waste);
• SNAP10—Agriculture, Forestry and Landuse Change (agric);
• SNAP11—Nature (nature).

The pollutants of interest are NOx as NO2, NMVOC, PM10, PM2.5 and SO2. SNAP07
has been reduced by subtracting the emission contribution from the explicit major road
sources. EMIT also aggregates the explicit major road emissions into the same 1 km × 1 km
grid. The residual emission for this SNAP07 sector can be then derived and modelled as
SNAP07_minor road.

2.3.2. Time Varying Factors

Time-varying factors from the EMEP model [65,66] were available for each hour of the
day by SNAP sector and pollutant. An emissions inventory covering the area of interest
was available, with total emission for each sector. These emission rates were used to
calculate a combined set of weighted average monthly emission factors for each pollutant,
which were applied to the total gridded emission rates. Separate time varying factors
were applied to particulate and gaseous gridded emissions, reflecting different balances
between sectors and source types for these pollutants. In additional to the gridded emission
rates, time varying factors have been also applied to explicit road sources. The monthly
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factors used for explicit road source emissions were taken from Community Modelling and
Analysis System (CAMS) regional emissions v3.1 [67]. Diurnal profiles for road traffic have
been calculated using 24-h flow and speed data from automatic traffic count sites (data
downloaded from TfWM), typically available for 1 week per site. The roads of interest
were isolated, and the light and heavy vehicle hourly flows and speeds were processed
through an Emissions Factor Toolkit (EFT, version 9.0) [68] spreadsheet to calculate hourly
emission rates of the pollutant of interest. The emission rates were then normalised by
the average emission rate on the road, to give a time varying profile for the road. The
roads were classified into medium or high flow and average time-varying profiles were
calculated for each type. The diurnal profile for medium roads was also applied to the
grid source, representing both the significant contribution of minor roads to the residual
gridded emissions and the representation of emissions from roads outside the current
sub-region and buffer zones in the gridded emissions.

2.3.3. Background Data

Background concentration files were created using historic observation data from a
variety of rural background sites surrounding the West Midlands modelling area, available
from the Department for Environment, Food and Rural Affairs (Defra) UK-Air website [12].
Data were limited in the West Midlands area, so a suitable background file was created
using the following sites for different pollutants: (1) NOx, NO2, O3: Ladybower (Lat, Lon:
53.403370, −0.752006), Market Harbough (52.554444, −0.772222), Chilbolton (51.149617,
−1.438228), Leominster (52.221740, −2.736665), (2) SO2: Ladybower, Narberth (51.781784,
−4.691462), Chilbolton and (3) PM10 and PM2.5: Chilbolton (with large periods of missing
data filled using data from Sheffield Devonshire Green). The direction of each monitoring
site from the centre of the modelling region, and wind direction sectors which were
appropriate for each site, were calculated. The monitored wind direction for each hour
was used to identify upwind monitoring data for that hour. The use of Chilbolton for
particulate background concentrations was due to the fact that appropriate background
monitoring sites for PM were scarce around the West Midlands area. The monitored
Chilbolton concentration was multiplied by the ratio of the annual average concentration at
a rural area bordering the West Midlands to that at Chilbolton based on Defra’s background
concentration maps [69].

2.3.4. Meteorological Data

For the West Midlands, an appropriate synoptic meteorological measurement site is
located at Birmingham Elmdon, within Birmingham Airport, with data obtained from Met
Office MIDAS in CEDA Archive [70]. “UK Hourly weather data”, “UK Mean Wind” and
“UK Hourly rainfall data” have been combined to create the met data format required by
the model. The generated met file included hourly data for wind direction, wind speed
(converted from knots to m/s), total cloud fraction, air temperature, relative humidity
and precipitation.

2.3.5. Advanced Canyon and Urban Canopy Files

The data required to carry out the advanced canyon [51] and urban canopy [50]
calculations are (1) a road network shapefile and (2) a buildings shapefile, including a
height field. The building data have been obtained from Digimap database [71] via the
University. The ADMS-Urban software package included ArcGIS tools [72] which have
been used to calculate an Advanced Canyon file. The building height and canyon width
along each road link were derived. The gridded urban canopy parameters have also
been calculated for use in representing urban wind flow variations. These will enable the
ADMS-Urban model to account for the street canyon effect for road emissions and spatially
varying urban canopy flow for all source types.
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2.3.6. Spatial Splitting

The task farming approach was achieved by spatially splitting the domain within the
ADMS model. The overall rectangular output grid domain extent covering WM was first
divided into 468 smaller sub-domains (forming a grid of 26 by 18 sub-domains, shown as
Figure 2), each with a size of 2 km × 2 km. For some 2 km × 2 km subdomains with denser
road links in city centre areas, which also included increased numbers of output points to
fully resolve the near-road concentrations, a further spatial splitting into 1 km × 1 km or
500 m × 500 m was adopted in order to reduce the overall computation time. The total
number of sub-domains was 540 (although no output points have been specified beyond
1 km outside the WM boundaries). The maximum number of road sources in a single
sub-domain was 598 and the maximum number of output points in a domain was 4725.
A buffer zone [73] of 750 m for road sources (to exclude explicit road sources unlikely
to contribute significantly to modelled concentrations in the sub-domain) was used for
each sub-domain.

3. Results
3.1. Receptor Run: Model Evaluation

For the purpose of model evaluation, the model was first run in a “Receptor” Mode (a
run with output for a limited number of specified receptors) for 32 air quality measurement
sites within the WM over the whole year of 2016, with measured concentration data
obtained from local authorities and Defra’s AURN [12] (shown as Figure 3, mostly with
available hourly air quality measurements). These sites included three types, i.e., 1 airport
site, 19 roadside sites and 12 urban background sites. In order to reduce the model
computational time, the source exclusion option [73] was used to not explicitly model road
sources far away from specified receptors, and therefore unlikely to contribute significantly
to modelled concentrations at receptors, with a specified exclusion distance of 750 m. The
Receptor run was conducted in a Windows PC and it took about 12 h’ computation time
to get the hourly output of five air pollutants (NOx, NO2, O3, PM10 and PM2.5) across a
whole year for all 32 receptors. The Model Evaluation Toolkit [74] was used to conduct the
evaluation of the model by comparing to the measured air quality data using statistical
and graphical methods.

Figure 3. Monitoring sites within West Midland used for the model evaluation.
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3.1.1. NOx and Chemistry

Figure 4 shows the evaluation of modelled annual NOx, NO2 and O3 against observa-
tions using scatter plots divided by site type. Overall, the model performed well in terms of
NOx and NO2 for all site types. The good fits for O3 further suggested good performance
of the model chemistry. Table 2 shows the statistics (see definitions in [49]) for the model
evaluation for the baseline year of 2016, calculated from the hourly modelled and measured
concentrations. Fb (Fractional bias) measures the mean concentration difference between
the model and measurement (ideal value is 0). Fac2 measures the fraction of modelled data
within a factor of 2 of observations (ideal value is 1.0). NMSE (normalised mean square
error) measures the mean concentration difference between matched pairs of modelled and
measured data (ideal value is 0). R (correlation coefficient) measures a linear relationship of
concentrations between the model and measurement (ideal value is 1.0). Fb varies between
(−0.24, 0.03) for NOx and (−0.08, 0.06) for NO2 and O3, while (0, 0.05) for NOx and (−0.01,
0.06) for NO2 and O3 were derived for the ADMS-Urban run with adjusted road traffic in
Hood et al. (2018) [49]. Fac2 indicates that more than 62% of NOx, 76% of NO2 and 73% of
O3 are within a factor of 2 of observations. NMSE varies between (1.03, 1.24) for NOx, (0.12,
0.32) for NO2 and O3, which is similar to (0.62, 0.86) for NOx and (0.21, 0.29) for NO2 and
O3 in Hood et al. (2018) [49]. R varies between (0.58, 0.83) for NOx, NO2 and O3, which is
close to (0.61, 0.77) in Hood et al. (2018) [49].

Figure 4. Comparison of annual averages between model output and measurement: (a) for NOx

(in µg m−3), (b) for NO2 (in µg m−3) and (c) for O3 (in µg m−3).
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Table 2. Statistics for model evaluation for the baseline year of 2016 calculated from the hourly modelled and measured
concentrations. nSites: number of sites; Obs: observed concentration; Mod: modelled concentration; Fb: fraction bias (ideal
value is 0); Fac2: fraction of modelled data within a factor of 2 of observations (ideal value is 1.0); NMSE: normalised mean
square error (ideal value is 0); R: correlation coefficient (ideal value is 1.0).

Pollutant Site Type nSites Obs (µg m−3) Mod (µg m−3) Fb Fac2 NMSE R

NOx roadside 16 96.6 75.8 −0.24 0.62 1.03 0.58
Nox urban background 9 38.2 39.4 0.03 0.74 1.24 0.63
NO2 roadside 17 39.0 36.0 −0.08 0.76 0.32 0.59
NO2 urban background 8 23.7 25.0 0.06 0.81 0.32 0.71
O3 roadside 3 34.3 33.8 −0.01 0.73 0.17 0.80
O3 urban background 4 42.5 40.0 −0.06 0.79 0.12 0.83

PM10 roadside 8 15.6 17.1 0.09 0.78 0.43 0.48
PM10 urban background 3 13.9 15.6 0.12 0.79 0.43 0.50
PM2.5 roadside 3 13.4 11.8 −0.13 0.76 0.53 0.61
PM2.5 urban background 3 10.7 10.3 −0.03 0.74 0.50 0.66

3.1.2. PM10 and PM2.5

Figure 5 shows the evaluation of modelled annual average PM10 and PM2.5 against
observations using scatter plots divided by site types; note that there were no PM2.5
measurements at the single airport site. PM10 had a very good fit for the airport and urban
background sites. PM10 tended to slightly over-predict at roadside sites, possibly related to
uncertainties in traffic non-exhaust emissions and background data. The model had good
predictions for the small number of sites with available PM2.5 measurement data. For PM10
and PM2.5, Fb ranges between (−0.13, 0.12), slightly wider than (−0.07, 0.09) in Hood et al.
(2018) [49]. Fac2 indicates that more than 74% of PM10 and PM2.5 are within a factor of
2 of observations. NMSE varies between (0.43, 0.53) for PM10 and PM2.5, slightly higher
than (0.27, 0.37) in Hood et al. (2018) [49]. R varies between (0.48, 0.66) for PM10 and PM2.5,
slightly lower than (0.58, 0.77) in Hood et al. (2018) [49].

Figure 5. Comparison of annual averages between model output and measurement: (a) for PM10

(in µg m−3); (b) for PM2.5 (in µg m−3).
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3.2. Contour Run: Air Quality Maps

For the generation of air quality maps, the model was then run in a “Contour” Mode
(with the splitting option activated) to include output points covering the whole WM (and
extending up to 1 km outside the WM boundary). An array job with 540 cores, each for a
single sub-domain as shown in Figure 2, was submitted to the HPC at the University of
Birmingham using the Linux version of the ADMS-Urban model. The overall elapsed time
for the run (determined by the slowest core of 540 cores) for the typical whole year 2016
baseline case is about 35 h, with a median core run time of about 5 h and a minimum run
time of 16 s for sub-domains without any emission sources. The total computational time
(summing over all 540 cores) is about 169 days. Figure 6 shows a comparison of elapsed
(clock) time of the slowest core and total computational time using task farming, (estimated
by a typical one day simulation due to the substantial computational time requirement
for a single core simulation). From 1 core to 4 core, the typical elapsed time can reduce
by about 80%. From 156 cores, the typical elapsed time reduces more gradually. The total
computational time profile has a slower decrease than the profile for the elapsed time of the
slowest core, which is due to the increase in the buffer zone calculations for larger numbers
of cores (especially for 540 cores). The choice of the number of cores can be dependent
on the local HPC service, such as limitations in the number of available cores and the
maximum allowed time for a single core (walltime).

Figure 6. Comparison of elapsed (clock) time of the slowest core and total computational time using
task farming; note that the horizontal axis scale is non-linear.

The output for each subdomain was in netcdf file format, which has been combined
and interpolated using the CombineCOF and AddInterpIGP utilities developed by CERC.
The re-combination and interpolation time was about 1 h. The recombined and interpolated
outputs for the hourly output of the whole year over WM region contained ~0.61 million
and ~1.26 million output locations, and had file sizes of about 120 GB and 247 GB, respec-
tively. The final netcdf output was then processed to derive annual/subset averages and
other statistical output (e.g., percentiles) using the “Process comprehensive output” tool in
the model. This process took a couple of hours, dependent on the number of output air
pollutants. The final contour plots over WM at a specified resolution (e.g., 10 m × 10 m)
were created via GIS tools, in particular using interpolation in Surfer and display in ArcGIS.
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3.2.1. Annual Air Quality Map

Figure 7 presents a map of the annual average NO2 concentration which is a key air
quality challenge for roadside locations in the UK, at 10 m × 10 m horizontal resolution
for the baseline year of 2016. Other pollutants such as NOx, O3, PM10 and PM2.5 are
shown in Figure A1. The legend of Figure 7 indicates colour scales with annual mean NO2
concentrations higher than the UK objective value of 40 µg m−3 [75] shown in orange and
red. There were relatively higher concentrations of NO2 near motorways and major roads
in city centre areas, mostly due to the higher traffic-related emissions. Away from major
roads and in rural areas, NO2 concentrations were generally lower.

Figure 7. Annual air quality maps for NO2 (in µg m−3) at 10 m × 10 m resolution. Areas exceeding
the UK objective value of 40 µg m−3 are shown in yellow, orange and red.

3.2.2. Projected Air Quality Map for Health

For the purposes of health-related research, including assessment of personal exposure
and exploration of relationships between air pollution levels and socio-demographic
characteristics typically available on different spatial scales, the 10 m × 10 m horizontal
resolution annual air quality map may need to be further aggregated into other polygon
layers, e.g., Lower Layer Super Output Areas (LSOA) and ward levels (averages over these
layers). Figure 8 shows examples of projected annual air quality maps for NO2 averaged
over LSOA layer and ward level layer. There were clear patterns of higher concentration in
city centre areas and lower concentration in rural areas. The projected air quality maps for
other pollutants such as NOx, O3, PM10 and PM2.5 are shown in Figure A2 (in LSOA layer)
and Figure A3 (in the ward layer). These can then be linked to population and health data
for the assessment of the health impacts of air pollution. Note that the spatial averaging
process leads to a narrower range of concentrations across the whole area, as both the
lowest concentrations in the most rural areas and the highest concentrations adjacent to
road sources are no longer fully represented; this reduction in dynamic range is significant
and dependent on spatial resolution.
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Figure 8. Projected annual air quality maps for NO2 (in µg m−3) (a) in the Lower Layer Super Output Areas (LSOA) layer
and (b) in the ward level.

3.2.3. Percentile Air Quality Map

Apart from annual average air quality targets, percentiles are also a useful indicator
for the exceedance of the air quality objective value. For NO2, the 99.8 percentile for the
1 h mean [75] is normally used, which represents the 18th highest concentration in hourly
series over a whole calendar year. The UK objective for 1 h mean NO2 concentration (where
public exposure occurs) is “200 µg m−3 not to be exceeded more than 18 times a year” [75].
Figure 9 shows the 99.8 percentile for 1 h mean NO2 concentration. The exceedance of air
quality objective value (200 µg m−3) for 1 h NO2 concentration was found mostly along
motorways and major roads linking to motorways, areas in which public exposure may
be limited.

Figure 9. The 99.8 percentile annual air quality maps for 1 h mean NO2 (in µg m−3) at 10 m × 10 m
resolution. Areas exceeding the UK objective value of 200 µg m−3 are shown in orange and red.

3.2.4. Air Quality Maps over Temporal Subsets

Post-processing tools provide the flexibility to obtain concentration averages over
temporal subsets, which may be useful when mapped for health/exposure study. Figure 10
shows air quality maps of NO2 over selected temporal subsets, i.e., AM (7 a.m.–9 a.m.)
weekday, IP (inter-Peak) (9 a.m.–3 p.m.) weekday, PM (3 p.m.–7 p.m.) weekday, and IP
(9 a.m.–3 p.m.) weekend. For AM weekday and PM weekday, the influence of major road
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emissions is clearly visible over the whole WM region, due to the region-wide increased
traffic activity during these peak periods. For IP weekday and IP weekend, the major
roads have a lesser contribution to concentrations over the WM region, compared with
peak periods on weekdays. The NO2 concentration for IP weekday shows higher overall
concentration levels and a clearer pattern of influence from road emissions than that for
IP weekend.

Figure 10. Air quality maps for NO2 (in µg m−3) at 10 m × 10 m resolution averaged over (a) AM weekday, (b) IP weekday,
(c) PM weekday, (d) IP weekend.

4. Discussion

The air quality sites used to evaluate the model performance included three repre-
sentative types (i.e., airport, roadside and urban background sites). Overall, the model
performed well for all pollutants. For airport and urban background sites, the model results
reproduce the measured values well since these are less influenced by local emissions and
complex building geometry. For roadside sites, the concentrations of air pollutants are more
influenced by local emission (e.g., traffic NOx) and street canyon geometry, which may be
reflected in higher uncertainty for some of the roadside sites. NOx and NO2 concentration
levels are most closely related to local emissions and can be well predicted by the current
model. PM concentrations are more related to the regional background, which may have
some uncertainty. In order to reduce the model uncertainty, the model has been set up
with the best available emissions, meteorology, building data, source locations and monitor
locations for the WM region. From the model best practice and model evaluation, the
model configuration is satisfactory for the wider WM contour run. It is of note that, for
PM10 and PM2.5, the background concentrations (constrained to observations) are greater
than the increment associated with emissions in the model domain at all sites.
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The contour run was performed by using the modelling capability of task farming (via
spatial splitting) within the ADMS-Urban model. For this air quality modelling application
in a large urban area, the optimisation process has reduced weeks of model execution
time to only ~35 h and the model can generate high horizontal resolution “street-scale”
air quality maps over WM. There are relatively higher annual concentrations of NO2 in
city centre areas (e.g., Birmingham), mainly due to the higher local traffic emissions. As
NO2 concentrations are closely related to local traffic emissions, the control of traffic in
city centre areas would have a substantial effect on reducing proximate NO2 levels. A
Birmingham CAZ is proposed to be in place from June 2021 to reduce air pollution levels
within Birmingham city centre [63].

The high horizontal resolution air quality maps generated from the model output can
be further aggregated into other health-related layers (such as LSOA and ward layers) to
study the relationship between air quality and health data. Apart from the annual averages,
the model output and post-processing flexibility enables the calculation of other statistics,
such as percentiles. Exceedances of the air quality objective value for the 99.8 percentile
of the 1 h mean NO2 concentration were generally only found for motorways and major
roads directing to motorways, which is unsurprising due to intensive traffic activity. The
reduction in traffic speed limits for some motorways (e.g., trials on speed limits on M6
and M5 motorways near Birmingham reduced from 70 mph to 60 mph by Highways
England [76]) may thus help to reduce the NO2 exceedance, although exposure at such
locations may be limited.

Air quality maps over temporal subsets can be also derived for health/exposure study.
As expected, AM weekday and PM weekday have clear patterns of region-wide traffic,
while NO2 concentrations over these periods are much higher than the annual averages.
The influences of traffic over IP weekday and IP weekend are less significant compared
with AM weekday and PM weekday. These findings can be useful for exposure and health
studies over working periods. Reis et al. [77] also highlighted the importance of workday
population mobility on the exposure to air pollutants.

5. Conclusions

A WM-Air ADMS-Urban baseline model configuration has been developed and model
predictions for NOx, NO2, O3, PM10 and PM2.5 have been evaluated using measurement
data. Overall, the model performed well and run times are manageable using the task
farming approach. A regional (e.g., CMAQ) modelling system can provide spatially varying
regional background predictions, which can be coupled with the ADMS-Urban model in
future, but may also have its own uncertainties in terms of model configuration, compared
with observational constraints. The post-processing flexibility enables the creation of air
quality maps for annual/subset averages and other statistical output (e.g., percentiles). The
model outputs can be useful for the study of health impacts of air pollutants.

Future work will draw upon the demonstrated efficient execution of multiple air
quality modelling scenarios on HPC. It is important to ensure that the model configuration
includes model inputs that are sufficiently detailed that they allow different scenarios to
be represented. There are a range of possible air quality modelling scenarios: local and
national, short-term and long-term, transport related and non-transport related. The com-
bination of detailed inventory and spatially defined emissions, high resolution dispersion
simulation, efficient parallelisation and flexible post-processing will allow the exploration
of multiple scenarios. These may investigate concentration responses to interventions
such as Clean Air Zones, the influence of solid fuel combustion, agricultural emissions,
air quality–climate interactions and the relationships between air pollution exposure and
population distribution. These in turn enable optimisation of combined benefits and equity
of possible future limit value and exposure reduction based on air quality targets.
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Appendix A

Figure A1. Annual air quality maps for (a) NOx (in µg m−3), (b) O3 (in µg m−3), (c) PM10 (in µg m−3) and (d) PM2.5

(in µg m−3) at 10 m × 10 m resolution.
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Figure A2. Projected annual air quality maps for (a) NOx (in µg m−3), (b) O3 (in µg m−3), (c) PM10 (in µg m−3) and (d)
PM2.5 (in µg m−3) in the Lower Layer Super Output Areas (LSOA) layer.

Figure A3. Cont.
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Figure A3. Projected annual air quality maps for (a) NOx (in µg m−3), (b) O3 (in µg m−3), (c) PM10 (in µg m−3) and (d)
PM2.5 (in µg m−3) in the ward level.
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